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Abstract. Let A be an infinite-dimensional C∗-algebra. We prove that
every nonempty relatively weakly open subset of the closed unit ball BA

of A has diameter equal to 2. This implies that BA is not dentable,
and that there is no any point of continuity for the identity mapping
(BA, weak)→ (BA, norm).

1. Introduction

Despite the importance of the Radon-Nikodym property in the theory
of Banach spaces, many classical Banach spaces fail to enjoy that property.
For instance, this is the case of infinite-dimensional C(K)-spaces and C∗-
algebras. In this paper, we show that infinite-dimensional C(K)-spaces and
C∗-algebras actually fail to fulfill most consequences of the Radon-Nikodym
property, like the dentability of closed balls, or the existence of points of
weak-norm continuity for the identity mapping on closed balls. In fact we
prove that, if A is an infinite-dimensional C∗-algebra, then every nonempty
relatively weakly open subset of the closed unit ball of A has diameter equal
to 2 (Theorem 2.5). Our proof starts by revisiting the C(K)-space case,
where the result is known [17], and passes through the consideration of
some mathematical objects, called JB∗-triples (see [15] and [16]), which
become natural generalizations of C∗-algebras. In the result obtained for
JB∗-triples, the infinite dimensionality must be replaced with the non hilber-
tizability (Proposition 2.4). We consider also the case of JB-algebras [13],
where a similar result to that obtained for JB∗-triples is proven (Theorem
3.3).
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2. The main result

Throughout this paper K will mean the field of real or complex numbers.
Let X be a Banach space X over K. We denote by SX , BX , and X∗ the
unit sphere, the closed unit ball, and the (topological) dual, respectively, of
X. We denote by n (respectively, w) the norm (respectively, weak) topology
on X, and by w∗ the weak∗ topology of X∗. If Y is another Banach space,
L(X, Y ) will stand for the space of all bounded linear operators from X to
Y .

Given a locally compact Hausdorff topological space Ω, we denote by
CK

0 (Ω) the Banach space of all K-valued continuous functions on Ω vanishing
at infinity. When Ω is actually compact, we write as usual CK(Ω) instead
of CK

0 (Ω). The following lemma is a consequence of [17, Theorem 2]. For
the sake of completeness, we give here a direct proof.

Lemma 2.1. Let Ω be a compact Hausdorff topological space, and let X
stand for CK(Ω). If there exists a nonempty relatively w-open subset of BX

with diameter less than 2, then Ω is finite.

Proof. Assume that Ω is infinite. Let U be a nonempty relatively w-
open subset of BX . We are going to show that diam(U) = 2. Since X is
infinite-dimensional, there must exist some x in U ∩ SX .

Consider first the case that the set of isolated points of Ω is infinite. Take
a sequence {tn}n∈N of pair-wise different isolated points of Ω, and, for n in
N, define xn ∈ X by xn(tn) = 1, xn(tn+1) = −1, and xn(t) = x(t) whenever
t belongs to Ω\{tn, tn+1}. Since {xn}n∈N lies in BX and converges pointwise
to x, it follows from [10, Theorem VII.1] that {xn}n∈N actually converges
weakly to x. Since U is a relatively w-neighbourhood of x, we have that xn

and xn+1 belong to U for n big enough, and therefore diam(U) = 2.
Now consider the case that x attains its norm at an accumulation point

t0 of Ω. There is no loss of generality if we assume x(t0) = 1. Let ε > 0.
Then the set

ω0 := {t ∈ Ω : |x(t)− 1| < ε}
is open in Ω and contains t0. Since t0 is an accumulation point of Ω, there
is an infinite sequence {ωn}n∈N of nonempty pair-wise disjoint open subsets
of ω0. For n ∈ N, take tn ∈ ωn, and apply Uryson’s lemma to pick xn in
X with −1 ≤ xn ≤ 1, xn(tn) = −1, and xn(t) = 1 whenever t ∈ Ω \ ωn.
Since {xn}n∈N converges pointwise to 1, {xxn}n∈N converges pointwise to x,
and hence {xxn}n∈N actually converges weakly to x because {xxn}n∈N lies
in BX . Let m be in N such that xxm belongs to U . Then, since tm lies in
ω0, we have

diam(U) ≥ ‖x− xxm‖ ≥ |x(tm)(1− xm(tm))| = 2|x(tm)| ≥ 2(1− ε).

