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Introduction

Complex JB∗-triples are complex Banach spaces endowed with a triple
product subjected to suitable conditions of algebraic and analytic nature
(see Section 1 for the definition). They were introduced by W. Kaup in order
to provide an algebraic setting for the study of bounded symmetric domains
in complex Banach spaces. The open unit ball of every complex JB∗-triple is
a bounded symmetric domain [Ka1], and every bounded symmetric domain
in any complex Banach space is bi-holomorphically equivalent to the open
unit ball of a suitable complex JB∗-triple [Ka3].

Fundamental examples of complex JB∗-triples are provided by complex
C∗-algebras, with triple product defined by

(1) {xyz} :=
1
2
(xy∗z + zy∗x).

A larger class of complex JB∗-triples consists of the so-called ternary rings
of operators [Zet], which are nothing but norm-closed subspaces of com-
plex C∗-algebras, closed under the associative triple product xy∗z. Ternary
rings of operators are seen as complex JB∗-triples by symmetrizing their
associative triple products in the outer variables. A still larger class is that
of complex JC∗-triples, i.e. JB∗-subtriples of complex C∗-algebras. The
classical structure theory for complex JB∗-triples consists of a precise classi-
fication of certain prime complex JB∗-triples (the so-called complex Cartan
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factors) and the fact that every complex JB∗-triple has a faithful family of
Cartan factor representations. Complex Cartan factors come in six different
types. Those of type I are prime ternary rings of operators, whereas the
ones of type II and III are the hermitian parts of certain prime ternary
rings of operators relative to suitable complex-linear involutions. Complex
Cartan factors of type IV (called complex spin factors) are JC∗-triples of
a very simple algebraic and analytic nature, but in general they are neither
ternary rings of operators nor hermitian parts of ternary rings of opera-
tors. Complex Cartan factors of types V and VI are exceptional (i.e., they
are not JC∗-triples). Exceptional complex Cartan factors are very scarce:
exactly, there is a single member in each type.

Applying the techniques of E. Zel’manov in [Ze2, Ze3, Ze4] (see also
[D’Am, D’AMc]), we prove a classification theorem for general prime com-
plex JB∗-triples, which, roughly speaking, asserts that prime complex JB∗-
triples, which are neither spin factors nor exceptional Cartan factors, are
“essentially” either prime ternary rings of operators or hermitian parts of
prime ternary rings of operators. More precisely, our theorem establishes
that, if J is a prime complex JB∗-triple, and if J is neither a spin factor nor
an exceptional Cartan factor, then J contains a nonzero closed triple ideal
which is either a prime ternary ring of operators or the hermitian part of a
prime ternary ring of operators relative to a linear involution. By noticing
that the multiplier complex JB∗-triple M(R) (in the sense of [BC1]) of any
ternary ring of operators R is also a ternary ring of operators, to which ev-
ery linear involution on R extends uniquely, it follows that, for J as above,
we have one of the following possibilities:

i) R ⊆ J ⊆ M(R)

ii) H(R, τ) ⊆ J ⊆ H(M(R), τ),

where in both cases R is a prime ternary ring of operators, in the second
case τ is a linear involution on R and H(R, τ) stands for the hermitian part
of R relative to τ , the right inclusions must be read as “J is a JB∗-subtriple
of ...”, and consequently the left inclusions read as “... is a closed triple ideal
of J”.

The result just reviewed arises in Theorem 8.2 in a lightly different
formulation involving “matricially decomposed” complex C∗-algebras (see
Section 5 for the definition) instead of ternary rings of operators. We have
preferred such a reformulation because of the scarcity of a well-developed
theory for ternary rings of operators. We note that, if A =

∑
i,j∈{1,2} Aij is

a matricially decomposed complex C∗-algebra, then A12 is a ternary ring of
operators, and that, conversely, it follows from [Zet] that every ternary ring
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of operators is of the form A12 for some matricially decomposed complex
C∗-algebra A.

After some forerunners [BC2, CDRV, Dan, DaRu], real JB∗-triples have
recently attracted the attention of several authors. Real JB∗-triples are
defined as norm-closed real subtriples of complex JB∗-triples (or, equiva-
lently, as real forms of complex JB∗-triples). They have been introduced
and studied in the paper of J.M. Isidro, W. Kaup and A. Rodŕıguez [IKR],
where, as main result, it is proved that bijective linear mappings between
real JB∗-triples are isometric if and only if they preserve the cube mapping
x 7→ {xxx}. For further developments of the theory of real JB∗-triples the
reader is referred to [CMR, EdRu, Ka4, MaPe].

As in the complex case, real C∗-algebras are real JB∗-triples under
the triple product formally defined as in (1). It is also important for our
approach the fact that, if A is a real C∗-algebra, then the self-adjoint part
of A, Asa, is a JB∗-subtriple of A, and hence a real JB∗-triple. Other
relevant examples of real JB∗-triples are obtained from real C∗-algebras A
with a ∗-involution τ , by considering the set S(A, τ) of all skew elements of
A relative to τ .

We also apply zelmanovian techniques to obtain the corresponding clas-
sification theorem for prime real JB∗-triples (Theorem 8.4). Let us say that
a real JB∗-triple is a generalized real Cartan factor if it is either a complex
Cartan factor (regarded as a real JB∗-triple) or a real form of a complex
Cartan factor (compare [Ka4, Lemma 4.5]). Our theorem asserts that, if J
is a prime real JB∗-triple, and if J is neither a generalized real spin factor
nor an exceptional generalized real Cartan factor, then one of the following
possibilities hold for J :

i) There exists a prime real C∗-algebra A such that J can be regarded
as a JB∗-subtriple of the multiplier real C∗-algebra M(A) contained
in M(A)sa and containing Asa .

ii) There exists a prime real C∗-algebra A with ∗-involution τ such that
J can be regarded as a JB∗-subtriple of the real C∗-algebra M(A)
contained in S(M(A), τ) ∩M(A)sa and containing S(A, τ) ∩Asa .

Now, let us lightly comment on the techniques applied in the proof of our
results. In Zel’manov’s work, Jordan triples over a field F of characteristic
different from 2 and 3 are defined as vector spaces over F endowed with
a triple product which is F-linear in each of its variables and satisfies the
same main identity required for JB∗-triples. The Zel’manov classification
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of nondegenerate prime Jordan triples relies on an apparently ingenuous
alternative, by considering three mutually excluding cases, namely, non i-
special, Clifford, and hermitian. A Jordan triple T is said to be special if
it can be seen as a subtriple of an associative algebra A endowed with the
triple product

(2) {abc} :=
1
2
(abc + cba),

and i-special if it is the homomorphic image of a special Jordan triple. An
i-special Jordan triple T over F is said to be Clifford or hermitian depending
on whether or not all the identities collected in a certain ideal of the free
special Jordan triple over F vanish on T . Roughly speaking, a part of
Zel’manov’s prime theorem for Jordan triples establishes the scarcity, up
to suitable scalar extensions, of nondegenerate prime Jordan triples which
are not of hermitian type. The remaining part of Zel’manov’s theorem
shows that nondegenerate prime Jordan triples of hermitian type over F are
“essentially” of the form H(A, ∗) ∩ S(A, τ) for some associative algebra A
over F with two commuting F-linear involutions ∗ and τ . Here H(A, ∗) ∩
S(A, τ) is regarded as a subtriple of A with triple product defined by (2).

The conjugate linear behaviour of the triple product of a complex JB∗-
triple in its middle variable becomes a first handicap in applying zelmano-
vian notions and techniques in our setting. Concerning notions, there are
no problems: we see complex JB∗-triples as Jordan triples over R, and con-
sider separately the non i-special, hermitian, and Clifford cases. However,
a verbatim application of zelmanovian techniques to prime complex JB∗-
triples would provide in the best of cases only a determination of the real
structure of such JB∗-triples (see for instance Theorem 5.3). To overcome
this difficulty, we have designed different strategies, which are explained in
what follows. Our determination of non i-special complex prime JB∗-triples
(the first part of Theorem 2.4) actually avoids Zel’manov’s prime theorem
for Jordan triples, and only uses Zel’manov’s prime theorem for Jordan al-
gebras [Ze1] through its version for JB∗-algebras [FGR]. Concerning prime
complex JB∗-triples of Clifford type, we start with a rather artisanal deter-
mination of complex Cartan factors of Clifford type (Proposition 6.1). Such
a determination leads us to realize that Banach ultraproducts of arbitrary
families of complex Cartan factors of Clifford type are Hilbert spaces up to
equivalent renormings (Corollary 6.2). Then we replace algebraic ultraprod-
ucts with Banach ultraproducts in an argument in [Ze4, pp. 63-64] (see also
[D’AMc]) to obtain that every prime complex JB∗-triple of Clifford type
is in fact a complex Cartan factor (Proposition 7.3). The determination
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of Clifford and non i-special prime real JB∗-triples (second parts of Theo-
rems 7.4 and 2.4, respectively) follows easily from that of complex ones, by
applying classical theory.

In studying real or complex JB∗-triples of hermitian type, a new hand-
icap arises. Indeed, in the zelmanovian theory, the associative envelopes
for special Jordan triples are associative algebras regarded as Jordan triples
under the triple product (2), whereas the natural associative envelopes for
real (respectively, complex) JC∗-triples are real (respectively, complex) C∗-
algebras regarded as JB∗-triples under the triple product (1). Concerning
prime real JB∗-triples of hermitian type (Theorem 4.5), things are not too
difficult because, if A is a real C∗-algebra, then the two triple products
of A given by (1) and (2) coincide on the self-adjoint part Asa of A, and
moreover every real JC∗-triple can be represented into a real JB∗-triple
of the form Asa for some real C∗-algebra A [IKR, Corollary 2.4]. Then
zelmanovian techniques apply almost verbatim. The proof of the structure
theorem for prime complex JB∗-triples of hermitian type (Theorem 5.9) is
more difficult. Following an idea of O. Loos in [Lo2, 2.9], when a complex
JB∗-triple J is regarded as a real Jordan pair, such a real Jordan pair is in
fact the realification of a Jordan pair (say V ) over C. In the case that J is
prime and hermitian, the polarization of V (say T ) is a Jordan triple over
C of hermitian type, which can be represented into the secondary diagonal
of a matricially decomposed complex C∗-algebra regarded as Jordan triple
under the product (2). Then zelmanovian techniques successfully apply to
T , providing enough information for J (see the proof of Proposition 5.6 for
details).

To conclude this introduction, let us refer the reader to the papers
[BoFe, FGS] where Zel’manov’s prime theorem for Jordan triples is applied
to determine the structure of nondegenerate prime complex Banach Jordan
triples with nonzero socle.

1 Notation and preliminaries.

For Banach spaces E,F , BL(E,F ) will denote the Banach space of
all bounded linear mappings from E into F . When E = F , BL(E) will
stand for the Banach algebra BL(E,E). A complex JB*-triple is a complex
Banach space A with a continuous triple product {· · · } : A×A×A −→ A
which is linear and symmetric in the outer variables, and conjugate linear
in the middle variable, and satisfies
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(i) for all x ∈ A, the mapping a 7→ {xxa} from A to A is a hermitian
element (in the sense of [BoDu, Definition §10.12]) of BL(A) and has
nonnegative spectrum;

(ii) {ab{xyz}} = {{abx}yz} -{x{bay}z}+{xy{abz}} (the main identity);

(iii) ‖{aaa}‖ = ‖a‖3.

