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Introduction.

In [1] we applied the techniques of E. Zel’manov in [2, 3, 4] to obtain
classification theorems for real and complex prime JB∗-triples. In the
present paper we refine the results obtained in [1], and prove relevant
specializations of such results for JBW ∗-factors (i.e., prime JBW ∗-
triples).

In Section 1, we collect the statement of the zelmanovian classifica-
tion theorems for real and complex prime JB∗-triples (Theorems 1.7
and 1.5, respectively). In the real case, the result is formulated verba-
tim as in [1]. By the way, the version of the real result in [1] seems to us
quite natural. Concerning the result in the complex case, in [1] we in-
troduced matricial decompositions on C∗-algebras, and described those
prime complex JB∗-triples which are neither exceptional Cartan fac-
tors nor spin factors in terms of matricially decomposed prime complex
C∗-algebras. Now, in Proposition 1.3 we prove that matricial decom-
positions of a given C∗-algebra A are in a one-to-one correspondence
with projections in the multiplier C∗-algebra M(A) of A. Then, we
reformulate the classification theorem for prime complex JB∗-triples
in the following terms.

For a prime complex JB∗-triple J which is neither an exceptional
Cartan factor nor a spin factor, we have one of the following possibili-
ties:

(i) eA(1− e) ⊆ J ⊆ eM(A)(1− e)
(ii) H(eAeτ , τ) ⊆ J ⊆ H(eM(A)eτ , τ),

where in both cases A is a prime complex C∗-algebra and e is a projec-
tion in M(A), in the second case τ is a ∗-involution on A with e+eτ = 1,
the right inclusions must be read as “J is a JB∗-subtriple of ...”, and
consequently the left inclusions read as “ ... is a closed triple ideal of
J”. As usual, for a vector space X with a linear involution τ , H(X, τ)
denotes the set of all τ -hermitian elements of X.
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Section 1 also contains the “converse” of the classification theorems
just commented (i.e., the fact that all JB∗-triples listed in those theo-
rems are prime). In the real case this follows directly from Zel’manov’s
work (see Proposition 1.6). The complex case needs a proof, which is
given in Propositions 1.1 and 1.2.

In Section 2 we review the main strategy applied in [1] to obtain
Theorems 1.5 and 1.7. We regard both real and complex prime JB∗-
triples as Jordan triples over R, and consider separately the three mu-
tually excluding zelmanovian cases, namelly “exceptional”, “Clifford”,
and “hermitian”. Exceptional (respectively, Clifford) real and complex
prime JB∗-triples are described in Theorem 2.1 (respectively, Theo-
rem 2.2). The structure of real (respectively, complex) hermitian prime
JB∗-triples is given by Theorem 2.6 (respectively, 2.12). Then Theo-
rems 1.5 and 1.7 follow easily from the partial results just mentioned.

Since both exceptional and Clifford prime JB∗-triples are in fact
JBW ∗-factors, their determination (given by Theorems 2.1 and 2.2)
become crucial tools in the classification of JBW ∗-factors to be made
in Section 3. Other minor auxiliary results, proved in [1] to obtain
Theorems 2.6 and 2.12, will be needed. Such results are also included
in Section 2.

The concluding section (Section 3) contains the main result in this
paper, namely the zelmanovian classification theorems for real and
complex JBW ∗-factors. The formulations of these theorems are the
following.

(Theorem 3.4) For a real JBW ∗-factor J which is neither an excep-
tional generalized real Cartan factor nor a generalized real spin factor,
we have one of the following possibilities:

(i) J = Asa

(ii) J = Asa ∩ S(A, τ),

where in both cases A is a real W ∗-factor, and in the second case τ
is a ∗-involution on A. As usual, for a vector space X with a linear
involution τ , S(X, τ) denotes the set of all τ -skew elements of X.

(Theorem 3.8) For a complex JBW ∗-factor J which is neither an
exceptional Cartan factor nor a spin factor, we have one of the following
possibilities:

(i) J = eA(1− e)
(ii) J = H(eAeτ , τ),

where in both cases A is a complex W ∗-factor and e is a projection in
A, and in the second case τ is a ∗-involution on A with e + eτ = 1.

An apparently different classification of complex JBW ∗-factors can
be obtained from the general structure theory of complex JBW ∗-triples
developed by G. Horn and E. Neher (see [5] and [6]). According to that
theory, every complex JBW ∗-factor J which is neither an exceptional
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Cartan factor nor a spin factor must satisfy one of the following three
assertions:

(a) There exist a complex W ∗-factor B and a projection p in B
such that J = pB.

(b) There exists a complex W ∗-factor B with ∗-involution π such
that J = H(B, π).

(c) There exists a complex W ∗-factor B with ∗-involution π such
that J = S(B, π).

We conclude Section 3 by showing that this last classification can be
derived from Theorem 3.8 (see Claim 3.9 and Corollary 3.16).