By the arbitraryness of ε, we deduce diam(U) = 2.
To conclude the proof, consider the case that the set of isolated points

of Ω is finite. Then we can write X = (Y × Z)∞, where Y = (Kp)∞ for
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some nonnegative integer number p, and Z = CK(K) for some perfect com-
pact Hausdorff topological space K. As a consequence, we have (BX , w) =
(BY , w)× (BZ , w). Since the coordinate projection πZ : (BX , w) → (BZ , w)
is open, it follows from the preceding paragraph that diam(πZ(U)) = 2.
Since πZ is contractive, we deduce diam(U) = 2.

Lemma 2.2. Let Ω be a locally compact Hausdorff topological space, and
let X stand for CK

0 (Ω). If there exists a nonempty relatively w-open subset
of BX with diameter less than 2, then Ω is finite.

Proof. Assume that there is a nonempty relatively w-open subset U of
BX with diam(U) < 2. Then U contains a set V of the form

{x ∈ BX : |fi(x− x0)| < 1 ∀i = 1, ..., n},

for suitable x0 ∈ BX , n ∈ N, and f1, ..., fn ∈ X∗. Put

V ∗∗ := {z ∈ BX∗∗ : |fi(z − x0)| < 1 ∀i = 1, ..., n}.

Since V ∗∗ is relatively w∗-open in BX∗∗ , and BX is w∗-dense in BX∗∗ ,
V (= V ∗∗∩BX) is w∗-dense in V ∗∗. Therefore V −V is w∗-dense in V ∗∗−V ∗∗,
and consequently , by the lower semicontinuity of the norm of X∗∗, we have
diam(V ∗∗) = diam(V ) ≤ diam(U) < 2. Since X∗∗ = CK(K) for a suitable
compact Hausdorff topological space K, and V ∗∗ is a nonempty relatively
w-open subset of X∗∗, it follows from Lemma 2.1 that K is finite. Now
X = X∗∗ is finite-dimensional, and hence Ω is finite.

The proof of Lemma 2.2 actually shows that, if X is an infinite-dimensional
real or complex Lindenstrauss space, then every nonempty relatively w-open
subset of BX has diameter equal to 2.

We recall that a JB∗-triple is a complex Banach space J with a contin-
uous triple product {...} : J×J×J → J which is linear and symmetric in the
outer variables, and conjugate-linear in the middle variable, and satisfies:

(1) For all x in J , the mapping y → {xxy} from J to J is a hermitian
operator on J and has nonnegative spectrum.

(2) The main identity

{ab{xyz}} = {{abx}yz} − {x{bay}z}+ {xy{abz}}

holds for all a, b, x, y, z in J .
(3) ‖{xxx}‖ = ‖x‖3 for every x in J .

Concerning Condition 1 above, we also recall that a bounded linear operator
T on a complex Banach space X is said to be hermitian if ‖ exp(irT )‖ = 1
for every r in R.

JB∗-triples are of capital importance in the study of bounded symmetric
domains in complex Banach spaces. Indeed, open balls in JB∗-triples are
bounded symmetric domains, and every symmetric domain in a complex
Banach space is biholomorphically equivalent to the the open unit ball of a
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suitable JB∗-triple (see [15] and [16]). Examples of JB∗-triples are all C∗

algebras under the triple product

(2.1) {xyz} :=
1
2
(xy∗z + zy∗x),

the spaces L(H1,H2) for arbitrary complex Hilbert spaces H1 and H2 (with
triple product formally defined as in (2.1)), and the so-called spin factors.
These are constructed from an arbitrary complex Hilbert space (H, (·|·)) of
hilbertian dimension ≥ 3, by taking a conjugate-linear involutive isometry
σ on H, and then by defining the triple product and the norm by

{xyz} := (x|y)z + (z|y)x− (x|σ(z))σ(y)

and
‖x‖2 := (x|x) +

√
(x|x)2 − |(x|σ(x))|2,

respectively, for all x, y, z in H.
Let J be a JB∗-triple. A subtriple (respectively, triple ideal) of J

is a subspace M of J such that {MMM} ⊆ M (respectively, {MJJ} +
{JMJ} ⊆ M). We say that J is simple if there are not triple ideals of J
other than {0} and J . If x is in J , and if the subtriple of J generated by
x is finite-dimensional, then we say that x is an algebraic element of J .
The JB∗-triple J is said to be algebraic if every element of J is algebraic.