Let E be a complex Banach space. By a conjugation on E we mean an
involutive conjugate linear isometry on E. For a conjugation σ on E, we
put Eσ := {x ∈ E : σ(x) = x}. Subsets of E of the form Eσ will be called
real forms of E.

We define real JB∗-triples as norm-closed real subspaces J of complex
JB∗-triples satisfying {JJJ} ⊆ J . Since conjugations on complex JB∗-
triples preserve triple products (see for instance [IKR, pp. 316-317]), real
forms of complex JB∗-triples are real JB∗-triples. Actually, every real JB∗-
triple is a real form of a complex JB∗-triple [IKR, Proposition 2.2]. We
note that if J = Aσ for some complex JB∗-triple A with a conjugation σ,
then, essentially, the complex JB∗-triple with conjugation (A, σ) is uniquely
determined by the real JB∗-triple J . Indeed, as a complex vector space, A
is nothing but C⊗R J , the triple product of A and the conjugation σ on A
are settled by R-linearity in their variables and the equalities

{(λ1 ⊗ x1)(λ2 ⊗ x2)(λ3 ⊗ x3)} = λ1λ2λ3 ⊗ {x1x2x3}

and
σ(λ⊗ x) = λ⊗ x ,

respectively, and the norm on A is unique because triple isomorphisms be-
tween complex JB∗-triples are isometries.

The next crucial proposition follows from [IsKa, Proposition 1.2] and
the above quoted fact that real JB∗-triples are real forms of complex JB∗-
triples.

PROPOSITION 1.1. Triple homomorphisms between real or complex
JB∗-triples are contractive and have closed range. If moreover they are
injective, then they are isometries.

Closed linear subspaces B of a real or complex JB∗-triple A satisfying
{BBB} ⊆ B will be called JB∗-subtriples of A. The next result is folklore.

PROPOSITION 1.2. Let A be a real or complex JB∗-triple, and let y
be in A. Then there is a unique element z in A such that {zzz} = y.
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Proof. First assume that A is complex. For x in A, let us denote by
Ax the JB∗-subtriple of A generated by x. Since Ay is of the form C0(L)
for a suitable locally compact subset of C [Ka1], certainly there exists z in
Ay satisfying {zzz} = y. Let w be in A such that {www} = y. Then we
have y ∈ Ay ⊆ Aw = C0(L′), so that, by the uniqueness of the solution of
the equation {ttt} = y in C0(L′), we deduce z = w. Now assume that A is
real. Then A = Aσ for some complex JB∗-triple with conjugation (A, σ).
Taking z in A satisfying {zzz} = y, we have {σ(z)σ(z)σ(z)} = σ(y) = y.
By the uniqueness, we obtain σ(z) = z, and hence z lies in A.

A linear subspace I of a (real or complex) JB∗-triple A is a triple ideal
of A if {AAI}+ {AIA} ⊆ I.

COROLLARY 1.3. Let A be a real or complex JB∗-triple.

i) A closed subspace I of A is a triple ideal if (and only if) {AAI} ⊆ I.

ii) If J is a closed triple ideal of A, and K is a closed triple ideal of J ,
then K is a triple ideal of A.

Proof. For the complex case of assertion i), see [DiTi, Proposition 1.4].
Then the real case of that assertion follows from the complex one and the
fact that real JB∗-triples are real forms of complex JB∗-triples.

To prove ii), let J be a closed triple ideal of A, and K a closed triple
ideal of J . Take a, b in A and y in K. By Proposition 1.2 there is z in K
such that {zzz} = y. Using the main identity, we obtain

{aby} = {ab{zzz}} = 2{{abz}zz} − {z{baz}z} ∈ {JKK}+ {KJK} ⊆ K.

Therefore, by assertion i), K is a triple ideal of A.

Assertion ii) in the above corollary is the natural variant for JB∗-triples
of the a result for C∗-algebras, which is collected here for later reference.

PROPOSITION 1.4. Each closed ideal K in a real or complex C∗-
algebra A is ∗-invariant. A closed ideal I in K is an ideal in A.

Proof. For the complex case see [KaRi, Corollary 4.2.10]. The real case
follows from the complex one by considering the complexification of the
ideals in the C∗-algebra complexification of A (see [Goo, p. 108]).
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A real or complex JB∗-triple A is said to be prime if it has no nonzero
mutually orthogonal triple ideals, that is, if P,Q are triple ideals of A such
that {PAQ} = 0 (equivalently P ∩ Q = 0), then either P = 0 or Q = 0.
The following result follows directly from Corollary 1.3.ii.

COROLLARY 1.5. Every closed triple ideal of a prime real or complex
JB∗-triple is a prime JB∗-triple.

Real (respectively, complex) C∗-algebras are natural examples of real
(respectively, complex) JB∗-triples under their natural norms and the triple
product defined by

{xyz} :=
1
2
(xy∗z + zy∗x) .

JB∗-subtriples of real (respectively, complex) C∗-algebras are known under
the name of real (respectively, complex) JC∗-triples.

2 Prime JB∗-triples which are not JC∗-triples.

In this section we determine those prime JB∗-triples which are not JC∗-
triples. The key tools for such a determination are the Gelfand-Naimark
theorem for complex JB∗-triples [FR2], the classification theorem for prime
JB∗-algebras [FGR], and Loos’ theory of finite dimensional JB∗-triples
[Lo2]. We recall that a JB∗-algebra is a complete normed Jordan complex
algebra A with a conjugate linear algebra involution ∗ satisfying ‖Ua(a∗)‖ =
‖a‖3 for every a in A, where, for a, b in A, Ua(b) := 2a.(a.b) − a2.b. Ac-
cording to [BKU, You], every JB∗-algebra becomes a JB∗-triple under its
natural norm and the triple product defined by

{abc} := a.(b∗.c) + c.(b∗.a)− (a.c).b∗ .

Complex C∗-algebras become JB∗-algebras under their natural norms
and involutions, whenever the Jordan product is defined by a.b := 1

2(ab+ba).
Norm-closed ∗-invariant subalgebras of JB∗-algebras are called JB∗-subal-
gebras, and JB∗-subalgebras of complex C∗-algebras are known under the
name of JC∗-algebras. Of course JC∗-algebras are natural examples of
complex JC∗-triples.

PROPOSITION 2.1. Let J be a real (respectively, complex) JB∗-triple.
Then there exists a JB∗-algebra A containing J as a real (respectively,
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complex) JB∗-subtriple and with the property that every nonzero closed
ideal of A has a nonzero intersection with J .

Proof.- By [FR2, Corollary 2], there exists a JB∗-algebra B containing
J as a real (respectively, complex) JB∗-subtriple. Consider the family F
of all closed ideals of B which have zero intersection with J , ordered by
inclusion. Let C be a totally ordered subset of F . Then the closure of the
union of the members of C is a closed ideal of B (say P ). If I is in C, then
B/I is a JB∗-algebra in a natural manner [Wri], and the mapping x 7→ x+I
from J to B/I is a one-to-one triple homomorphism, hence, by Proposition
1.1, the equality

‖x + I‖ = ‖x‖

holds for every x in J . Therefore we have ‖x− y‖ ≥ ‖x‖ for all x in J and
y in P , and hence P is an upper bound of C in F . Now that we know that
F is inductive, we may take a maximal element Q in F , and consider the
JB∗-algebra A := B/Q together with the embedding x 7→ x + Q from J to
A.

Proposition 2.1 above leads directly to the following corollary.

COROLLARY 2.2. Let J be a prime real (respectively, complex) JB∗-
triple. Then there exists a prime JB∗-algebra A containing J as a real
(respectively, complex) JB∗-subtriple.

COROLLARY 2.3. Let J be a prime real or complex JB∗-triple which
is not a JC∗-triple. Then J is finite-dimensional.

Proof.- Since J is prime, we can aplly Corollary 2.2 to find a prime JB∗-
algebra A containing J as a real or complex JB∗-subtriple. Since J is not
a JC∗-triple, A cannot be a JC∗-algebra. Now, looking at the list of prime
JB∗-algebras provided by [FGR, Theorem 2.3], we realize that the unique
prime JB∗-algebra which is not a JC∗-algebra is the 27-dimensional type
VI Cartan factor H3(OC) of all hermitian 3× 3-matrices over the complex
Cayley algebra OC .

After Corollary 2.3 above, the main goal in this section follows from the
work of O. Loos on finite-dimensional JB∗-triples [Lo2]. In fact, via [Lo2,
2.9], finite-dimensional complex JB∗-triples can be recognized in Loos’ book
as the so-called “complex Jordan pairs with a positive hermitian involution”.
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Since every finite-dimensional JB∗-triple is a direct sum of simple ideals
[Lo2, 4.10, 4.11, 11.4], it follows that finite-dimensional prime JB∗-triples
are simple. Now, keeping in mind Corollary 2.3 and looking at the list of
finite-dimensional simple JB∗-triples provided in [Lo2, 4.14] and [Lo2, 11.4]
for the complex and real case, respectively, we get the following.

THEOREM 2.4. The prime complex JB∗-triples which are not JC∗-
triples are the type V complex Cartan factor M1,2(OC) of all 1×2-matrices
over the complex Cayley algebra OC, and the type VI complex Cartan factor
H3(OC) of all hermitian 3×3-matrices over OC. The prime real JB∗-triples
which are not JC∗-triples are the two complex JB∗-triples above (regarded
as real JB∗-triples) plus their real forms, namely the type VO, VO0 , VIO,
and VIO0 real Cartan factors. These are M1,2(O), M1,2(O0), H3(O), and
H3(O0), respectively, where O is the real Cayley division algebra, and O0

the real split Cayley algebra.

For details about the precise definition of the triple product on each
of the JB∗-triples in Theorem 2.4 the reader is referred to [Lo2, 4.11, 2.9,
11.4].

3 Multipliers of real JB∗-triples of classical type.

The results in this section will be auxiliary tools for the classification
of real JB∗-triples of hermitian type, which will be obtained in the next
section. The theory in [BC1] about multipliers on complex JB∗-triples can
be transferred to the setting of real JB∗-triples [CMR, Propositions 3 and
4], so that we have the following.

PROPOSITION 3.1. Let J be a real (respectively, complex) JB∗-triple.
Then J can be seen as a closed essential triple ideal of a real (respectively,
complex) JB∗-triple M(J) with the property that, if K is any real (respec-
tively, complex) JB∗-triple containing J as a closed essential triple ideal,
then K can be seen as a JB∗-subtriple of M(J) containing J .

Let J be a real or complex JB∗-triple. The JB∗-triple M(J) in the above
proposition is called the multiplier JB∗-triple of J . Actually, the bidual J ′′

of J is a JB∗-triple containing J as a JB∗-subtriple ([IKR, Lemma 4.2],
[Din]), and M(J) can be found as the JB∗-subtriple of J ′′ given by

M(J) = {x ∈ J ′′ : {xJJ} ⊆ J}
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[CMR, BC1].
In Section 1, we introduced real C∗-algebras as relevant examples of

real JB∗-triples. Now, we recall that real C∗-algebras can be defined as
norm-closed ∗-invariant real subalgebras of complex C∗-algebras, and refer
the reader to [CDRV, Goo, IsRo] for intrinsic characterizations of real C∗-
algebras and background on their theory. If A is a real C∗-algebra regarded
as a real JB∗-triple, then M(A) is also a real C∗-algebra (again regarded
as JB∗-triple). More precisely, we have the following.