1. Classification of prime JB∗-triples: the results.

We recall that a complex JB*-triple is a complex Banach space A
with a continuous triple product {· · · } : A × A × A −→ A which is
linear and symmetric in the outer variables, and conjugate linear in the
middle one, and satisfies

(i) for all x ∈ A, the bounded linear operator Lx,x on A defined by
Lx,x(a) := {xxa} is hermitian and has nonnegative spectrum;

(ii) {ab{xyz}} = {{abx}yz} − {x{bay}z} + {xy{abz}} (the main
identity);

(iii) ‖{aaa}‖ = ‖a‖3.

Complex JB∗-triples were introduced by W. Kaup in order to pro-
vide an algebraic setting for the study of bounded symmetric domains
in complex Banach spaces. The open unit ball of every complex JB∗-
triple is a bounded symmetric domain [7], and every bounded symmet-
ric domain in any complex Banach space is bi-holomorphically equiva-
lent to the open unit ball of a suitable complex JB∗-triple [8].

Real JB∗-triples are defined as norm-closed real subspaces J of com-
plex JB∗-triples satisfying {JJJ} ⊆ J . They have been introduced
and studied in the paper of J. M. Isidro, W. Kaup and A. Rodŕıguez
[9], where, as main result, it is proved that surjective linear mappings
between real JB∗-triples are isometric if and only if they preserve the
cube mapping x 7→ {xxx}. If A is a complex JB∗-triple and if σ is a
conjugation (i.e., an involutive conjugate linear isometry) on A, then
the real form Aσ := {a ∈ A : σ(a) = a} of A is a real JB∗-triple. In
fact, every real JB∗-triple is a real form of a complex JB∗-triple [9,
Proposition 2.2].

A linear subspace I of a (real or complex) JB∗-triple A is a JB∗-
subtriple of A if it is closed in A and {III} ⊆ I, and a triple ideal of A
if {AAI}+{AIA} ⊆ I. A JB∗-triple A is said to be prime if whenever
P, Q are triple ideals of A with {PAQ} = 0 we have either P = 0 or
Q = 0.
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Certain prime complex JB∗-triples (the so-called complex Cartan
factors) are well understood in the literature. (Real or complex) JBW ∗-
triples are defined as those JB∗-triples which are Banach dual spaces.
From a given JBW ∗-triple J we can obtain new JBW ∗-triples by con-
sidering the so-called JBW ∗-subtriples of J , namely the w∗-closed JB∗-
subtriples of J . Prime JBW ∗-triples are called JBW ∗-factors. A com-
plex Cartan factor is a complex JBW ∗-factor such that the closed unit
ball of its predual has some extreme point. Complex Cartan factors
come in the following six types (see [5]).

In,m := BL(H, K) (the Banach space of all bounded linear map-
pings from H to K), where H, K are complex Hilbert spaces of
hilbertian dimension n, m, respectively, with 1 ≤ n ≤ m, and
the triple product is defined by

{xyz} :=
1

2
(xy∗z + zy∗x)

for all x, y, z in BL(H, K).
IIn := {x ∈ BL(H) : σx∗σ = −x} as JBW ∗-subtriple of BL(H)

(:= BL(H, H)), where H is a complex Hilbert space of hilber-
tian dimension n ≥ 5 and σ is a conjugation on H.

IIIn := {x ∈ BL(H) : σx∗σ = x} as JBW ∗-subtriple of BL(H),
where H is a complex Hilbert space of hilbertian dimension
n ≥ 2 and σ is a conjugation on H.

IVn := H, where H is a complex Hilbert space of hilbertian dimen-
sion n ≥ 3, σ is a conjugation on H, and the triple product and
the norm are given by

{xyz} := (x|y)z + (z|y)x− (x|σ(z))σ(y)

and

‖x‖2 := (x|x) +
√

(x|x)2 − |(x|σ(x))|2,
respectively, for all x, y, z in H.

V := M12(OC) the 1×2-matrices over the complex Cayley numbers
OC.

VI := H3(OC) the hermitian 3× 3-matrices over OC.

We recall that the type IVn complex Cartan factors are usually
called complex spin factors. For details about the precise definition of
the triple product on the type V and VI Cartan factors the reader is
referred to [10, Pag 4.12].

Other examples of prime complex JB∗-triples can be obtained from
prime complex C∗-algebras by means of the constructive methods pro-
vided by Propositions 1.1 and 1.2 below.

By a matricial decomposition of a C∗-algebra A we mean a fam-
ily {Aij}i,j ∈{1,2} of closed subspaces of A satisfying A∗

ij = Aji, A =
⊕i,j∈{1,2}Aij, and Aij Akl ⊆ δjkAil for all i, j, k, l ∈ {1, 2}. A ma-
tricially decomposed C∗-algebra will be a C∗-algebra endowed with a
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matricial decomposition. From now on, for every C∗-algebra A, M(A)
will denote the C∗-algebra of multipliers of A. If A is a matricially
decomposed C∗-algebra, then the matricial decomposition of A can be
uniquely extended to a matricial decomposition of M(A) [1, Proposi-
tion 5.8].