The proof of the next lemma involves minor changes on that of [7, The-
orem 1] or [8, Theorem D], and hence is omitted. Because of the conjugate-
linear behaviour of triple products of JB∗-triples in the middle variable, and
the essentially linear nature of the arguments in [7] and [8], the application
of such arguments in our setting needs a formal consideration of “real al-
gebraic” elements, being sure that “real algebraic” elements and (complex)
algebraic elements coincide, thanks to the fact that C is finite-dimensional
over R.

Lemma 2.3. Let J be a JB∗-triple. If there exists a nonempty open
subset of J consisting only of algebraic elements of J , then J is algebraic.

Proposition 2.4. Let J be a JB∗-triple such that there exists a nonempty
relatively w-open subset of BJ with diameter less than 2. Then J is a finite
`∞-sum of closed simple triple ideals which are either finite-dimensional,
spin factors, or of the form L(H1,H2) for suitable complex Hilbert spaces
H1 and H2 with dim(H2) < ∞. Consequently, the Banach space of J is
hilbertizable.

Proof. Let U be a nonempty relatively w-open subset of BJ with
diam(U) < 2. Let x be in J . Denote by Jx the closed subtriple of J
generated by x. It is well-known that there is a unique locally compact sub-
set Sx of ]0,∞[ and a surjective triple isomorphism φx : Jx → CC

0 (Sx) such
that Sx ∪ {0} is compact and φx(x) is the inclusion mapping Sx → C (see
[15, 4.8], [16, 1.15], and [12]). Since surjective triple isomorphisms between
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JB∗-triples are isometries (see again [16]), we can write Jx = CC
0 (Sx), in the

sense of the isometric theory of Banach spaces. Now assume that x actually
lies in U . Then U ∩ Jx is a nonempty relatively w-open subset of BJx with
diam(U ∩ Jx) < 2. It follows from Lemma 2.2 that Sx is finite, and hence x
is an algebraic element of J . Since x is arbitrary in U , and U has nonempty
n-interior in J , it follows from lemma 2.3 that J is algebraic. Now, since Sx

is finite for every x in X, the result follows easily from the results in [6] (see
the concluding part of the proof of [6, Proposition 4.5] for details).

Since C∗-algebras are JB∗-triples, and they are finite-dimensional when-
ever their Banach spaces are reflexive [21], our main result follows straight-
forwardly from Proposition 2.4.

Theorem 2.5. Let A be a C∗-algebra such that there exists a nonempty
relatively w-open subset of BA with diameter less than 2. Then A is finite-
dimensional.

Of course, the existence of a nonempty relatively w-open subsets of the
closed unit ball with diameter less than 2, required in Theorem 2.5 (respec-
tively, Proposition 2.4), is a condition much weaker than that of finite di-
mensionality (respectively, hilbertizability) arising in the conclusion of that
result. Therefore we can obtain many other intermediate characterizations
of the finite dimensionality (respectively, the hilbertizability) of C∗-algebras
(respectively, JB∗-triples) in terms of the geometry of their closed unit balls.
We do not state explicitly such characterizations, and only note as a hint
that, for a Banach space X, each of the conditions 1 to 10 which follow
implies the subsequent one:

(1) Finite-dimensionality
(2) Hilbertizability
(3) Superreflexivity
(4) Reflexivity
(5) The Radon-Nikodym property
(6) “Abundance” of denting points of BX

(7) Existence of denting points of BX

(8) Existence of slices of BX of arbitrarily small diameter
(9) Existence of nonempty relatively w-open subsets of BX of arbitrar-

ily small diameter
(10) Existence of nonempty relatively w-open subsets of BX with diam-

eter less than 2.

The implication 8 ⇒ 9 above follows because, in fact, slices of BX are
nonempty relatively w-open subsets of BX . We note in addition that denting
points of BX are points of w−n continuity of the identity mapping on BX ,
and that the mere existence of a point of w−n continuity of the identity on
BX implies condition 9 above. We recall that a slice of the closed unit ball
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of the Banach space X is a set of the form

S(X, f, α) := {x ∈ BX : <e(f(x)) > 1− α}
for some f in SX∗ and α > 0, that a denting point of BX is an element of
BX such that there are slices of BX of arbitrarily small diameter containing
it, and that condition 8 above is usually called dentability of BX .

For some of the consequences of Theorem 2.5 suggested above, we are
provided with a proof not involving the theory of JB∗-triples nor the nonas-
sociative techniques in [7] or [8]. This is the case of the following corollary.