PROPOSITION 3.2. Let A be a real (respectively, complex) C∗-algebra.
Then its second dual A′′ is a real (respectively, complex) C∗-algebra con-
taining A as a C∗-subalgebra, and M(A) can be found as the C∗-subalgebra
of A′′ given by

M(A) = {x ∈ A′′ : xA + Ax ⊆ A} .

Proof. The first assertion is folklore in the complex case, and is proved
in [CDRV, Theorem 1.6] in the real case. For the second assertion in the
complex case the reader is referred to [BC1, p. 253] (actually, the proof
given immediately below for the real case works verbatim in the complex
setting).

Let A be a real C∗-algebra. Clearly the inclusion

M(A) ⊇ {x ∈ A′′ : xA + Ax ⊆ A}

holds. To prove the converse inclusion, consider x in M(A) and z in A. By
Proposition 1.2 there exists y in A such that z = {yyy}, and we have

xz = x{yyy} = 2{xy∗y}y − y∗{y∗xy∗}∗.

Therefore xz lies in A. Analogously, zx belongs to A.

For any involutive mapping τ on a vector space E, we put

H(E, τ) := {x ∈ E : τ(x) = x} and S(E, τ) := {x ∈ E : τ(x) = −x}.

Let A be a real or complex C∗-algebra. As usual, we write Asa instead of
H(A, ∗). By a ∗-involution on A we means a linear involution on A commut-
ing with ∗. Let τ be a ∗-involution on A. Keeping in mind Proposition 3.2
and the fact that the C∗-involution and the product of A′′ are w∗-continuous
in their variables [CDRV, Theorem 1.6], it follows that the second transpose
of τ , τ ′′, is a ∗-involution on A′′ leaving invariant M(A). Then the mapping
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x 7→ τ ′′(x) from M(A) to M(A) is a ∗-involution on M(A) extending τ ,
and therefore it will be denoted by the same symbol τ . Now, when A is
a real C∗-algebra, we can proceed to recognize the multiplier JB∗-triple of
S(A, τ) ∩Asa as a JB∗-subtriple of M(A).

PROPOSITION 3.3. Let A be a real C∗-algebra with ∗-involution τ
such that A is generated (as a real C∗-algebra) by S(A, τ) ∩Asa. Then

M [S(A, τ) ∩Asa] = S(M(A), τ) ∩M(A)sa .

Proof. Put J := S(A, τ) ∩ Asa. For any subspace E of A, denote by
Eoo the bipolar of E in A′′. Through the natural identification of J ′′ with
Joo, we can see M(J) as a JB∗-subtriple of A′′ contained in Joo. Now, the
inclusion

M(J) ⊇ S(M(A), τ) ∩M(A)sa

is clear. To prove the converse inclusion, let x be in M(J). For y ∈ J we
have

xy3 = 2{xyy}y − y{yxy} ∈ A.

In this way, since every self-adjoint element in a real C∗-algebra has a unique
self-adjoint cube root (a particular case of Proposition 1.2), we easily obtain
xJ ⊆ A. Analogously, we have Jx ⊆ A. Therefore, the set {a ∈ A : xa, ax ∈
A} is a self-adjoint closed subalgebra of A containing J , hence xA+Ax ⊆ A
(because J generates A as C∗-algebra). It follows that x lies in M(A). Now
that we know that M(J) is contained in M(A), the inclusion

M(J) ⊆ S(M(A), τ) ∩M(A)sa

follows from the equality Joo = S(A′′, τ ′′) ∩ (A′′)sa.

Arguing as in the proof of the above proposition we find the following.

PROPOSITION 3.4. Let A be a real C∗-algebra generated (as C∗-
algebra) by Asa. Then M(Asa) = M(A)sa.
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4 Prime real JB∗-triples of hermitian type.

In this section we determine the real JB∗-triples which are of “hermitian
type” in the sense of Zel’manov. Before to introduce zelmanovian concepts
and techniques, let us formulate and prove some lemmas.

LEMMA 4.1. Let J be a real JC∗-triple. Then there exists a real C∗-
algebra A with ∗-involution τ such that J is a JB∗-subtriple of A contained
in S(A, τ) ∩Asa .

Proof.- By [IKR, Corollary 2.4] there exists a real C∗-algebra B such
that J is a JB∗-subtriple of B contained in Bsa . Now it is enough to
consider the real C∗-algebra A := B ⊕B, the ∗-involution τ on A given by
τ(x, y) := (y∗, x∗), and the embedding x 7→ (x,−x) from J to A.

An associative algebra A with involution τ is said to be τ -prime if when-
ever P,Q are τ -invariant ideals of A with PQ = 0 we have either P = 0 or
Q = 0.

LEMMA 4.2. Let A be a real C∗-algebra with a ∗-involution τ such that
A is generated as a closed ideal by S(A, τ) ∩ Asa. Then every nonzero τ -
invariant closed ideal of A meets S(A, τ)∩Asa. Therefore, if the JB∗-triple
S(A, τ) ∩Asa is prime, then A is τ -prime.

Proof. Let P be a τ -invariant closed ideal of A satisfying P ∩ S(A, τ) ∩
Asa = 0. Let P oo be the bipolar of P in A′′. Then P oo is a w∗-closed ideal
of A′′. Moreover, since the equality P ∩ S(A, τ) ∩ Asa = 0 can be read as
(1+∗)(1−τ)(P ) = 0 (by Proposition 1.4), we have (1+∗)(1−τ ′′)(P oo) = 0,
where now ∗ denote the C∗-involution of A′′. On the other hand, by [CDRV,
Proposition 2.10], there exists a central self-adjoint idempotent e in A′′ such
that P oo = A′′e. Since P oo is τ ′′-invariant, we have τ ′′(e) = e. It follows
that the operator Re of multiplication by e on A′′ commutes with ∗ and τ ′′.
Now, we have

Re(S(A′′, τ ′′) ∩A′′
sa) = Re(1 + ∗)(1− τ ′′)(A′′)

= (1 + ∗)(1− τ ′′)Re(A′′)
= (1 + ∗)(1− τ ′′)(P oo)
= 0 ,

hence S(A′′, τ ′′) ∩ A′′
sa ⊆ Ker(Re). Since Ker(Re) is a w∗-closed ideal of

A′′ and A′′ is generated by S(A′′, τ ′′) ∩ A′′
sa as a w∗-closed ideal (because

13



A is generated by Asa ∩ S(A, τ) as a norm-closed ideal), we actually have
P ⊆ P oo = Re(A′′) = 0.

Now, if the JB∗-triple S(A, τ) ∩ Asa is prime, and if P and Q are τ -
invariant closed ideals of A such that PQ = 0, then P ∩ S(A, τ) ∩ Asa and
Q∩ S(A, τ)∩Asa are mutually orthogonal triple ideals of S(A, τ)∩Asa, so

P ∩ S(A, τ) ∩Asa = 0,

say, and so P = 0 by the first paragraph of the proof.

The proof of the following lemma is much easier.

LEMMA 4.3. Let A be a real C∗-algebra. Then every nonzero closed
ideal of A meets Asa. Therefore, if the JB∗-triple Asa is prime, then A is
prime.

Proof. Let P be a closed ideal of A such that P ∩ Asa = 0. Since
P is ∗-invariant, P is contained in S(A, ∗). Therefore P is an associative
anticommutative algebra, and hence P 3 = 0. This implies P = 0 by the
semiprimeness of A.

Now we pass to explain those zelmanovian techniques which are needed
for our purpose.

Let F be a field of characteristic different from 2 and 3. By a Jordan
triple over F we mean a vector space T over F together with a trilinear triple
product {· · · } : T × T × T −→ T satisfying

{ab{xyz}} = {{abx}yz} − {x{bay}z}+ {xy{abz}}

for all a, b, x, y, z in T . According to [Lo2, 2.8], “this definition may be
extended to arbitrary base fields but then the identity above turns out to
be too weak to develop a satisfactory theory, and has to be replaced by
more complicated identities (cf. [Lo1, 1.2]). As long as the base field has
characteristic different from 2 and 3, however, the identity above is sufficient
(cf. [Lo1, 2.2])”. Forgetting the analytic conditions, and restricting the
scalars in the complex case, every real or complex JB∗-triple becomes a
Jordan triple over R. Any associative algebra A can be seen as a Jordan
triple under the triple product {abc} := 1

2(abc + cba). If moreover A has
two commuting linear involutions ∗, τ , then H(A, ∗) ∩ S(A, τ) is a Jordan
subtriple of A. A Jordan triple is called special whenever it is (isomorphic
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to) a Jordan subtriple of some associative algebra, and i-special if it is
the homomorphic image of a special Jordan triple. Thanks to Lemma 4.1
(or even its forerunner [IKR, Corollary 2.4]), every JC∗-triple is a special
Jordan triple over R.

From now on, let X denote an infinite set of indeterminates. We consider
the free associative algebra A(X) over F. A(X) has two natural linear
involutions, namely the involution ∗ leaving the elements of the set X fixed,
and the one τ which maps each element x in X into −x. The Jordan
subtriple of A(X) generated by X is called the free special Jordan triple on
the set of free generators X, and is denoted by ST = ST (X). Clearly, the
inclusion ST ⊆ H(A(X), ∗) ∩ S(A(X), τ) holds.

It follows from the universal property of A(X) that, if A is an associative
algebra with two commuting involutions ∗, τ , and if T is a Jordan subtriple
of A contained in H(A, ∗)∩S(A, τ) then every map φ : X → T extends to a
unique associative ∗-τ -homomorphism φ̂ : A(X) → A such that φ̂(ST ) ⊆ T .
Since every special Jordan triple can be regarded as a Jordan subtriple of a
suitable associative algebra with two commuting linear involutions (A, ∗, τ)
contained in H(A, ∗)∩S(A, τ), it follows that, given a special Jordan triple
T , every mapping from X to T extends uniquely to a triple-homomorphism
from ST to T . Keeping in mind the definition of i-special Jordan triples,
the above universal property remains true in the more general case that T is
a i-special Jordan triple. In this way, we can consider valuations of elements
of ST in any i-special Jordan triple.

For elements a1, ..., an in an associative algebra A, we define the n-tad
{a1...an}n as the element of A given by

{a1...an} =
1
2
(a1...an + an...a1) .

An ideal I of ST is called formal if

p(x1, ..., xn) ∈ I ⇒ p(σ(x1), ..., σ(xn)) ∈ I

for all permutations σ of X, and hermitian if it is formal and “n-tad closed”
in A(X) for all odd n ≥ 5, i.e.,

{I...I}n ⊆ I for all odd n ≥ 5 .

Now, if A is an associative algebra with two commuting involutions ∗
and τ , if T is a Jordan subtriple of A contained in H(A, ∗)∩S(A, τ), and if
I is a hermitian ideal of ST , then {a1...an} lies in I(T ) whenever n is any
odd natural number and a1, ..., an are in I(T ).
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LEMMA 4.4. Let B be an associative algebra with two commuting
involutions ∗, τ , and T a Jordan subtriple of B contained in H(B, ∗) ∩
S(B, τ). If I is a hermitian ideal of ST satisfying I(T ) 6= 0, then the
subalgebra C of B generated by I(T ) is ∗-τ -invariant and we have I(T ) =
H(C, ∗) ∩ S(C, τ).