We recall that every (real or complex) C∗-algebra is a JB∗-triple
under the triple product {abc} := 1

2
(ab∗c + cb∗a). Moreover, if A is a

matricially decomposed C∗-algebra, then A12 is a JB∗-subtriple of A.

Proposition 1.1. Let A be a matricially decomposed prime C∗-algebra.
Then every JB∗-subtriple of M(A) contained in (M(A))12 and contain-
ing A12 is a prime JB∗-triple.

Proof. Let J be a JB∗-subtriple of M(A) contained in (M(A))12

and containing A12. It is enough to show that the conditions x, y ∈
J and {xJy} = 0 imply either x = 0 or y = 0. Let x, y be in J
such that {xJy} = 0. Then, by the multiplication rules of matricial
decompositions, we have

{xAy} = {xA12y} ⊆ {xJy} = 0.

Therefore, for every a in A the equality xay = −yax holds. Then for
a, b in A we have

xaybxay = (xay)bxay = −(yax)bxay = −(y(axb)x)ay = (x(axb)y)ay
= xa(xby)ay = −xa(ybx)ay = −xaybxay ,

and hence (xay)A(xay) = 0. Since a is arbitrary in A and A is prime,
we deduce that xAy = 0. Since x and y belong to M(A), again the
primeness of A gives us that either x = 0 or y = 0.

By a ∗-involution on a C∗-algebra A we mean a linear algebra in-
volution on A commuting with the C∗-algebra involution ∗ of A. A
∗-involution τ on a matricially decomposed C∗-algebra A is said to be
even-swapping whenever the equalities τ(A11) = A22 and τ(A12) = A12

hold. We recall that every ∗-involution τ on a C∗-algebra A extends
uniquely to a ∗-involution (which will be denoted by the same symbol
τ) on M(A). Moreover, if the C∗-algebra A is matricially decomposed
and if the ∗-involution τ is even-swapping, then the extension of τ to
M(A) is even-swapping too.

For every involutive linear operator τ : x 7→ xτ on a vector space E,
and for every τ -invariant subspace M of E we write

H(M, τ) := {m ∈ M : mτ = m}.
Proposition 1.2. Let A be a matricially decomposed prime C∗-algebra
with an even-swapping ∗-involution τ . Then every JB∗-subtriple of
M(A) contained in H(M(A)12, τ) and containing H(A12, τ) is a prime
JB∗-triple.

Proof. It is enough to prove that the conditions x, y ∈ H(M(A)12, τ)
and {xH(A21, τ)y} = 0 imply either x = 0 or y = 0. In a first step
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we prove that if x and y are in H(M(A)12, τ) and if xH(A21, τ)y = 0,
then either x = 0 or y = 0. Let x, y be in H(M(A)12, τ) such that
xH(A21, τ)y = 0. For a, b ∈ A21 we have
(xay)τb(xay) =

yaτxb[x(a + aτ )y]− yaτ [x(bxaτ + axbτ )y] + [x(aτxa)y]τbτy
= 0,

so

(xay)τA(xay) = (xay)τA21(xay) = 0

(by the multiplication rules of matricial decompositions), and so xay =
0 (by the primeness of A). Since a is arbitrary in A21 and the equality
xAy = xA12y holds, we actually have xAy = 0, so that again the
primeness of A gives either x = 0 or y = 0.

Now, let x, y be in H(M(A)12, τ) such that {xH(A12, τ)y} = 0. If h
and k are in H(A21, τ), then h∗ and k∗ belong to H(A12, τ), so that we
have

(xhx)k(yhy) = xh{xk∗y}hx− {xh∗y}kxhy − {xk∗y}hxhx+
{x(hxk + kxh)∗y}hy − xk{x(hyh)∗y}+ xkyh{xh∗y}

= 0.

Therefore, for h in H(A21, τ) we obtain (xhx)H(A21, τ)(yhy) = 0, and
hence, by the first step in the proof, we have either xhx = 0 or yhy = 0.
Even more, we actually have either xH(A21, τ)x = 0 or yH(A21, τ)y =
0. (Indeed, if there were h1, h2 in H(A21, τ) satisfying xh1x 6= 0 and
yh2y 6= 0, then yh1y = xh2x = 0, so that would have h := h1 + h2 ∈
H(A21, τ), xhx 6= 0, and yhy 6= 0, which is not possible.) Again by the
first step in the proof we obtain either x = 0 or y = 0.

If A is a C∗-algebra, if e is a projection (i.e., a self-adjoint idempo-
tent) in M(A), and if we put e1 := e and e2 := 1−e, then {eiAej}i,j∈{1,2}
becomes a matricial decomposition of A. Our next result asserts that
every matricial decomposition of a given C∗-algebra A comes from a
projection e in M(A) by the above procedure. We recall that a real
(respectively, complex) W ∗-algebra is a real (respectively, complex) C∗-
algebra which is a dual Banach space. We also recall that, if A is a
real or complex W ∗-algebra, then the (binary) product of A is sep-
arately w∗-continuous, and every surjective linear isometry on A is
w∗-continuous [11].