Corollary 2.6. Let A be a C∗-algebra such that there exists a slice in
A with diameter less than 2. Then A is finite-dimensional.

Proof. Take a slice S of BA with diameter less than 2. As in the proof
of Lemma 2.2, we can produce a slice S∗∗ of BA∗∗ with diam(S∗∗) = diam(S).
Then, since A∗∗ is a C∗-algebra with a unit, there is no loss of generality if
we assume that A has a unit 1. Let us denote by U the set of all unitary
elements of A. Since BA \ S is a convex, closed, and proper subset of BA,
and co (U) = BA [3, Theorem 30.2], there must exist u in U ∩ S. Then
S′ := u∗S is a slice in A containing 1 and whose diameter is less than 2. Let
h be a self-adjoint element of A, and let Ah denote the closed subalgebra of
A generated by {h,1}. Then we have Ah = CC(Ωh), where Ωh denotes the
spectrum of h. Moreover, since S′ ∩ Ah is nonempty, it is in fact a slice in
Ah whose diameter is less than 2. According to Lemma 2.1, the spectrum of
h is finite. Since h is an arbitrary self-adjoint element of A, Theorem 3.2.2
of [1] applies, giving that A is finite-dimensional.

Let X be a Banach space. For u in SX , we define the roughness of X
at u, η(X, u), by the equality

η(X, u) := lim sup ‖h‖→0

‖u + h‖+ ‖u− h‖ − 2
‖h‖

.

We remark that the absence of roughness of X at u (i.e., η(X, u) = 0) is
nothing but the Fréchet differentiability of the norm of X at u [9, Lemma
I.1.3]. Given ε > 0, the Banach space X is said to be ε-rough if, for every u
in SX , we have η(X, u) ≥ ε. We say that X is rough whenever it is ε-rough
for some ε > 0, and extremely rough whenever it is 2-rough.

Corollary 2.7. Let A be an infinite-dimensional von Neumann alge-
bra. Then the predual of A is extremely rough.

Proof. Let A∗ denote the predual of A, and let u be in SA∗ . By
Corollary 2.6, for every α > 0, the diameter of the slice S(A, u, α) is equal to
2. According to the proof of [9, Proposition I.1.11], this implies η(A∗, u) = 2.

Corollary 2.7 is the unique predualitation we know of Theorem 2.5. A
double predualization of that theorem (which in fact contains it) is really
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easy. Actually it is enough to invoke Theorem 2.5 after applying the argu-
ment in the proof of Lemma 2.2.

Corollary 2.8. Let X be an infinite-dimensional complex Banach space
such that X∗∗ is a C∗-algebra. Then every nonempty relatively w-open sub-
set of BX has diameter equal to 2.

3. Other related results

We begin this section by deriving again Theorem 2.5 from Proposition
2.4, but now throughout a slightly longer way. This way is quite natural
because the class of “ternary” generalizations of C∗-algebras (namely, that
of JB∗-triples) contains the one of “binary” generalizations of C∗-algebras
(namely, that of non-commutative JB∗-algebras).

Non-commutative Jordan algebras are defined as those algebras A
satisfying (xy)x2 = x(yx2) and (xy)x = x(yx), for all x, y in A. For an
element x in a non-commutative Jordan algebra A, let us denote by Ux the
mapping y → x(xy+yx)−x2y from A to A. By a non-commutative JB∗-
algebra we mean a complete normed non-commutative Jordan complex al-
gebra A with a conjugate-linear algebra-involution ∗ satisfying
‖Ux(x∗)‖ = ‖x‖3 for every x in A. As an example of the relevance of
non-commutative JB∗-algebras in the general non-associative setting, let
us mention that they are the unique (possibly non associative) complete
normed complex algebras having an approximate unit bounded by one and
whose open unit balls are bounded symmetric domains [14, Theorem 3.3],
whereas C∗-algebras are the unique associative complete normed complex
algebras satisfying the same two properties as above [14, Corollary 3.4].

We recall that a complex algebra A is called quadratic if it has a unit
1, A 6= C1, and, for each x in A, there are elements t(x) and n(x) of C such
that x2 − t(x)x + n(x)1 = 0. All quadratic non-commutative JB∗-algebras
are hilbertizable [18, Theorem 3.2]. On the other hand, non-commutative
JB∗-algebras whose Banach spaces are reflexive are perfectly determined
[18, Theorem 3.5]. Keeping in mind such a determination, and the fact
already commented that non-commutative JB∗-algebras are JB∗-triples in
a natural way (see [4] and [22]), the following result follows from Proposition
2.4.