Proof. By the previous comments, I(T ) is an n-tad closed ideal of T
and the inclusion I(T ) ⊂ H(B, ∗) ∩ S(B, τ) holds. From that inclusion we
deduce that the subalgebra C of B generated by I(T ) is ∗-τ -invariant and
that I(T ) is contained in H(C, ∗) ∩ S(C, τ). Let z be in H(C, ∗) ∩ S(C, τ).
Since z is in C, z =

∑k
n=1 b1

n...bin
n for suitable k ∈ N and bi

n ∈ I(T ) (n =
1, ..., k, i = 1, ..., in). Moreover, we have

k∑
n=1

b1
n...bin

n = z = z∗ =
k∑

n=1

bin
n ...b1

n

and hence

z =
k∑

n=1

1
2
(b1

n...bin
n + bin

n ...b1
n) .

Analogously, the equality z = −zτ implies

z =
k∑

n=1

1
2
(b1

n...bin
n − (−1)inbin

n ...b1
n) .

It follows

z =
k∑

n=1

n odd

1
2
(b1

n...bin
n + bin

n ...b1
n) =

k∑
n=1

n odd

{b1
n...bin

n } ∈ I(T ) .

One of the key tools in Zel’manov’s work is the discovery of a precise
hermitian ideal G (see [Ze3, p. 730]) in ST with the property that the be-
haviour of i-special prime “nondegenerate” Jordan triples drastically differs
depending on whether or not G vanishes on them. By a Jordan triple of
hermitian type we mean an i-special Jordan triple T satisfying G(T ) 6= 0.

Now, the structure of prime real JB∗-triples of hermitian type is given
by the theorem which follows.

THEOREM 4.5. Let J be a prime real JB∗-triple of hermitian type.
Then one of the following assertions is true for J :
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i) There exists a prime real C∗-algebra A such that J can be regarded
as a JB∗-subtriple of the real C∗-algebra M(A) contained in M(A)sa

and containing Asa .

ii) There exists a prime real C∗-algebra A with ∗-involution τ such that
J can be regarded as a JB∗-subtriple of the real C∗-algebra M(A)
contained in S(M(A), τ) ∩M(A)sa and containing S(A, τ) ∩Asa .

Proof.- Since J is i-special and all JB∗-triples listed in Theorem 2.4 are
non i-special, it follows from that theorem that J is a JC∗-triple. Then,
by Lemma 4.1, there exists a real C∗-algebra B with ∗-involution τ such
that J is a JB∗-subtriple of B contained in S(B, τ)∩Bsa . Since G(J) 6= 0,
Lemma 4.4 gives us that, if C denotes the subalgebra of B generated by
G(J)), then H(C, ∗) ∩ S(C, τ) is a nonzero ideal of J . Denote by A and I
the norm closures of C and H(C, ∗)∩ S(C, τ) in B, respectively. Then A is
a τ -invariant C∗-subalgebra of B, I is a nonzero closed triple ideal of J , A
is generated by I as a C∗-algebra, and we have I = S(A, τ) ∩ Asa. Since J
is prime, I is an essential triple ideal of J , so that Propositions 3.1 and 3.3
allow us to see J as a JB∗-subtriple of the real C∗-algebra M(A) contained
in S(M(A), τ)∩M(A)sa and containing S(A, τ)∩Asa . If A is prime, then
we are in case ii). Assume from now on that A is nonprime. Since A is τ -
prime (by Corollary 1.5 and Lemma 4.2), we can find a nonzero closed ideal
P of A such that P ∩ τ(P ) = 0. But P is a prime algebra because, if R,S
are closed ideals of P with RS = O, then R+τ(R), S +τ(S) are τ -invariant
ideals of A (by Proposition 1.4) satisfying (R + τ(R))(S + τ(S)) = 0 and
therefore either R + τ(R) = 0 or S + τ(S) = 0. Now, P is a real C∗-algebra
(by Proposition 1.4), and the mapping φ : x 7→ x − τ(x) from Psa into
S(A, τ) ∩Asa is a one-to-one triple homomorphism whose range is a triple
ideal of S(A, τ) ∩Asa. Finally, let us denote by A the closed subalgebra of
P generated by Psa. Then A is a real C∗-algebra, we have Asa = Psa, and,
keeping in mind Proposition 1.1, we can forget the embedding φ above and
regard Asa as a closed triple ideal of S(A, τ) ∩ Asa. Since S(A, τ) ∩ Asa is
a closed triple ideal of J , it follows from Corollary 1.3.ii that Asa can be
seen as a nonzero closed triple ideal of the prime real JB∗-triple J . By
Corollary 1.5 Asa is a prime JB∗-triple, and hence, by Lemma 4.3, A is a
prime C∗-algebra. By Propositions 3.1 and 3.4, J can be regarded as a JB∗-
subtriple of the real C∗-algebra M(A) contained in M(A)sa and containing
Asa. Therefore we are in case i) of the statement.
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5 Prime complex JB∗-triples of hermitian type.

In the first part of this section we prove that, when a prime complex
JB∗-triple of hermitian type J is regarded as a real JB∗-triple, then only
case ii) in Theorem 4.5 can occur for J . In the second part, we determine
the complex structure of prime complex JB∗-triples of hermitian type.

For every complex Banach space E we denote by ER the real Banach
space obtained by restriction of the scalars to R. Note that, if J is a complex
JB∗-triple, then JR is a real JB∗-triple in a natural way.

LEMMA 5.1. Let J be a complex JB∗-triple, and P a closed triple ideal
of JR. Then P is a triple ideal of J .

Proof. Let x be in P . Then, by Proposition 1.2, there is y in P such
that x = {yyy}. Therefore ix = {yy(iy)} lies in P .

Recall that a JB-algebra is a complete normed real Jordan algebra B
satisfying ‖x‖2 ≤ ‖x2 + y2‖ for all x, y in B. If A is a real C∗-algebra, then
Asa is a JB-algebra under the Jordan product x.y := 1

2(xy + yx).

LEMMA 5.2. A nonzero JB-algebra cannot be linearly isometric to the
realification of any complex Banach space.

Proof. Let B a nonzero JB-algebra, and assume that, for some complex
Banach space E, there exists a linear isometry ϕ from B onto ER. Since
B′′ is a JB-algebra with a unit [HaSt, Theorem 4.4.3 and Lemma 4.17], we
may assume that B has a unit 1. Put x := ϕ−1(iϕ(1)). Then, for α in R,
we have ϕ(1 + αx) = (1 + iα)ϕ(1), and hence ‖1 + αx‖2 = 1 + α2. Now,
let ρ be in B′ such that ‖ρ‖ = ρ(1) = 1. Then, for every positive number
α, we have

±ρ(x) =
ρ(1± αx)− 1

α
≤ ‖1± αx‖ − 1

α
=
√

1 + α2 − 1
α

,

so |ρ(x)| ≤ limα→0+

√
1+α2−1

α = 0, and so ρ(x) = 0. By [HaSt, Proposi-
tion 3.3.10, Lemma 1.2.2, and Lemma 1.2.3 (ii)], we have that x = 0, a
contradiction.

THEOREM 5.3. Let J be a prime complex JB∗-triple of hermitian
type. Then there exists a prime real C∗-algebra A with ∗-involution τ such

18



that JR can be regarded as a JB∗-subtriple of the real C∗-algebra M(A)
contained in S(M(A), τ) ∩M(A)sa and containing S(A, τ) ∩Asa.

Proof. Clearly, JR is a prime real JB∗-triple of hermitian type, so, in
view of Theorem 4.5, it is enough to show that case i) in that theorem
cannot occur for JR. If case i) in that theorem happened for JR, and if A
is the real C∗-algebra arising there, then, by Lemma 5.1, Asa would be a
closed triple ideal of J and hence a complex Banach space. But this is not
possible because Asa is a JB-algebra and Lemma 5.2 applies.

Now, we proceed to deal with the determination of the complex structure
of prime complex JB∗-triples of hermitian type.

LEMMA 5.4. Let T be a i-special complex Jordan triple. Then G(T ) is
invariant under every conjugate linear automorphism of T .

Proof. If A(X) is the free complex associative algebra on the infinite
set X of indeterminates, then the vector space of A(X) is the free complex
vector space on the set of all associative words with letters in X, so that we
can define a mapping Φ : A(X) → A(X) by Φ(

∑
i λiwi) :=

∑
i λiwi (here∑

i λiwi is any finite linear combination of associative words wi). Clearly, Φ
is an involutive conjugate linear algebra automorphism of A(X) which fixes
the elements of X. Therefore the free special complex Jordan triple ST (X)
is invariant under Φ. Since the zelmanovian complex ideal G of ST (X) is
generated (as ideal) by a set of elements of ST (X) whose expressions as
linear combinations of associative words only involve real scalars, it follows
that G is Φ-invariant. Now, if φ is a conjugate linear automorphism of T , if
p(x1, ..., xn) is in G, and if p =

∑
k λkqk where λk are complex numbers and

qk are Jordan triple monomials, then Φ(p) =
∑

k λkqk lies in G, and hence,
for t1, ...tn in T ,

φ[p(t1, ..., tn)] =
∑

k

λkφ[qk(t1, ..., tn)] =
∑

k

λkqk(φ(t1), ..., φ(tn))

belongs to G(T ).

By a matricial decomposition of a C∗-algebra A we means a family
{Aij}i,j ∈{1,2} of closed subspaces of A satisfying A∗

ij = Aj i (i.e., ∗ is “odd-
swapping” relative to the matricial decomposition), A = ⊕i,j ∈{1,2}Aij ,
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and Aij Akl ⊆ δj kAil for all i, j, k, l ∈ {1, 2}. A matricially decomposed C∗-
algebra will be a C∗-algebra endowed with a matricial decomposition. Given
a ∗-involution τ on a matricially decomposed C∗-algebra A, we say that τ
is even-swapping whenever the equalities τ(A11) = A22 and τ(A12) = A12

hold.

LEMMA 5.5. Let J be a complex JC∗-triple. Then there exists a
matricially decomposed complex C∗-algebra B with an even-swapping ∗-
involution τ such that J can be seen as a JB∗-subtriple of B contained in
H(B, τ) ∩B12.

Proof. Let H be a complex Hilbert space such that J is a JB∗-subtriple
of BL(H). Put A := BL(H), and consider the ∗-involution t on A defined
by t(a) := σa∗σ for every a in A, where σ is a conjugation on H. Let s

denote the involution on the C∗-algebra M2(C) given by s

(
λ11 λ12

λ21 λ22

)
=(

λ22 λ12

λ21 λ11

)
, and e the exchange involution on the C∗-algebra C2. Now,

consider the C∗-algebra B := M2(C) ⊗ C2 ⊗ A, and the ∗-involution τ on
B given by τ := s ⊗ e ⊗ t. Finally, let {uij}i,j ∈{1,2} the usual family of
matrix units for M2(C), and put Bij := uij ⊗ C2 ⊗ A. Then {Bij}i,j ∈{1,2}
is a matricial decomposition of B, τ is even-swapping relative to such a
decomposition, and, via the one-to-one triple homomorphism

x 7→ u12 ⊗ [(1, 0)⊗ x + (0, 1)⊗ t(x)]

from J to B, we can see J as a JB∗-subtriple of B contained in H(B, τ)∩B12.

