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Abstract. We prove that, in Urbanik’s definition [9] of absolute valued
algebras with involution, the axiom ‖a∗‖ = ‖a‖ (the unique one which
relates the absolute value ‖ · ‖ and the involution ∗) is redundant.

1. Introduction

Absolute valued algebras with involution were introduced in Urbanik’s
early paper [9] and, since then, they have been studied in deep [2, 4, 5],
and have found interesting applications [1, 3, 6]. In the present note, we
deal with the definition itself of absolute valued algebras with involution in
order to realize that there is some redundance in its axioms. To be precise,
let us recall the appropriate notions.

By an absolute value on a real algebra A we mean a norm ‖ · ‖ on
the vector space of A satisfying ‖ab‖ = ‖a‖‖b‖ for all a, b ∈ A. By an
absolute valued algebra we mean a (possibly nonassociative) real algebra
A 6= 0 endowed with an absolute value. Following [9], by an involution on
an absolute valued algebra A we mean a linear mapping a → a∗ from A to A
satisfying:

(i) a∗∗ = a
(ii) aa∗ = a∗a
(iii) (ab)∗ = b∗a∗

(iv) ‖a∗‖ = ‖a‖
for all a, b ∈ A.

The aim of this note is to show that Axiom (iv) above is a consequence
of the remaining ones. Thus, we are going to prove the following.

Theorem 1.1. Let A be an absolute valued algebra, and let a → a∗ be
a linear mapping from A to A satisfying Axioms (i), (ii), and (iii) above.
Then we have ‖a∗‖ = ‖a‖ for every a ∈ A.
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We note that, by Proposition 1.1 of [8], Axioms (i) and (iii) imply Ax-
iom (iv) whenever ∗ is continuous. Therefore we have the following:

Lemma 1.2. Theorem 1.1 holds if A is finite-dimensional.

Actually, by Theorem 4 of [7], Axioms (i) and (iii) imply Axiom (iv)
whenever the absolute valued algebra A is complete. Anyway, this is a
deeper result which will be not applied in this note.

In general, a real algebra A can admit more than one absolute value
(see page 123 of [8]). However, this is not the case if A is finite-dimensional
(a consequence of Proposition 1.1 of [8]) or, more generally, if A is a one-
sided division algebra (Corollary 3.5 of [8]). Now, as a consequence of The-
orem 1.1, we have the following.

Corollary 1.3. Let A be a real algebra endowed with a linear mapping
a → a∗ from A to A satisfying Axioms (i), (ii), and (iii) above. Then there
is at most one absolute value on A.

Proof. Let ‖ · ‖ and ||| · ||| be absolute values on A. If ∗ is the identity
mapping on A, then A is commutative, so finite-dimensional (by Theorem 3
of [10]), and so the result follows. Assume that ∗ is not the identity mapping
on A. Then, by Theorem 1.1, (A, ‖ · ‖, ∗) and (A, ||| · |||, ∗) are absolute valued
algebras with nontrivial involution. Therefore, as noticed in Proposition 3.3
of [8], Lemmas 1, 2, and 3 of [9] imply the existence of an idempotent e ∈ A
satisfying a∗a = ‖a‖2e and a∗a = |||a|||2e for every a ∈ A. It follows that
‖ · ‖ = ||| · |||.

2. Proof of Theorem 1.1

Throughout this section, A will denote an absolute valued algebra, and
a → a∗ will stand for a linear mapping from A to A satisfying Axioms (i),
(ii), and (iii) in the introduction. Our goal is to show that ‖a∗‖ = ‖a‖ for
every a ∈ A.

Our argument begins by considering the subspaces X and Y of A defined
by X := {a ∈ A : a∗ = a} and Y := {a ∈ A : a∗ = −a}, and collecting
(in Lemma 2.1 immediately below) some facts involving such subspaces,
and which will be applied in what follows without notice. The last fact
in Lemma 2.1 (the unique one which is not of straightforward verification)
follows from the second one and Lemma 3 of [10].

Lemma 2.1. We have:

(1) A = X ⊕ Y .
(2) Elements of X commute with those of Y .
(3) XY ⊆ Y .
(4) For a ∈ X ∪ Y we have a2 ∈ X.
(5) For (x, y) ∈ X × Y , Lin{x, y} (with the restriction of the absolute

value of A) is a Hilbert space.
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Here, Lin means linear hull in A.
Now, for (x, y) ∈ X × Y we put

f(x, y) :=
‖x + y‖2 − ‖x‖2 − ‖y‖2

2
.

We will show in Lemma 2.3 below that the mapping f : (x, y) → f(x, y)
from X × Y to R is bilinear. Anyway, by noticing that, for (x, y) ∈ X × Y ,
f(x, y) is nothing other than the inner product of x and y in the Hilbert
space Lin{x, y}, we have clearly f(x, αy) = f(αx, y) = αf(x, y) for every
α ∈ R, and in particular f(x,−y) = −f(x, y). This last equality is enough
to straightforwardly deduce, from the definition of f , the following.

Lemma 2.2. The following assertions are equivalent:
(1) ‖a∗‖ = ‖a‖ for every a ∈ A.
(2) f(x, y) = 0 for every (x, y) ∈ X × Y .

Lemma 2.3. The mapping f : X × Y → R is bilinear, and satisfies
f(x2, xy) = ‖x‖2f(x, y) for every (x, y) ∈ X × Y .