Proposition 3.1. Let A be a non-commutative JB∗-algebra such that
there exists a nonempty relatively w-open subset of BA with diameter less
than 2. Then A is a finite `∞-sum of closed simple ideals which are either
finite-dimensional or quadratic. Consequently, the Banach space of A is
hilbertizable.

Alternative algebras are defined as those algebras A satisfying
x2y = x(xy) and yx2 = (yx)x for all x, y in A. By Artin’s theorem [24,
Theorem 2.3.2], an algebra A is alternative (if and) only if, for all x, y in A,
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the subalgebra of A generated by {x, y} is associative. By an alternative
C∗-algebra we mean a complete normed alternative complex algebra (say
A) with a conjugate-linear algebra-involution ∗ satisfying ‖x∗x‖ = ‖x‖2 for
all x in A. Alternative C∗-algebras have also their own right to be consid-
ered as the non-associative counterparts of C∗-algebras. Indeed, Gelfand-
Naimark axioms on a (possibly non associative) unital complex algebra A
imply that A is alternative [19, Theorem 14]. Since alternative algebras are
non-commutative Jordan algebras, and, for elements x, y in an alternative
algebra, the equality Ux(y) = xyx holds, it is not difficult to realize that al-
ternative C∗-algebras become particular examples of non-commutative JB∗-
algebras. Therefore, since simple quadratic alternative algebras are finite-
dimensional [24, Theorems 2.3.4 and 2.2.1], the next result follows from
Proposition 3.1.

Proposition 3.2. Let A be an alternative C∗-algebra such that there
exists a nonempty relatively w-open subset of BA with diameter less than 2.
Then A is finite-dimensional.

Since associative algebras are alternative, Proposition 3.2 contains The-
orem 2.5.

Our next and concluding goal in this section is to prove in the setting
of JB-algebras similar results to that we have obtained for JB∗-triples, C∗-
algebras, and non-commutative JB∗-algebras. JB-algebras are defined
as those complete normed (commutative) Jordan real algebras A satisfying
‖x‖2 ≤ ‖x2 + y2‖ for all x, y in A. The basic reference for the theory of JB-
algebras is the book of H. Hanche Olsen and E. Stormer [13]. By the main
results in the papers of J. D. M. Wright [23] and M. A. Youngson [22], JB-
algebras are in a bijective categorical correspondence with (commutative)
JB∗-algebras. The correspondence is obtained by passing from each JB∗-
algebra A to its self-adjoint part Asa.

Among the examples of JB-algebras, we cite the self-adjoint parts of
C∗-algebras under the Jordan product x◦y := 1

2(xy +yx), and the so-called
JB-algebra spin factors. These are the JB-algebras whose Banach spaces
are of the form (R⊕H)`1 , for an arbitrary real Hilbert space H of dimension
≥ 2, and whose products are defined by

(λ + x)(µ + y) := (λµ + (x|y)) + (λy + µx)

(see [13, Chapter 6]).

Theorem 3.3. Let A be a JB-algebra such that there exists a nonempty
relatively w-open subset of BA with diameter less than 2. Then A is a finite
`∞-sum of closed simple ideals which are either finite-dimensional, or JB-
algebra spin factors. Consequently, the Banach space of A is hilbertizable.

Proof. Let U be a nonempty relatively w-open subset of BA with
diam(U) < 2. Let x be in A. Denote by Ax the closed subalgebra of A
generated by x. Since Jordan algebras are power-associative [13, Lemma
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2.4.5], if follows from [13, Theorem 3.2.2] that Ax is isometrically algebra-
isomorphic to CR

0 (Ωx) for a suitable locally compact Hausdorff topological
space Ωx. Assume for the moment that x actually lies in U . Then U ∩ Ax

is a nonempty relatively w-open subset of BAx with diam(U ∩ Ax) < 2, so
that, by Lemma 2.2, Ωx is finite, and hence Ax is finite-dimensional. Since x
is arbitrary in U , and U has nonempty n-interior in A, it follows from either
[7, Theorem 1] or [8, Theorem D] that in fact Ax is finite-dimensional for
every x in A. Now, for every x in A, the set

σ(x) := {λ ∈ R : x− λ1 is not invertible in the unital hull ofAx}

is finite. Since, in particular, every nonzero point of σ(x) is isolated for
every x ∈ A, it follows from [5, Theorem 3.3 (k ⇒ f) and Corollary 1.4] and
[20, Theorem 5.4] that A is a c0-sum of topologically simple closed ideals
which are either finite-dimensional, JB-algebra spin factors, or of the form
K(H)sa for some real, complex or quaternionic Hilbert space H. Since in
fact σ(x) is finite for every x ∈ A, the above c0-sum must be finite, and
the Hilbert spaces H parameterizing the ideals K(H)sa, eventually arising
in such a sum, must be finite-dimensional.