PROPOSITION 5.6. Let J be a complex JC∗-triple of hermitian type.
Then J contains a nonzero closed triple ideal of the form H(A, τ) ∩ A12,
where A is a matricially decomposed C∗-algebra, τ is an even-swapping
∗-involution on A, and A is generated as C∗-algebra by H(A, τ) ∩A12.

Proof. Let B and τ be the matricially decomposed complex C∗-algebra
and the even-swapping ∗-involution on B, respectively, given by Lemma 5.5,
so that we have

J ⊆ H(B, τ) ∩B12.

For b =
∑

bij with bij in Bij , we write π(b) = τ(b11 + b22) − τ(b12 + b21),
so that π becomes an even-swapping ∗-involution on B commuting with τ ,
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and we have

H(B, τ) ∩ S(B, π) = H(B, τ) ∩B12 + H(B, τ) ∩B21.

Put T := J + J∗, and note that

T ⊆ H(B, τ) ∩ S(B, π).

Then T is a JB∗-subtriple of B, but for the moment this is not relevant
for our argument. At this point, we emphasize that T is a Jordan subtriple
of B (i.e., T is a subspace of B closed under the triple product [abc] :=
1
2(abc + cba)). In fact, for x1, y1, x2, y2, x3, y3 in J , we have

[(x1 + y∗1)(x2 + y∗2)(x3 + y∗3)] = {x1y2x3}+ {y1x2y3}∗,

where {...} is the triple product of the JB∗-triple J . Since the set

{x + x∗ : x ∈ J}

is a copy of JR contained in T , and JR is of hermitian type, T (regarded as
a Jordan triple) is also of hermitian type. By Lemma 4.4, the subalgebra C
of B generated by G(T ) is invariant under τ and π, and we have

G(T ) = H(C, τ) ∩ S(C, π).

Moreover, since T is a ∗-invariant subset of B, and the restriction of ∗ to T is
a conjugate linear Jordan triple automorphism of T , it follows from Lemma
5.4 that G(T ) is ∗-invariant. Since C is generated by G(T ), we conclude
that C is ∗-invariant.

On the other hand, the decomposition T = J ⊕ J∗ exhibits T as a
“polarized” Jordan triple in the sense [D’Am, p. 229, (5.1)], and therefore
G(T ) inherits the polarization (see [D’Am, p. 231]). This means that

G(T ) = G(T ) ∩ J + G(T ) ∩ J∗.

Now, G(T ) is contained in B12∩C+B21∩C and hence in
∑

i,j ∈{1,2} Bij ∩C.
Since the last sum is a subalgebra of B, and C is the subalgebra of B
generated by G(T ), it follows that

C =
∑

i,j ∈{1,2}

Cij ,

where Cij := Bij ∩ C.
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To conclude the proof, we keep in mind that the sum B =
∑

i,j ∈{1,2} Bij

is topological to obtain that all properties proved for C pass to the closure
of C (say A) in B. Therefore A is C∗-subalgebra of B, and inherits the
matricial decomposition of B. Moreover, denoting by K the closure of G(T )
in B, K is an ideal of the Jordan triple T satisfying

K = H(A, τ) ∩ S(A, π) = H(A, τ) ∩A12 + H(A, τ) ∩A21.

Then, clearly, H(A, τ) ∩A12 is a closed triple ideal of J .

The structure theorem for prime complex JB∗-triples of hermitian type
will follow from the above proposition and some general results on matri-
cially decomposed C∗-algebras.

PROPOSITION 5.7. For a matricially decomposed C∗-algebra A the
following assertions hold:

i) All closed ideals of A inherit the matricial decomposition.

ii) If A is generated as a closed ideal by A12, then every nonzero closed
ideal of A meets A12.

iii) If A has an even-swapping ∗-involution τ , and if A is generated as a
closed ideal by H(A, τ) ∩ A12, then every nonzero τ -invariant closed
ideal of A meets H(A, τ) ∩A12.

Proof. i) Let i, j be in {1, 2}. Denote by pij the (continuous) linear
projection on A with range Aij and kernel

∑
(k,l) 6=(i,j) Akl, and notice that,

for a, b, c in A, the equality

pij (apij (b)c) = pii(a)bpjj (c)

follows straightforwardly from the multiplication rules of the matricial de-
composition. Now, if P is a closed ideal of A, and if x is in P , it is enough
to take an approximate unit {eλ}λ∈Λ for A, to conclude that

pij (x) = lim
λ

lim
µ

pij (eλpij (x)eµ) = lim
λ

lim
µ

pii(eλ)xpjj (eµ)

lies in P .
ii) Let P be a closed ideal of A satisfying P ∩ A12 = 0. By the ∗-

invariance of P , we have also that P ∩ A21 = 0. Hence, keeping in mind
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assertion i), we deduce p12(P ) = p21(P ) = 0, and therefore A12p22(P ) = 0.
Since obviously A12p11(P ) = 0, we obtain that A12P = 0. Now, A12 is
contained in the left annihilator Lann(P ) of P . Since A is generated as a
closed ideal by A12 and Lann(P ) is a closed ideal of A, we conclude that
A ⊆ Lann(P ) and therefore P = 0.

iii) Let P be a τ -invariant closed ideal of A satisfying P ∩ H(A, τ) ∩
A12 = 0. Let P oo be the bipolar of P in A′′. Since τ and p12 commute
(because τ is even-swapping), the equality P ∩ H(A, τ) ∩ A12 = 0 can be
read as (1 + τ)p12(P ) = 0, and hence we have (1 + τ ′′)p′′12(P

oo) = 0. Now,
write P oo = A′′e for a suitable central idempotent e in A′′. Since the
family {p′′ij (A′′)}i,j ∈{1,2} is a matricial decomposition of A′′, and A′′e and
A′′(1− e) are closed ideals of A′′, we can apply assertion i) to obtain that,
for i, j ∈ {1, 2} and α ∈ A′′, we have

p′′ij (αe) = p′′ij (αe)e and p′′ij (α(1− e)) = p′′ij (α(1− e))(1− e),

so

p′′ij Re = Rep
′′
ij Re and p′′ij (1−Re) = (1−Re)p′′ij (1−Re),

and so Re and pij commute. It follows

Re(H(A′′, τ ′′) ∩A′′
12) = Re(1 + τ ′′)p′′12(A

′′)
= (1 + τ ′′)p′′12Re(A′′)
= (1 + τ ′′)p′′12(P

oo)
= 0 .

Finally, arguing as in the conclusion of the proof of Lemma 4.2, we obtain
P = 0.

PROPOSITION 5.8. For a matricially decomposed C∗-algebra A the
following assertions hold:

i) The matricial decomposition of A can be uniquely extended to a ma-
tricial decomposition of the multiplier C∗-algebra M(A) of A.

ii) If A has an even-swapping ∗-involution τ , and if A is generated as
C∗-algebra by H(A, τ) ∩A12, then

M(H(A, τ) ∩A12) = H(M(A), τ) ∩ (M(A))12.

iii) If A is generated as C∗-algebra by A12, then

M(A12) = (M(A))12.

23



Proof. i) Let i, j be in {1, 2}. With the notation in the proof of Propo-
sition 5.7, for α, β ∈ A′′ we have

p′′ij (β)α = (p′′i1 + p′′i2)[β(p′′j 1 + p′′j 2)(α)]

and
αp′′ij (β) = (p′′1j + p′′2j )[(p′′1i + p′′2i)(α)β].

Then, for x ∈ M(A) and a ∈ A we obtain

p′′ij (x)a = (p i1 + p i2)[x(pj 1 + pj 2)(a)]

and
ap′′ij (x) = (p 1j + p2j )[(p 1i + p 2i)(a)x],

hence p′′ij (x) belongs to M(A). Therefore M(A) inherits the natural matri-
cial decomposition of A′′, which of course extends that of A. If {qij}i,j ∈{1,2}
is the family of projections on M(A) corresponding to any matricial decom-
position of M(A) extending that of A, then, for x ∈ M(A), a ∈ A and
i, j ∈ {1, 2} we have

qij (x)a = (p i1 + p i2)[x(pj 1 + pj 2)(a)],

so [p′′ij (x)− qij (x)]A = 0, and so qij = p′′ij |M(A)
.

ii) Put J := H(A, τ) ∩ A12. Through the natural identification of J ′′

with Joo, we can regard M(J) as a JB∗-subtriple of A′′ contained in Joo.
Then, the inclusion

M(J) ⊇ H(M(A), τ) ∩ (M(A))12

is clear. Let x be in M(J) and z be in J . Since τ and p12 commute, we have
Joo = H(A′′, τ ′′)∩ (A′′)12, and hence, clearly, xz = 0 = zx. Moreover, there
exists y in J such that z = {yyy}, and consequently, from the equalities

xz∗ = x{yyy}∗ = 2{xyy}y∗ − y{yxy}∗

and

z∗x = {yyy}∗x = 2y∗{xyy} − {yxy}∗y

it follows that xz∗, z∗x belong to A. Now, the set

B := {a ∈ A : xa, xa∗, ax, a∗x ∈ A}
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is a ∗-invariant closed subalgebra of A containing J , so B = A (because A
is generated by J as a C∗-algebra), and so, x lies in M(A). Since x is an
arbitrary element of M(J), we deduce

M(J) ⊆ H(M(A), τ) ∩ (M(A))12.

iii). Keeping in mind that (A12)oo = (A′′)12, the argument is similar to
that in the proof of assertion ii).

Now we are ready to formulate and prove the main result in this section.

THEOREM 5.9. Let J be a prime complex JB∗-triple of hermitian type.
Then one of the following assertions is true for J :

i) There exists a matricially decomposed prime complex C∗-algebra A
such that J can be regarded as a JB∗-subtriple of the complex C∗-
algebra M(A) contained in (M(A))12 and containing A12 .

ii) There exists a matricially decomposed prime complex C∗-algebra A
with an even-swapping ∗-involution τ such that J can be regarded
as a JB∗-subtriple of the matricially decomposed complex C∗-algebra
M(A) contained in H(M(A), τ)∩(M(A))12 and containing H(A, τ)∩
A12 .