Proof. For every norm-one element u in a real normed space E, denote
by D(E, u) the set of all norm-one continuous linear functionals φ on E
such that φ(u) = 1, and note that, thanks to the Hahn-Banach theorem,
D(E, u) is nonempty, as well as that, if the norm of E derives from an
inner product (·|·), then D(E, u) reduces to the singleton consisting of the
mapping z → (z|u) from E to R. Now, let x be a fixed norm-one element
of X. Take φ in D(A, x), and note that, for each y ∈ Y the restriction of
φ to Lin{x, y} belongs to D(Lin{x, y}, x). It follows that f(x, y) = φ(y)
for every y ∈ Y . This shows the linearity of f in its second variable. The
linearity of f in its firs variable is proved in a similar way. Finally, for
(x, y) ∈ X × Y we have

f(x2, xy) =
‖x(x + y)‖2 − ‖x2‖2 − ‖xy‖2

2

= ‖x‖2 ‖x + y‖2 − ‖x‖2 − ‖y‖2

2
= ‖x‖2f(x, y).

From now on, we argue by contradiction, and hence WE ASSUME
THAT THE DESIRED EQUALITY ‖a∗‖ = ‖a‖ FAILS FOR SOME a ∈ A.
Then, by Lemma 2.2, we have the following.

Claim 2.4. The mapping f : X × Y is not identically zero

Therefore, since f is bilinear (by Lemma 2.3), the set

Z := {x ∈ X : f(x, Y ) = 0}
is a proper subspace of X, and so D := X \ Z is a dense subset of X. We
have the following.
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Claim 2.5. X satisfies the parallelogram law.

Proof. Let u and v be in D and X, respectively. Choose y ∈ Y with
f(u, y) = 1, and put t0 := −f(v, y). Keeping in mind that f is bilinear, and
that f(u2, uy) 6= 0 (both facts assured by Lemma 2.3), we can consider the
third-degree polynomial function p : R → R defined by

p(t) := f((tu + v)2, (tu + v)y),

which, again by Lemma 2.3, satisfies

p(t) = ‖tu + v‖2(t− t0)

for every t ∈ R. Since t0 is a root of p, there exist α, β, δ ∈ R satisfying

p(t) = (αt2 + βt + γ)(t− t0)

for every t ∈ R. It follows that ‖tu + v‖2 = αt2 + βt + γ for every t ∈ R or,
equivalently, ‖ru+sv‖2 = αr2 +βrs+γs2 for all r, s ∈ R. Now, the equality
‖u+v‖2 +‖u−v‖2 = 2(‖u‖2 +‖v‖2) is of straightforward verification. Since
u and v are arbitrary in D and X, respectively, and D is dense in X, the
result follows.

For every normed space E, we denote by SE the unit sphere of E, i.e.,
the set of all norm-one elements in E.

Claim 2.6. Let (x, y) be in SX × SY such that f(x, y) = 0. Then the
equality x2 = −y2 holds.

Proof. By the definition of f , we have

‖x2 − y2‖ = ‖(x + y)(x− y)‖ = ‖x + y‖‖x− y‖ =
√

2
√

2 = 2.

Therefore, since x2 and y2 lie in X, and X satisfies the parallelogram law
(by Claim 2.5), we deduce x2 = −y2, as desired.

Claim 2.7. There exists e ∈ SX such that we have x2 = e = −y2

whenever (x, y) is in SX × SY .

Proof. By Lemma 1.2, A is infinite-dimensional. Therefore, since
A = X ⊕ Y , and X can be linearly imbedded into Y (by means of the
mapping x → xy, where y is any fixed nonzero element of Y ), Y is infinite-
dimensional. Let u, v be in SX . Since the dimension of Y is greater than
two, there exists y0 ∈ SY such that f(u, y0) = f(v, y0) = 0. It follows from
Claim 2.6 that u2 = −y2

0 = v2. This shows that the mapping x → x2 is
constant on SX . We denote by e the constant value of such a mapping, so
that it only remains to show that y2 = −e for every y ∈ SY . To this end,
we distingue two cases.

Case 1: The dimension of X is one.- Then we have X = Re, and hence
y2 = ±e for every y ∈ SY (by Lemma 2.1.(4)). On the other hand, since the
dimension of Y is greater than one, SY is connected, and, as we have seen
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above, there exists y0 ∈ SY with y2
0 = −e. It follows that y2 = −e for every

y ∈ SY , as desired.
Case 2: The dimension of X is greater than one.- Then, for y ∈ SY there

exists x ∈ SX with f(x, y) = 0, so that it is enough to apply Claim 2.6 and
the definition of e to obtain y2 = −e.

Now the contradiction is coming. Indeed, by Claim 2.7, for every
(x, y) ∈ X × Y we have x2 = ‖x‖2e and y2 = −‖y‖2e, so

(x + y)(x− y) = (‖x‖2 + ‖y‖2)e,

and so
(‖x‖2 + ‖y‖2)2 − 4f(x, y)2

= [‖x‖2 + ‖y‖2 + 2f(x, y)][‖x‖2 + ‖y‖2 − 2f(x, y)] = ‖x + y‖2‖x− y‖2

= ‖(x + y)(x− y)‖2 = (‖x‖2 + ‖y‖2)2,
which implies f(x, y) = 0, contrarily to Claim 2.4.

References
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