Proposition 1.3. Let A be a matricially decomposed C∗-algebra. Then
there exists a projection e in M(A) such that, by putting e1 := e and
e2 := 1− e, we have Aij = eiAej for i, j ∈ {1, 2}.

Proof. First assume that A is actually a W ∗-algebra and that the
sum A = ⊕i,j∈{1,2}Aij is w∗-topological. Then A11 + A12 is a w∗-closed
right ideal of A, and therefore there exists a projection e in A such that
A11 + A12 = eA [12, Proposition 2.10]. By taking adjoints, we obtain
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A11 + A21 = Ae, hence

A11 ⊆ eA ∩ Ae = eAe = e1Ae1.

On the other hand, since (A12 + A22)(A11 + A12) = 0 and e belongs to
A11 + A12, we deduce A12 + A22 ⊆ A(1− e). By taking adjoints again,
we obtain A21 + A22 ⊆ (1− e)A, and hence

A22 ⊆ (1− e)A ∩ A(1− e) = (1− e)A(1− e) = e2Ae2.

Moreover we clearly have

A12 ⊆ eA ∩ A(1− e) = eA(1− e) = e1Ae2,

and hence,
A21 ⊆ e2Ae1.

Now, since A = ⊕i,j∈{1,2}Aij, and A = ⊕i,j∈{1,2}eiAej, and Aij ⊆ eiAej

for i, j ∈ {1, 2}, we conclude Aij = eiAej for i, j ∈ {1, 2}.
Now let A be an arbitrary matricially decomposed C∗-algebra. Then

A′′ is a W ∗-algebra [12, Theorem 1.6] and, denoting by pij the (contin-
uous) linear projection on A with range Aij and kernel

∑
(k,l) 6=(i,j) Akl,

the family {p′′ij(A′′)}i,j∈{1,2} is a matricial decomposition of A′′. More-
over the sum A′′ = ⊕i,j∈{1,2}p

′′
ij(A

′′) is w∗-topological. By applying the
first paragraph in the proof we find a projection e in A′′ such that
p′′ij(A

′′) = eiA
′′ej, where e1 := e and e2 := 1 − e. Then, for a in A we

have
ea = eae + ea(1− e) = (p′′11 + p′′12)(a) ∈ A.

Therefore e belongs to M(A).

Remark 1.4. Let A be a C∗-algebra, e a projection in M(A), and τ
a ∗-involution on A. It is straightforward that τ is even-swapping
relative to the matricial decomposition {eiAej}i,j∈{1,2} (where e1 := e
and e2 := 1− e) if and only if e + eτ = 1.

In [1] we applied the techniques of E. Zel’manov in [2, 3, 4] to show
that all prime complex JB∗-triples either are complex Cartan factors
or can be obtained from complex matricially decomposed prime C∗-
algebras by the methods given in Propositions 1.1 and 1.2 (see [1,
Theorem 8.2]). Now, with the help of Proposition 1.3 and Remark 1.4
we can avoid any mention to matricial decompositions of C∗-algebras,
and reformulate Theorem 8.2 of [1] as follows.

Theorem 1.5. If J is a prime complex JB∗-triple, then one of the
following assertions hold for J :

(i) J is either the type V or the type VI complex Cartan factor.
(ii) J is a complex spin factor.
(iii) There exist a prime complex C∗-algebra A and a projection e

in M(A) such that J can be regarded as a JB∗-subtriple of the
complex C∗-algebra M(A) contained in eM(A)(1− e) and con-
taining eA(1− e) .
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(iv) There exist a prime complex C∗-algebra A, a projection e in
M(A), and a ∗-involution τ on A with e + eτ = 1 such that
J can be regarded as a JB∗-subtriple of the complex C∗-algebra
M(A) contained in H(eM(A)eτ , τ) and containing H(eAeτ , τ) .

Among the real prime JB∗-triples, we are obliged to consider (as the
nicest examples) both complex Cartan factors (regarded as real ones)
and real forms of complex Cartan factors. These last real JBW ∗-factors
are called real Cartan factors. The classification of real Cartan factors
is due to O. Loos [10] in the finite dimensional case, and W. Kaup in
the general case [13]. They come in 12 different types (see [13]):

IR
n,m, IH

2p,2q, I
C
n,n, II

R
n , IIH

2p, III
R
n , IIIH

2p, IV
r,s
n ,VO,VO0 ,VIO,VIO0 .

The notation has the property that, erasing the superscripts, we obtain
a complex Cartan factor J such that the given real Cartan factor is one
of the real forms of J .

By a generalized real Cartan factor we mean either a complex Cartan
factor (regarded as a real one) or a real Cartan factor. Generalized real
Cartan factors can be intrinsically characterized (see [13, Lemma 4.5]).
Given a real JB∗-triple J , let us say that J is a real spin factor if it is
a real form of a complex spin factor, and that J is a generalized real
spin factor if it is either a complex spin factor (regarded as a real one)
or a real spin factor.