Proof.- Since J is i-special and all JB∗-triples listed in Theorem 2.4 are
non i-special, it follows from that theorem that J is a JC∗-triple. Then,
by Proposition 5.6, J contains a nonzero closed triple ideal of the form
H(A, τ) ∩ A12, where A is a matricially decomposed complex C∗-algebra,
τ is an even-swapping ∗-involution on A, and A is generated as C∗-algebra
by H(A, τ) ∩ A12. Since J is prime, H(A, τ) ∩ A12 is an essential triple
ideal of J , so that Propositions 3.1 and 5.8.ii allow us to see J as a JB∗-
subtriple of the matricially decomposed complex C∗-algebra M(A) con-
tained in H(M(A), τ) ∩ (M(A))12 and containing H(A, τ) ∩ A12 . If A
is prime, then we are in case ii). Assume from now on that A is nonprime.
Since A is τ -prime (by Corollary 1.5 and Proposition 5.7.iii), we can find
a nonzero closed ideal P of A such that P ∩ τ(P ) = 0. As in the proof of
Theorem 4.5, such an ideal P is a prime algebra. By Proposition 5.7.i, P
inherits the matricial decomposition of A. Now, P is a matricially decom-
posed complex C∗-algebra, and the mapping φ : x 7→ x + τ(x) from P12

into H(A, τ) ∩ A12 is a one-to-one triple homomorphism whose range is a

25



triple ideal of H(A, τ) ∩ A12. Let us denote by A the C∗-subalgebra of P
generated by P12. Since

∑
i,j∈{1,2} Pij ∩ A is a C∗-subalgebra of P contain-

ing P12 we deduce A =
∑

i,j∈{1,2} Pij ∩ A, and hence A inherits the matricial
decomposition of P . In this way, A is a matricially decomposed complex
C∗-algebra satisfying A12 = P12. Moreover, keeping in mind Proposition
1.1, we can forget the embedding φ above and regard A12 as a closed triple
ideal of H(A, τ) ∩ A12. Since H(A, τ) ∩ A12 is a closed triple ideal of J , it
follows from Corollary 1.3.ii that A12 can be seen as a nonzero closed triple
ideal of the prime complex JB∗-triple J . By Corollary 1.5, A12 is a prime
JB∗-triple, and hence, in view of Proposition 5.7.ii, A is a prime C∗-algebra.
By Propositions 3.1 and 5.8.iii, J can be regarded as a JB∗-subtriple of the
matricially decomposed complex C∗-algebra M(A) contained in (M(A))12
and containing A12. Therefore J is in case i).

REMARK 5.10. In our approach to the structure of prime complex
JB∗-triples of hermitian type, the JC∗-triples of the form A12, where A is
a matricially decomposed complex C∗-algebra, have become crucial. It is
worth mentioning that such JC∗-triples are “more” than JB∗-subtriples of
C∗-algebras. Actually, if A is a matricially decomposed complex C∗-algebra,
then A12 is a “ternary ring of operators”, in the sense of H. Zettl [Zet].
This means that A12 is a norm-closed subspace of a complex C∗-algebra
closed under the associative triple product of the second kind xy∗z. Of
course, the JB∗-triple structure of a ternary ring of operators is obtained by
symmetrizing its associative triple product in the outer variables. Keeping
in mind this fact, it turns out that, philosophically, Theorem 5.9 is close
to the Zel’manov-type theorem for Jordan triples of hermitian type proved
by A. D’Amour [D’Am, Theorem 4.1]. However, we note that associative
triple products arising in D’Amour’s theorem are of first kind and linear in
the middle variable, whereas associative triple products of ternary rings of
operators are of second kind and conjugate linear in the middle variable.

6 Complex Cartan factors of Clifford type.

A Jordan triple T is said to be of Clifford type if it is i-special and
satisfies G(T ) = 0, where G is the zelmanovian ideal of ST introduced in
Section 4. In the present section we establish the foundations for the earlier
determination of all prime JB∗-triple of Clifford type. More precisely, we
obtain here the list of complex Cartan factors which are of Clifford type.
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Real (respectively, complex) JBW ∗-triples were defined as those real
(respectively, complex) JB∗-triples which are Banach dual spaces in such
a way that the triple product becomes separately w∗-continuous. Actually,
the requirement of separate w∗-continuity of the triple product has been
shown to be redundant [MaPe] (respectively, [BaTi]). Prime JBW ∗-triples
are called JBW ∗-factors. The so-called “atomic” complex JBW ∗-factors
are specially well-understood. According to [FR1], if J is a complex JBW ∗-
factor, and if ∆ denotes the set of all extreme points of the closed unit ball
of the predual J∗ of J , then either ∆ is empty or J∗ is the closed linear hull
of ∆. In the last case, the complex JBW ∗-factor J is called atomic. By the
main result of G. Horn in his Thesis (see the more available reference [Hor]),
the atomic complex JBW ∗-factors are nothing but those previously known
under the name of (complex) Cartan factors. These come in six types as
follows.

In,m := BL(H,K), where H,K are complex Hilbert spaces of hilbertian
dimension n, m, respectively, with 1 ≤ n ≤ m, and the triple product
is defined by

{xyz} :=
1
2
(xy∗z + zy∗x)

for all x, y, z in BL(H,K).

IIn := {x ∈ BL(H) : σx∗σ = −x} as JB∗-subtriple of BL(H), where H
is a complex Hilbert space of hilbertian dimension n ≥ 5 and σ is a
conjugation on H.

IIIn := {x ∈ BL(H) : σx∗σ = x} as JB∗-subtriple of BL(H), where H
is a complex Hilbert space of hilbertian dimension n ≥ 2 and σ is a
conjugation on H.

IVn := H, where H is a complex Hilbert space of hilbertian dimension
n ≥ 5, σ is a conjugation on H, and the triple product and the norm
are given by

{xyz} := (x|y)z + (z|y)x− (x|σ(z))σ(y)

and
‖x‖2 := (x|x) +

√
(x|x)2 − |(x|σ(x))|2,

respectively, for all x, y, z in H.

V := M12(OC) the 1× 2-matrices over the complex Cayley numbers OC.

VI := H3(OC) the hermitian 3× 3-matrices over OC.
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Sometimes, it is convenient to consider complex Cartan factors of type
In,m for arbitrary cardinal numbers n, m ≥ 1, IIn for n ≥ 2, IIIn for
n ≥ 1 and IVn for n ≥ 3. The stronger requirements on n, m above
have been imposed in order to have that every Cartan factor occurs (up
to isomorphism) in the list precisely once [Ka2, p. 475].

The selection (among the complex Cartan factors above) of those which
are of Clifford type will be made by considering their associated Jordan
pairs and then applying the determination of prime nondegenerate Jordan
pairs of Clifford type provided in [D’AMc]. A Jordan pair over a field F of
characteristic different from 2 and 3 is a couple (V +, V −) of vector spaces
over F together with trilinear mappings

[...]ε : V ε × V −ε × V ε −→ V ε (ε = ±)

satisfying

[ab[xyz]ε]ε = [[abx]εyz]ε − [x[bay]−εz]ε + [xy[abz]ε]ε

for all a, x, z ∈ V ε and b, y ∈ V −ε. Every Jordan triple T over F has an
associated Jordan pair over F, namely the pair (V +, V −), where V ε = T
and [...]ε = {...} (ε = ±). In [D’AMc], a suitable notion of Jordan pair of
Clifford type is given in such a way that a Jordan triple is of Clifford type
(in the sense introduced at the beginning of this section) if and only if its
associated Jordan pair is of Clifford type. Although complex JB∗-triples
are only real Jordan triples, the real Jordan pair associated to a complex
JB∗-triple actually is the realification of a complex Jordan pair. Indeed, if J
is a complex JB∗-triple, and if J denotes the complex vector space obtained
from that of J by replacing the complex structure with the conjugate one,
then the realifications of J and J coincide, and, taking V + = J and V − = J ,
the mappings (x, y, z) 7→ [xyz]ε = {xyz} from V ε×V −ε×V ε to V ε (ε = ±)
become complex-linear in each of their variables.

PROPOSITION 6.1. The complex Cartan factors of Clifford type are
the following:

1. Those of type In,m for n = 1, 2 and n ≤ m,

2. The one of type II5,

3. The one of type III2,

4. All type IVn complex Cartan factors, for n ≥ 5.
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Proof. First we show that complex Cartan factors not listed in the
proposition are not of Clifford type.

Let J = BL(H,K) be a type In,m complex Cartan factor with 3 ≤ n ≤
m. Take 3-dimensional subspaces H1 and K1 of H and K, respectively.
Then, denoting by H⊥

1 the orthogonal complement of H1 in H, the set

J1 := {x ∈ BL(H,K) : x(H⊥
1 ) = 0, x(H) ⊆ K1}

is a JB∗-subtriple of J isomorphic to the type I3,3 Cartan factor. But it eas-
ily seen that the complex Jordan pair associated to the type I3,3 Cartan fac-
tor is isomorphic to (M3(C),M3(C)) (where Mn(C) denotes n× n-complex
matrices) with trilinear mappings [xyz]ε = 1

2(xyz + zyx). Since this Jordan
pair is not of Clifford type [D’AMc], it follows that J1 (and hence J) is not
of Clifford type.

Let J = {x ∈ BL(H) : σx∗σ = −x} be a type IIn complex Cartan
factor with n ≥ 6. Take a σ-invariant 6-dimensional subspace H1 of H.
Then the set

J1 := {x ∈ J : x(H⊥
1 ) = 0, x(H) ⊆ H1}

is a JB∗-subtriple of J isomorphic to the type II6 Cartan factor. Since the
complex Jordan pair associated to J1 is isomorphic to the pair (A6(C),A6(C))
(where An(C) := {x ∈ Mn(C) : xt = −x}, t the transpose involution) with
trilinear mappings [xyz]ε = −1

2(xyz + zyx), and this Jordan pair is not of
Clifford type [D’AMc], we obtain that J is not of Clifford type.

Let J = {x ∈ BL(H) : σx∗σ = x} be a type IIIn complex Cartan factor
with n ≥ 3. Arguing as in the previous case, we realize that J contains
as a JB∗-subtriple a copy of the type III3 Cartan factor, whose associated
complex Jordan pair is isomorphic to (H3(C),H3(C)) (where Hn(C) :=
{x ∈ Mn(C) : xt = x}) with trilinear mappings [xyz]ε = 1

2(xyz + zyx). As
above, the fact that J is not of Clifford type follows from [D’AMc].

Since the type V and VI complex Cartan factors are not i-special, the
first part of the proof is concluded.

Now, we prove that all complex Cartan factors listed in the proposition
are of Clifford type.

Let J = BL(H,K) be a type In,m complex Cartan factor with n = 1, 2
and n ≤ m. Let p(x1, ..., xr) be in the zelmanovian ideal G, and y1, ..., yr be
elements of J . Take a subspace K1 of K containing y1(H)+ ...+ yr(H) and
having finite dimension q ≥ n. Then

J1 := {x ∈ BL(H,K) : x(H) ⊆ K1}

is a JB∗-subtriple of J isomorphic to the type In,q Cartan factor and con-
tains {y1, ..., yr}. Since the complex Jordan pair associated to the type In,q
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Cartan factor is isomorphic to (Mn,q(C),Mq,n(C)) (where Mi,j(C) denotes
i× j-complex matrices) with trilinear mappings [xyz]ε = 1

2(xyz + zyx) and
this Jordan pair is of Clifford type [D’AMc], it follows that J1 is of Clifford
type, and therefore p(y1, ..., yr) = 0.

Since the complex Jordan pair associated to the type II5 Cartan factor
is isomorphic to (A5(C), A5(C)), and this Jordan pair is of Clifford type
[D’AMc], such a Cartan factor is of Clifford type.

The remaining cases listed in the proposition can be treated in a unified
way because, according to [Lo2, 4.18], the type III2 Cartan factor is iso-
morphic to the type IV3 Cartan factor. If J is a type IVn complex Cartan
factor (n ≥ 3) then the complex Jordan pair associated to J is isomorphic
to (H,H), where H is a complex Hilbert space of hilbertian dimension n,
with trilinear mappings

[xyz]ε := (x|σ(y))z + (z|σ(y))x− (x|σ(z))y,

where σ is a conjugation on H. Since the mapping (x, y) 7→ (x|σ(y)) from
H ×H to C is a nondegenerate symmetric bilinear form, the above Jordan
pair is of Clifford type [D’AMc], hence J is of Clifford type.