To conclude this paper, let us state the appropriate variants of Corollar-
ies 2.7 and 2.8 in the setting of JB∗-triples and JB-algebras. We recall that
the bidual of a JB∗-triple (respectively, JB-algebra) is a JB∗-triple (respec-
tively, JB-algebra) in a natural way [11] (respectively, [13, Theorem 4.4.3]).
Thus, JB∗-triples (respectively, JB-algebras) which are dual Banach spaces
appear naturally. Such JB∗-triples (respectively, JB-algebras) are called
JBW ∗-triples (respectively, JBW -algebras). We note that the predual
of a JBW ∗-triple (respectively, JBW -algebra) is unique [2] (respectively,
[13, Theorem 4.4.16]).

Corollary 3.4. Let X be a JBW ∗-triple or a JBW -algebra. Then the
predual of X is either hilbertizable or extremely rough.

Note that

Hilbertizability ⇒ Superreflexivity ⇒ Reflexivity ⇒ Asplund

⇒ “Abundance” of points of Fréchet differentiability of the norm

⇒ Existence of points of Fréchet differentiability of the norm

⇒ Non roughness,

so that the hilbertizability is scandalously incompatible with the extreme
roughness.

Corollary 3.5. Let X be a complex (respectively, real) Banach space
such that X∗∗ is a JB∗-triple (respectively, JB-algebra). Then either X is
hilbertizable or all nonempty relatively w-open subsets of BX have diameter
equal to 2.
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Math. 735, Springer-Verlag, Berlin, 1979.

[2] T. J. BARTON and R. M. TIMONEY, Weak*-continuity of Jordan triple prod-
ucts and applications. Math. Scand. 59 (1986), 177-191.

[3] F. F. BONSALL and J. DUNCAN, Numerical ranges II. London Math. Soc.
Lecture Note Series 10, Cambridge University Press, Cambridge, 1973.

[4] R. B. BRAUN, W. KAUP, and H. UPMEIER, A holomorphic characterization
of Jordan C∗-algebras. Math. Z. 161 (1978), 277-290.

[5] L. J. BUNCE, The theory and structure of dual JB-algebras. Math. Z. 180
(1982), 525-534.

[6] L. J. BUNCE and C. H. CHU, Compact operations, multipliers and Radon-
Nikodym property in JB∗-triples. Pacific J. Math. 153 (1992), 249-265.
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degree of weakly algebraic topological Lie algebras. Manuscripta Math. 81 (1993),
129-139.

[9] R. DEVILLE, G. GODEFROY and V. ZIZLER, Smoothness and renormings in
Banach spaces. Pitman Monographs and Surveys in Pure and Applied Math. 64,
1993.

[10] J. DIESTEL, Sequences and series in Banach spaces. Graduate Texts in Math.
92, Springer-Verlag, Berlin, 1984.

[11] S. DINEEN, The second dual of a JB∗-triple system. In Complex Analysis,
Functional Analysis and Approximation Theory (ed. by J. Múgica), 67-69, North-
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normées non associatives, Ann. Sci. Univ. “Blaise Pascal”, Clermont II, Sér.
Math. 27 (1991), 1-57.

[21] S. SAKAI, Weakly compact operators on operator algebras. Pacific J. Math. 14
(1964), 659-664.



Weakly open sets of balls 11

[22] M. A. YOUNGSON, Non unital Banach Jordan algebras and C∗-triple systems.
Proc. Edinburgh Math. Soc. 24 (1981), 19-31.

[23] J. D. M. WRIGHT, Jordan C∗-algebras. Michigan Math. J. 24 (1977), 291-302.
[24] K. A. ZHEVLAKOV, A. M. SLIN’KO, I. P. SHESTAKOV, and A. I. SHIRSHOV,

Rings that are nearly associative. Academic Press, New York, 1982.

Universidad de Granada, Facultad de Ciencias. Departamento de Matemática
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