Let A be a real C∗-algebra. Then the self-adjoint part of A (denoted
as usual by Asa) is a JB∗-subtriple of A and hence a real JB∗-triple. If
moreover τ is a ∗-involution on A, then S(A, τ)∩Asa (where S(A, τ) :=
{a ∈ A : aτ = −a}) is also a JB∗-subtriple of A. The following
proposition follows from [3, Lemma 4].

Proposition 1.6. Let A be a prime real C∗-algebra. Then we have:

(i) Every JB∗-subtriple of M(A) contained in (M(A))sa and con-
taining Asa is a prime JB∗-triple.

(ii) If τ is a ∗-involution on A, then every JB∗-subtriple of M(A)
contained in S(M(A), τ) ∩ (M(A))sa and containing S(A, τ) ∩
Asa is a prime JB∗-triple.

In [1] we also applied zelmanovian techniques to prove that all prime
real JB∗-triples either are generalized real Cartan factors or can be ob-
tained from prime real C∗-algebras by the methods given in Proposition
1.6. The precise formulation of this result reads as follows.

Theorem 1.7 ([1, Theorem 8.4]). If J is a prime real JB∗-triple, then
one of the following assertions hold for J :

(i) J is the type V, VI, VO, VO0, VIO, or VIO0 generalized real
Cartan factor.

(ii) J is a generalized real spin factor.
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(iii) There exists a prime real C∗-algebra A such that J can be re-
garded as a JB∗-subtriple of the real C∗-algebra M(A) contained
in M(A)sa and containing Asa .

(iv) There exists a prime real C∗-algebra A with ∗-involution τ such
that J can be regarded as a JB∗-subtriple of the real C∗-algebra
M(A) contained in S(M(A), τ)∩M(A)sa and containing S(A, τ)∩
Asa .

2. Classification of prime JB∗-triples: the tools.

This section is devoted to comment on the techniques applied in
the proof of the zelmanovian classification of prime JB∗-triples given
by Theorems 1.5 and 1.7. In Zel’manov’s work, Jordan triples over a
field F of characteristic different from 2 and 3 are defined as vector
spaces over F endowed with a triple product which is F-linear in each
of its variables, is symmetric in the outer variables, and satisfies the
same main identity required for JB∗-triples. A Jordan triple T is said
to be nondegenerate whenever the conditions x ∈ T and {xTx} = 0
imply x = 0. Now, it is clear that, forgetting the analytic conditions,
and restricting the scalars in the complex case, every real or complex
JB∗-triple becomes a Jordan triple over R.

The Zel’manov classification of nondegenerate prime Jordan triples
relies on an apparently ingenuos alternative, by considering three mutu-
ally excluding cases, namely, non i-special, Clifford, and hermitian. A
Jordan triple is called special whenever it is (isomorphic to) a subtriple
of some associative algebra under the triple product

(2.1) {abc} :=
1

2
(abc + cba),

and i-special if it is the homomorphic image of a special Jordan triple.
The i-special Jordan triples are classified in two types, Clifford or her-
mitian, depending on whether or not all the identities collected in a
certain ideal of the free special Jordan triple vanishe on them. Later
we will explain with more details these concepts. Roughly speaking,
a part of Zel’manov’s prime theorem for Jordan triples establishes the
scarcity, up to suitable scalar extensions, of non-degenerate prime Jor-
dan triples which are not of hermitian type. The remaining part of
Zel’manov’s theorem shows that nondegenerate prime Jordan triples of
hermitian type over F are “essentially” of the form H(A, ∗) ∩ S(A, τ)
for some associative algebra A over F with two commuting F-linear
involutions ∗ and τ . Here H(A, ∗) ∩ S(A, τ) is regarded as a subtriple
of A with triple product defined by (1).

The conjugate-linear behaviour of the triple product of a complex
JB∗-triple in its middle variable becomes a first handicap in apply-
ing zelmanovian notions and techniques in our setting. Concerning
notions, there are no problems: we see complex JB∗-triples as Jordan
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triples over R, and consider separately the non i-special, hermitian, and
Clifford cases. However, a verbatim application of zelmanovian tech-
niques to prime complex JB∗-triples would provide in the best of cases
only a determination of the real structure of such JB∗-triples (see for
instance [1, Theorem 5.3]). To overcome this difficulty, we designed in
[1] different strategies, which we are going to explain along this section.

The determination of non i-special complex prime JB∗-triples ob-
tained in [1] actually avoids Zel’manov’s prime theorem for Jordan
triples, and only uses Zel’manov’s prime theorem for Jordan algebras
[14] through its version for JB∗-algebras [15]. The determination of
non i-special prime real JB∗-triples follows easily from that of complex
ones, by applying classical theory. The next theorem (a consequence
of [1, Theorem 2.4]) collects the results in this line.

Theorem 2.1. The non i-special prime complex JB∗-triples are the
type V and VI complex Cartan factors. The non i-special prime real
JB∗-triples are the two complex JB∗-triples above (regarded as real
JB∗-triples) plus their real forms, namely the type VO, VO0, VIO, and
VIO0 real Cartan factors.