We say that a Banach space E is hilbertizable if there are positive con-
stants m,M , and an inner product (.|.) on E such that m‖x‖2 ≤ (x|x) ≤
M‖x‖2 for every x in E. A family {Ei}i∈I of Banach spaces is said to be
uniformly hilbertizable if there are positive constants m,M , and inner prod-
ucts (.|.)i on Ei (i ∈ I) satisfying m‖xi‖2 ≤ (xi|xi)i ≤ M‖xi‖2 for every i
in I and all xi in Ei.

COROLLARY 6.2. Every family of complex Cartan factors of Clifford
type is uniformly hilbertizable.

Proof. Let J = BL(H,K) be a type In,m complex Cartan factor with
n ≤ m and n finite. Take an orthonormal basis {η1, ..., ηn} of H. Then the
mapping (x, y) 7→ (x|y) := 1

n

∑n
i=1(x(ηi)|y(ηi)) from J × J to C is an inner

product on J satisfying (x|x) ≤ ‖x‖2 for all x in J . Moreover, for x in J
and η =

∑n
i=1 λiηi in H, we have

‖x(η)‖2≤

(
n∑

i=1

|λi| ‖x(ηi)‖

)2

≤

(
n∑

i=1

|λi|2
)(

n∑
i=1

‖x(ηi)‖2

)
=n‖η‖2(x|x),

and hence 1
n‖x‖

2 ≤ (x|x).
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Let J be a type IVn complex Cartan factor with n ≥ 3. Then there
exist a complex Hilbert space (H, (.|.)) of hilbertian dimension n and a
conjugation σ on H such that J = H as complex vector spaces and the
equality

‖x‖2 := (x|x) +
√

(x|x)2 − |(x|σ(x))|2

holds for all x in H. Therefore we have 1
2‖x‖

2 ≤ (x|x) ≤ ‖x‖2 for all x in
J .

It follows from the above and Proposition 6.1 that every complex Cartan
factor J of Clifford type has an inner product (.|.) satisfying 1

5‖x‖
2 ≤ (x|x) ≤

‖x‖2 for all x in J .

7 Prime JB∗-triples of Clifford type.

In this section we conclude the determination of prime JB∗-triple of
Clifford type. Such a determination will be obtained by combining the
results in the previous section with the technology of Banach ultraproducts
[Hei].

It is well known that the `∞-sum of any family of complex JB∗-triples,
endowed with the triple product defined point-wise, is a JB∗-triple. Then
the following lemma is a direct consequence of Proposition 1.1.

LEMMA 7.1. Let J be a complex JB∗-triple, I a non-empty set, and,
for each i in I, let φi be a triple homomorphism from J into a complex
JB∗-triple Ji. If ∩i∈I Ker (φi) = 0, then

‖x‖ = sup {‖φi(x)‖ : i ∈ I}.

Let U be an ultrafilter on a nonempty set I, and {Ei}i∈I a family of
Banach spaces. We can consider the Banach space ⊕`∞

i∈IEi, `∞-sum of that
family, and the closed subspace NU of ⊕`∞

i∈IEi given by

NU :=
{
{xi}i∈I ∈ ⊕`∞

i∈IEi : lim
U
‖xi‖ = 0

}
.

The (Banach) ultraproduct (Ei)U of the family of Banach spaces {Ei}i∈I rel-
ative to the ultrafilter U is defined as the quotient Banach space ⊕`∞

i∈IEi/NU .
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If we denote by (xi) the element of (Ei)U containing a given element {xi} of
⊕`∞

i∈IEi, then it is easily checked that the equality ‖(xi)‖ = limU ‖xi‖ holds.
We note that, if the family of Banach spaces {Ei}i∈I is uniformly hilberti-
zable, then the ultraproduct (Ei)U is a hilbertizable Banach space. Indeed,
if m,M are positive constants and (.|.)i is an inner products on Ei (i ∈ I)
satisfying m‖xi‖2 ≤ (xi|xi)i ≤ M‖xi‖2 for every i in I and all xi in Ei,
then ((xi)|(yi)) 7→ ((xi)|(yi)) := limU (xi|yi) is a well defined inner product
on (Ei)U satisfying m‖(xi)‖2 ≤ ((xi)|(xi)) ≤ M‖(xi)‖2 for all (xi) in (Ei)U .
We note also that, if for every i in I, Ei is a complex JB∗-triple, then (Ei)U
is a complex JB∗-triple under the triple product {(xi)(yi)(zi)} := ({xiyizi})
[Din].

LEMMA 7.2. Let J be a prime complex JB∗-triple, I a non-empty
set, and, for each i in I, let φi be a triple homomorphism from J into a
complex JB∗-triple Ji. Assume that ∩i∈I Ker (φi) = 0. Then there exists
an ultrafilter U on I such that the triple homomorphism φ : x 7→ (φi(x))
from J to (Ji)U is injective.

Proof. For i in I, put Pi := Ker (φi), and, for x in J \ {0}, write
Ix := {i ∈ I : x 6∈ Pi}. Then it follows easily from the primeness of J
and the equality ∩i∈IPi = 0 that B := {Ix : x ∈ J \{0}} is a filter basis
on I. Take an ultrafilter U on I containing B. Suppose that the mapping
φ : x 7→ (φi(x)) from J to (Ji)U is not injective. Then there exists x in J
satisfying ‖x‖ = 1 and limU φi(x) = 0. Therefore I ′ := {i ∈ I : ‖φi(x)‖ < 1

2}
is an element of U . But, by the definition of I ′ and Lemma 7.1, we must
have ∩i∈I′Pi 6= 0. Then, taking a nonzero element y in ∩i∈I′Pi, we have
I ′ ∩ Iy = ∅. Since I ′ and Iy are elements of U , this is a contradiction.

PROPOSITION 7.3. Every prime complex JB∗-triple of Clifford type
is a complex Cartan factor.

Proof. Recall that a factor representation of a JB∗-triple J is a w∗-dense
range triple homomorphism from J into some JBW ∗-factor. First we prove
that, if J is a complex JB∗-triple of Clifford type, and if φ is a representation
of J into a JBW ∗-factor Z, then Z is also of Clifford type. To this end,
we invoke the so-called “strong∗ topology” of an arbitrary complex JBW ∗-
triple Z. Referring the reader to [BaFr] for the definition of such a topology,
we only recall here that the strong∗ topology is a Hausdorff vector space
topology, that, if Z ′ is a w∗-dense JB∗-subtriple of Z, then the closed unit
ball of Z ′ is strong∗-dense in the closed unit ball of Z [BaFr, Corollary 3.3],
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and that the triple product of Z is jointly strong∗-continuous on bounded
subsets of Z [Rod].

Let J be a complex JB∗-triple of Clifford type, and φ a representation
of J into a JBW ∗-factor Z. By Proposition 1.1, φ(J) is a JB∗-subtriple
of Z and clearly φ(J) is of Clifford type. If Z were not i-special, then it
would be finite-dimensional (by Corollary 2.3), so φ(J) = Z would be not
i-special, which is a contradiction. Let p(x1, ..., xr) be in the zelmanovian
ideal G, and z1, ..., zr be elements of Z. Put M := max {‖z1‖, ..., ‖zr‖}.
Then, there exist nets {yλ

i }λ∈Λ in φ(J), with ‖yλ
i ‖ ≤ M for all λ in Λ,

strong∗-convergent to zi (i ∈ {1, 2, ..., r}). Since the triple product is jointly
strong∗-continuous on bounded sets, we have that {p(yλ

1 , ..., yλ
r )}λ strong∗-

converges to p(z1, ..., zr). Since p(yλ
1 , ..., yλ

r ) = 0 for all λ in Λ, we obtain
p(z1, ..., zr) = 0. Therefore Z is of Clifford type.

Now, let J be a prime complex JB∗-triple of Clifford type. Then there
exists a faithful family of Cartan factor representations of J [FR2] (say,
{φi : J → Ji}i∈I). By the above paragraph, for i in I, Ji is a complex
Cartan factor of Clifford type. Let U be the ultrafilter on I whose existence
is provided by Lemma 7.2. It follows from Corollary 6.2 that (Ji)U is a
hilbertizable Banach space. Since, by Lemma 7.2 and Proposition 1.1, the
mapping x 7→ (φi(x)) from J to (Ji)U is a linear isometry, J is also a
hilbertizable Banach space. As a consequence, the Banach space of J is
reflexive, hence it is a dual Banach space whose predual has extreme points
in its closed unit ball. Since J is prime, it follows that J is an atomic
JBW ∗-factor, hence a Cartan factor.

THEOREM 7.4. The prime complex JB∗-triples of Clifford type are
the type In,m (n = 1, 2, n ≤ m), II5, III2, and IVn (n ≥ 5) complex
Cartan factors. The prime real JB∗-triples of Clifford type are the complex
JB∗-triples just listed (regarded as real JB∗-triples) plus their real forms,
namely the type IR

n,m (n = 1, 2, n ≤ m), IH
2,2q (1 ≤ q), IC

n,n (n = 1, 2), IIR
5 ,

IIIR
2 , IIIH

2 and IVr,s
n (n ≥ 5, r ≥ s ≥ 0, r + s = n) real Cartan factors (cf.

[Ka4, Theorem 4.1]).

Proof. The assertion concerning prime complex JB∗-triples follows di-
rectly from Proposition 7.3 and Proposition 6.1. On the other hand it is
clear that all prime complex JB∗-triples of Clifford type (regarded as real
JB∗-triple), as well as their real forms, are prime real JB∗-triples of Clifford
type. Let J be a prime real JB∗-triple of Clifford type. First assume that
J is a real form of a prime complex JB∗-triple: J = Aσ for some prime
complex JB∗-triple A and some conjugation σ on A. Then the complex
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Jordan pair associated to A is isomorphic to the complexification of the
real Jordan pair associated to J , and hence it is of Clifford type [D’AMc].
Therefore the prime complex JB∗-triple A is of Clifford type, and hence
J is a real form of some prime complex JB∗-triple of Clifford type. Now,
assume that J is not a real form of a prime complex JB∗-triple. Then, by
[CMR, Theorem 2.1], there exists a prime complex JB∗-triple A such that
J can be seen as a real JB∗-subtriple of the multiplier JB∗-triple M(A) of
A containing A. Since A is contained in J , and J is of Clifford type, A is
also of Clifford type, hence a hilbertizable Banach space (by Corollary 6.2).
Therefore we have

A ⊆ J ⊆ M(A) ⊆ A′′ = A,

so J = A is a prime complex JB∗-triple of Clifford type regarded as a real
JB∗-triple.

For details about the meaning of the different types of real Cartan factors
the reader is referred to [Ka4, Theorem 4.1]. The definition of real Cartan
factors, as well as the precise meaning of some of their types, will be given
in the next section.

8 Concluding results.

The aim of this section is to summarize the results previously obtained
for real (respectively, complex) prime JB∗-triples in a single statement.
Simultaneously, in the formulation of such a summarized version of the
zelmanovian classification of real (respectively, complex) prime JB∗-triples,
we will avoid any reference to the technical classification of prime Jordan
triples in the cases exceptional, hermitian, and Clifford. We also include
in this section the classification of real (respectively, complex) topologically
simple JB∗-triples.

By a real (respectively, complex) W ∗-algebra we mean a real (respec-
tively, complex) C∗-algebra which is a dual Banach space. A real (respec-
tively, complex) W ∗-factor will be a real (respectively, complex) prime W ∗-
algebra.

LEMMA 8.1. If J is a type In,m (1 ≤ n ≤ m) complex Cartan factor,
then there is a matricially decomposed W ∗-factor A such that J = A12. If
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J is either a type IIn (n ≥ 2) or type IIIn (n ≥ 1) complex Cartan factor,
then there is a matricially decomposed W ∗-factor A with an even-swapping
∗-involution τ such that J = H(A, τ) ∩A12.

Proof. For J = BL(H,K) a type In,m complex Cartan factor, take
A = BL(H ⊕K) with matricial decomposition given by

A11 :={x∈A : x(K) ⊆ K, x(H)=0}, A12 :={x∈A : x(H) ⊆ K, x(K)=0},

A21 :={x∈A : x(H)=0, x(K) ⊆ H}, A22 :={x∈A : x(K)=0, x(H) ⊆ H},

to obtain J = A12. For J = {x ∈ BL(H) : σx∗σ = ∓x} a type IIn

or IIIn complex Cartan factor, take A = M2(C) ⊗ BL(H), the matricial
decomposition of A given by Aij := uij ⊗ BL(H) (where the uij are the

usual matrix units for M2(C)), and τ = τ∓ ⊗ t (where τ∓

(
λ11 λ12

λ21 λ22

)
=(

λ22 ∓λ12

∓λ21 λ11

)
, and t(x) = σx∗σ), to get J = H(A, τ) ∩A12.

The type IVn (n ≥ 3) complex Cartan factors are usually called complex
spin factors. The following zelmanovian classification theorem for prime
complex JB∗-triples follows directly from the above lemma and Theorems
2.4, 5.9, and 7.4.

THEOREM 8.2. If J is a prime complex JB∗-triple, then one of the
following assertions hold for J :

i) J is either the type V or the type VI complex Cartan factor.

ii) J is a complex spin factor.

iii) There exists a matricially decomposed prime complex C∗-algebra A
such that J can be regarded as a JB∗-subtriple of the complex C∗-
algebra M(A) contained in (M(A))12 and containing A12 .

iv) There exists a matricially decomposed prime complex C∗-algebra A
with an even-swapping ∗-involution τ such that J can be regarded
as a JB∗-subtriple of the matricially decomposed complex C∗-algebra
M(A) contained in H(M(A), τ)∩(M(A))12 and containing H(A, τ)∩
A12 .
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Real Cartan factors are defined as the real forms of complex Cartan
factors. Their classification is due to O. Loos [Lo2] in the finite dimensional
case, and W. Kaup in the general case [Ka4]. They come in 12 different
types:

IR
n,m, IH

2p,2q, I
C
n,n, IIR

n , IIH
2p, III

R
n , IIIH

2p, IV
r,s
n ,VO,VO0 ,VIO,VIO0 .

The notation has the property that, erasing the superscripts, we obtain a
complex Cartan factor J such that the given real Cartan factor is one of
the real forms of J .

For the moment, we are only interested in the precise meaning of type
IR
n,m, IH

2p,2q, IC
n,n, and IIR

n real Cartan factors:

IR
n,m := BL(H,K), where H,K are real Hilbert spaces of hilbertian di-

mension n, m, respectively, with 1 ≤ n ≤ m, and the triple product is
defined by

{xyz} :=
1
2
(xy∗z + zy∗x)

for all x, y, z in BL(H,K).

IH
2p,2q := BL(H,K), where H,K are quaternionic Hilbert spaces of hilber-

tian dimension p, q, respectively, with 1 ≤ p ≤ q, and the triple prod-
uct is formally defined as in the above case.

IC
n,n := {x ∈ BL(H) : x∗ = x}, where H is a complex Hilbert space of

hilbertian dimension n, as real JB∗-subtriple of BL(H).

IIR
n := {x ∈ BL(H) : σx∗σ = −x}, where H is a real Hilbert space of

hilbertian dimension n ≥ 2, as JB∗-subtriple of BL(H).

By a generalized real Cartan factor we mean either a complex Cartan
factor (regarded as a real one) or a real Cartan factor. Generalized real
Cartan factor can be intrinsically characterized (see [Ka4, Lemma 4.5]).

LEMMA 8.3. Let J be a type In,m, IIn, IR
n,m, IH

2p,2q, or IIR
n generalized

real Cartan factor. Then there exists a real W ∗-factor A with a ∗-involution
τ such that J = Asa ∩ S(A, τ).

Proof. Let H and K be Hilbert spaces over F, where F is equal to either
R, C, or H. Consider the real W ∗-factor A := BL(H ⊕ K), and the ∗-
involution τ on A given by τ(a) := ρa∗ρ, where ρ(h+k) := h−k for h in H
and k in K. Then, denoting by p the orthogonal projection from H⊕K onto
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H, the mapping x 7→ xp+x∗(1−p) from BL(H,K) to Asa∩S(A, τ) becomes
a surjective triple isomorphism. Depending on the choice of F = R, C, or
H, the fact just shown proves the lemma for the cases that J is a type IR

n,m,
In,m, or IH

2p,2q, respectively, generalized real Cartan factor.
Let J = {x ∈ BL(H) : σx∗σ = −x} be a type IIR

n real Cartan factor
(where H is a real Hilbert space). Consider the real W ∗-factor A := BL(C⊗
H), and the ∗-involution τ on A given by τ(a) := σa∗σ, where σ(λ⊗ h) :=
λ⊗ h for λ in C and h in H. Then the mapping x 7→ i(IdC ⊗ x) from J to
Asa ∩ S(A, τ) is a surjective triple isomorphism.

Let J = {x ∈ BL(H) : σx∗σ = −x} be a type IIn generalized real
Cartan factor (where now H is a complex Hilbert space). Choose a real
Hilbert space E such that H = E ⊗ C, and a canonical basis {1, i, j, k}
of H. Consider the right quaternionic Hilbert space P := E ⊗ H, and the
real-linear operator ρ on P given by ρ := IdE ⊗ η, where η is the involutive
automorphism of H defined by η(λ) := −iλi for λ in H. Note that, for p
in P and λ in H, the equality ρ(pλ) = ρ(p)η(λ) holds. Now, take the real
W ∗-factor A := BL(P ), and the ∗-involution τ on A given by τ(a) := ρa∗ρ.
Then, keeping in mind the natural identifications BL(H) = BL(E) ⊗ C
and BL(P ) = BL(E)⊗H, and the one-to-one triple homomorphism κ from
CR to H given by κ(α + iβ) := k(α + iβ) for α, β in R, the restriction of
IdBL(E) ⊗ κ to J becomes a triple isomorphism from J onto Asa ∩ S(A, τ).

Given a real JB∗-triple J , let us say that J is a real spin factor if it is
a real form of a complex spin factor, and that J is a generalized real spin
factor if it is either a complex spin factor (regarded as a real JB∗-triple)
or a real spin factor. Now, recall that the type III2 complex Cartan factor
is a complex spin factor (so that the type III2, IIIR

2 , and IIIH
2 generalized

real Cartan factors are generalized real spin factors). Recall also that the
definition of the type IC

n,n real Cartan factors shows that such real Cartan
factors are of the form Asa for a suitable real W ∗-factor A. With these
facts in mind, the following zelmanovian classification theorem for prime
real JB∗-triples follows directly from Lemma 8.3 and Theorems 2.4, 4.5,
and 7.4.

THEOREM 8.4. If J is a prime real JB∗-triple, then one of the following
assertions hold for J :

i) J is the type V, VI, VO, VO0 , VIO, or VIO0 generalized real Cartan
factor.
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ii) J is a generalized real spin factor.

iii) There exists a prime real C∗-algebra A such that J can be regarded
as a JB∗-subtriple of the real C∗-algebra M(A) contained in M(A)sa

and containing Asa .

iv) There exists a prime real C∗-algebra A with ∗-involution τ such that
J can be regarded as a JB∗-subtriple of the real C∗-algebra M(A)
contained in S(M(A), τ) ∩M(A)sa and containing S(A, τ) ∩Asa .

A real or complex JB∗-triple is said to be topologically simple if it has no
nonzero proper closed triple ideals. Clearly, topologically simple JB∗-triples
are prime.

COROLLARY 8.5. If J is a topologically simple complex JB∗-triple,
then one of the following assertions hold for J :

i) J is either the type V or the type VI complex Cartan factor.

ii) J is a complex spin factor.

iii) There exists a matricially decomposed topologically simple complex
C∗-algebra A such that J = A12.

iv) There exists a matricially decomposed topologically simple complex
C∗-algebra A with an even-swapping ∗-involution τ such that J =
H(A, τ) ∩A12.

Proof. If J is not a JC∗-triple, then, by Theorem 2.4, we are in case i).
Assume that J is of Clifford type. Then, by Theorem 7.4, either J is a

complex spin factor (and we are in case ii)) or J is a type In,m (n = 1, 2, n ≤
m) or II5 complex Cartan factor. In the case that J is a type II5 complex
Cartan factor, by Lemma 8.1 and its proof, we have J = H(A, τ) ∩ A12

for some matricially decomposed algebraically (hence topologically) simple
complex C∗-algebra A with an even-swapping ∗-involution τ , and therefore
we are in case iv). In the case that J = BL(H,K) is a type In,m (n = 1, 2,
n ≤ m) complex Cartan factor, the matricially decomposed complex W ∗-
factor A = BL(H ⊕K) given by Lemma 8.1 and its proof, which satisfies
J = A12, need not be topologically simple. However, the topologically
simple C∗-algebra A := K(H ⊕ K) of all compact operators on H ⊕ K
inherits the matricial decomposition of A, and the equality A12 = A12 holds,
which leads to case iii).
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Finally, assume that J is of hermitian type. By the topological simplicity
of J and Theorem 5.9, we have the following two possibilities for J :

1) There exists a matricially decomposed prime complex C∗-algebra A
such that J = A12.

2) There exists a matricially decomposed prime complex C∗-algebra A
with an even-swapping ∗-involution τ such that J = H(A, τ) ∩A12.

Moreover, by the proof of Theorem 5.9, in both situations A is generated
as C∗-algebra by J . Now, to conclude the proof it is enough to show that
the topological simplicity of J implies that of A. In the case that J is in
the situation 1), this follows from Proposition 5.7.ii. If J is in the situation
2), and if P is a nonzero closed ideal of A, then P ∩ τ(P ) is a nonzero
(by primeness of A) τ -invariant closed ideal of A, so P ∩ τ(P ) = A (by
Proposition 5.7.iii), and so P = A.

Replacing in the above argument Proposition 5.7.ii and 5.7.iii, Theorem
5.9, and Lemma 8.1 with Lemmas 4.3 and 4.2, Theorem 4.5, and Lemma
8.3, respectively, we obtain the following.

COROLLARY 8.6. If J is a topologically simple real JB∗-triple, then
one of the following assertions hold for J :

i) J is the type V, VI, VO, VO0 , VIO, or VIO0 generalized real Cartan
factor.

ii) J is a generalized real spin factor.

iii) There exists a topologically simple real C∗-algebra A such that J =
Asa.

iv) There exists a topologically simple real C∗-algebra A with ∗-involution
τ such that J = S(A, τ) ∩Asa.
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JB∗-triples. Manuscripta Math. 86 (1995), 311-335.
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