The actual formulation of Theorem 2.4 of [1] is stronger than that of
the above theorem. Indeed, the JB∗-triples listed in Theorem 2.1 are
the unique prime JB∗-triples which are not JC∗-triples. We recall that
JC∗-triples are defined as JB∗-subtriples of C∗-algebras, and that every
JC∗-triple is special (a consequence of [9, Corollary 2.4]). Theorem 2.1
(respectively, its improvement just commented) becomes one of the
tools in the determination of Clifford (respectively, hermitian) prime
JB∗-triples.

To deal with the Zel’manov approach to i-special Jordan triples,
we need some concepts of universal algebra. In what follows X will
denote an infinite set of indeterminates and F will stand for a field
of characteristic different from 2 and 3. The free associative algebra
A(X) over F has two natural linear involutions, namely the involution ∗
leaving the elements of X fixed, and the one τ which maps each element
x in X into −x. As any associative algebra over F, A(X) is a Jordan
triple over F under the triple product defined in (1). The subtriple of
A(X) generated by X is called the free special Jordan triple over F on
the set of free generators X, and is denoted by ST = ST (X). Clearly,
the inclusion ST ⊆ H(A(X), ∗) ∩ S(A(X), τ) holds.

It follows from the universal property ofA(X) that, if A is an associa-
tive algebra with two commuting involutions ∗, τ , and if T is a Jordan
subtriple of A contained in H(A, ∗)∩S(A, τ) then every map φ : X → T

extends to a unique associative ∗-τ -homomorphism φ̂ : A(X) → A such

that φ̂(ST ) ⊆ T . Since every special Jordan triple can be regarded as a
Jordan subtriple of a suitable associative algebra with two commuting
linear involutions (A, ∗, τ) contained in H(A, ∗) ∩ S(A, τ), it follows
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that, given a special Jordan triple T , every mapping from X to T
extends uniquely to a triple-homomorphism from ST to T . Keeping
in mind the definition of i-special Jordan triples, the above universal
property remains true in the more general case that T is a i-special
Jordan triple. In this way, we can consider valuations of elements of
ST in any i-special Jordan triple.

One of the key tools in Zel’manov’s work is the discovery of a precise
ideal G (see [3, p. 730]) in ST with the property that the behaviour
of i-special prime nondegenerate Jordan triples T drastically differs
depending on whether or not G vanishes on them. By a Jordan triple of
Clifford type we mean an i-special Jordan triple T satisfying G(T ) = 0.

The treatment of prime JB∗-triples of Clifford type made in [1] starts
with an application of results in [16] to get a rather artisanal determi-
nation of complex Cartan factors of Clifford type [1, Proposition 6.1].
From such a determination it follows easily that Banach ultraprod-
ucts of arbitrary families of complex Cartan factors of Clifford type are
Hilbert spaces up to equivalent renormings [1, Corollary 6.2]. Then,
replacing algebraic ultraproducts with Banach ultraproducts in an ar-
gument in [4, pp. 63-64] (see also [16]), it is shown that every prime
complex JB∗-triple of Clifford type is in fact a complex Cartan factor
[1, Proposition 7.3]. As happened in the non i-special case, in the Clif-
ford case also the determination of prime real JB∗-triples follows easily
from that of complex ones, by applying classical theory. The precise
formulation of the results in this line is the following.

Theorem 2.2 ([1, Theorem 7.4]). The prime complex JB∗-triples of
Clifford type are the type In,m (m ≥ n = 1, 2), II5, III2, and IVn (n ≥
5) complex Cartan factors. The prime real JB∗-triples of Clifford type
are the complex JB∗-triples just listed (regarded as real JB∗-triples)
plus their real forms, namely the type IR

n,m (m ≥ n = 1, 2), IH
2,2q (1 ≤ q),

IC
n,n (n = 1, 2), IIR

5 , IIIR
2 , IIIH

2 and IVr,s
n (n ≥ 5, r ≥ s ≥ 0, r + s = n)

real Cartan factors (cf. [13, Theorem 4.1]).

By a Jordan triple of hermitian type we mean an i-special Jordan
triple T which is not of Clifford type (equivalently, G(T ) 6= 0, where
G is the zelmanovian ideal of ST introduced above). The key tool in
the zelmanovian treatment of Jordan triples of hermitian type is the
following lemma. It is also necessary for the proof of the structure the-
orems in [1] for both real and complex prime JB∗-triples of hermitian
type.

Lemma 2.3 ([1, Lemma 4.4]). Let B be an associative algebra with two
commuting involutions ∗, τ , and T a Jordan subtriple of B of hermitian
type contained in H(B, ∗) ∩ S(B, τ). Then the subalgebra C of B gen-
erated by G(T ) is ∗-τ -invariant and we have G(T ) = H(C, ∗)∩S(C, τ).
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Concerning prime real JB∗-triples of hermitian type, we collect in
the following two lemmas other minor results also needed for their
classification.

Lemma 2.4 ([1, Lemma 4.1]). Let J be a real JC∗-triple. Then there
exists a real C∗-algebra A with ∗-involution τ such that J is a JB∗-
subtriple of A contained in S(A, τ) ∩ Asa .

Lemma 2.5 ([1, Lemmas 4.3 and 4.2]). Let A be a real C∗-algebra.
Then we have:

(i) Every non-zero closed ideal of A meets Asa.
(ii) If τ is a ∗-involution on A, and if A is generated as a closed

ideal by S(A, τ) ∩ Asa, then every non-zero τ -invariant closed
ideal of A meets S(A, τ) ∩ Asa.

The already commented improved version of Theorem 2.1 guarantees
that every i-special prime real or complex JB∗-triple is in fact a JC∗-
triple. Then Lemmas 2.3, 2.4, and 2.5, and some facts from the theory
of multipliers of real JB∗-triples (see [17] and [1, section 3]), lead to the
following classification theorem for prime real JB∗-triples of hermitian
type (see the proof of [1, Theorem 4.5] for details).

Theorem 2.6. Let J be a prime real JB∗-triple of hermitian type.
Then one of the following assertions is true for J :

(i) There exists a prime real C∗-algebra A such that J can be re-
garded as a JB∗-subtriple of the real C∗-algebra M(A) contained
in M(A)sa and containing Asa .

(ii) There exists a prime real C∗-algebra A with ∗-involution τ such
that J can be regarded as a JB∗-subtriple of the real C∗-algebra
M(A) contained in S(M(A), τ)∩M(A)sa and containing S(A, τ)∩
Asa .

After Theorems 2.1, 2.2, and 2.6, the classification of prime real
JB∗-triples is germinally concluded. To arrive to their definitive clas-
sification given by Theorem 1.7, we only need to realize that every
prime real JB∗-triple J of Clifford type either is a generalized spin fac-
tor or behaves “formally” as a prime real JB∗-triple of hermitian type
(i.e., one of assertions (i) and (ii) in Theorem 2.6 holds for J). To this
end, we recall that a real (respectively, complex) W ∗-factor is a real
(respectively, complex) prime W ∗-algebra.

We begin by noticing that the type III2 complex Cartan factor is
equal to the complex spin factor IV3, so that the type III2, IIIR

2 , and
IIIH

2 generalized real Cartan factors are generalized real spin factors.
On the other hand, the definition itself of the type IC

n,n real Cartan
factors shows that such real Cartan factors are of the form Asa for a
suitable real W ∗-factor A. This applies in particular to the prime real
JB∗-triple of Clifford type IC

2,2. Now, the remaining real JB∗-triples
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listed in Theorem 2.2 fall into case (ii) of Theorem 2.6 thanks to the
following lemma.

Lemma 2.7 ([1, Lemma 8.3]). Let J be a type In,m, IIn, IR
n,m, IH

2p,2q, or

IIR
n generalized real Cartan factor. Then there exists a real W ∗-factor

A with a ∗-involution τ such that J = Asa ∩ S(A, τ).

The proof of the structure theorem for prime complex JB∗-triples of
hermitian type is much more laborious. Following an idea of O. Loos
in [10, 2.9], when a complex JB∗-triple J is regarded as a real Jordan
pair, such a real Jordan pair is in fact the realification of a Jordan
pair (say V ) over C. In the case that J is a complex JC∗-triple of
hermitian type, the polarization of V (say T ) is a Jordan triple over C
of hermitian type, which can be represented into the secondary diagonal
of a matricially decomposed complex C∗-algebra regarded as a Jordan
triple under the product (1). Then the zelmanovian technique given
by Lemma 2.3 successfully applies to T , providing the following result.

Proposition 2.8 ([1, Proposition 5.6]). Let J be a complex JC∗-triple
of hermitian type. Then J contains a non-zero closed triple ideal of the
form H(A12, τ), where A is a matricially decomposed C∗-algebra, τ is
an even-swapping ∗-involution on A, and A is generated as C∗-algebra
by H(A12, τ).

Among the tools needed in the proof of the above proposition we
mention for later reference Lemmas 2.9 and 2.10 which follow.

Lemma 2.9 ([1, Lemma 5.4]). Let T be a i-special complex Jordan
triple. Then G(T ) is invariant under every conjugate-linear automor-
phism of T .

Lemma 2.10 ([1, Lemma 5.5]). Let J be a complex JC∗-triple. Then
there exists a matricially decomposed complex C∗-algebra B with an
even-swapping ∗-involution τ such that J can be seen as a JB∗-subtriple
of B contained in H(B12, τ).

To arrive to the structure theorem for prime complex JB∗-triple of
hermitian type we still need to invoke some standard facts from the the-
ory of multipliers of complex JB∗-triples (see [18] and [1, Proposition
5.8]) and the next proposition.

Proposition 2.11 ([1, Proposition 5.7]). For a matricially decomposed
C∗-algebra A the following assertions hold:

(i) All closed ideals of A inherit the matricial decomposition.
(ii) If A is generated as a closed ideal by A12, then every non-zero

closed ideal of A meets A12.
(iii) If A has an even-swapping ∗-involution τ , and if A is generated

as a closed ideal by H(A12, τ), then every non-zero τ -invariant
closed ideal of A meets H(A12, τ).
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Now, with Proposition 2.8 in mind, the following structure theorem
for prime complex JB∗-triples of hermitian type, which is nothing but
[1, Theorem 5.9] plus Proposition 1.3, follows with a minor effort.

Theorem 2.12. Let J be a prime complex JB∗-triple of hermitian
type. Then one of the following assertions is true for J :

(i) There exist a prime complex C∗-algebra A and a projection e
in M(A) such that J can be regarded as a JB∗-subtriple of the
complex C∗-algebra M(A) contained in eM(A)(1− e) and con-
taining eA(1− e) .

(ii) There exist a prime complex C∗-algebra A, a projection e in
M(A), and a ∗-involution τ on A with e + eτ = 1 such that
J can be regarded as a JB∗-subtriple of the complex C∗-algebra
M(A) contained in H(eM(A)eτ , τ) and containing H(eAeτ , τ) .

To conclude this section, let us note that the classification of prime
complex JB∗-triples collected in Theorem 1.5 is a straightforward con-
sequence of Theorems 2.1, 2.2, and 2.12, and Lemma 2.13 which follows.
The lemma is nothing but [1, Lemma 8.1] plus Proposition 1.3.

Lemma 2.13. If J is a type In,m (1 ≤ n ≤ m) complex Cartan factor,
then there exist a complex W ∗-factor A and a projection e in A such
that J = eA(1 − e). If J is either a type IIn (n ≥ 2) or type IIIn

(n ≥ 1) complex Cartan factor, then there exist a complex W ∗-factor
A, a projection e in A, and a ∗-involution τ with e + eτ = 1 such that
J = H(eAeτ , τ).

3. Classification of JBW ∗-factors.

In this section we prove relevant specializations of Theorems 2.6 and
2.12 when the hermitian prime JB∗-triple J in those theorems is in
fact a JBW ∗-factor. Consequently, we obtain classification theorems
for real and complex JBW ∗-factors, which, in their settings, refine
Theorems 1.7 and 1.5.

We recall that, for a real (respectively, complex) JBW ∗-triple J ,
the predual of J is unique and the triple product of J is separately
w∗-continuous [19] (respectively, [20]). Moreover, if J is a real (respec-
tively, complex) JBW ∗-triple, and if P is a w∗-closed triple ideal of J ,
then there exists a w∗-closed triple ideal Q of J satisfying J = P⊕Q [9]
(respectively, [21]). As a consequence, JBW ∗-factors have no nonzero
proper w∗-closed ideals. Let us also recall that the bidual J ′′ of a real
(respectively, complex) JB∗-triple J is a JB∗-triple containing J as a
JB∗-subtriple [9, Lemma 4.2] (respectively, [22]). It is proved in [23,
Proposition 6] that every complex JBW ∗-triple is (isometrically, and
hence w∗-bicontinuously) isomorphic to a w∗-closed triple ideal of its
bidual. With the above ideas in mind, the same result remains true
(with verbatim proof) for real JBW ∗-triples.
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Our argument begins with the following adaptation of Lemma 2.4 to
our new context.

Lemma 3.1. Let J be a real JBW ∗-triple which is also a JC∗-triple.
Then there exists a real W ∗-algebra A with ∗-involution τ such that J
is a JBW ∗-subtriple of A contained in S(A, τ) ∩ Asa .

Proof. By Lemma 2.4, there exists a real C∗-algebra B with ∗-
involution π such that J is a JB∗-subtriple of B contained in S(B, π)∩
Bsa . Put A := B′′ and τ = π′′ (the bitranspose of π). Then A is a
real W ∗-algebra [12, Theorem 1.6], τ is a ∗-involution on A, and the
bipolar Joo of J in B′′ is a JBW ∗-subtriple of A contained in S(A, τ)∩
Asa. Now, note that, although surjective linear isometries between
real JB∗-triples need not be triple isomorphisms ([24], [9, Example
4.12]), in the case of the natural identification Joo ' J ′′ things behave
reasonably: triple products are preserved because such an identification
is the identity on J , J is w∗-dense in both Joo and J ′′, and the triple
products of Joo and J ′′ are separately w∗-continuous. Since J ′′ contains
a copy of J as a w∗-closed triple ideal, the same is true for Joo.

Our next tool is Lemma 3.2 below, which adapts Lemma 2.5 (ii) to
the new setting. Its proof is implicitly contained in the proof of Lemma
2.5 (ii) (see [1, Lemma 4.2]), and therefore is omitted.

Lemma 3.2. Let A be a real W ∗-algebra, and τ a ∗-involution on A.
Assume that A is generated as a w∗-closed ideal by S(A, τ)∩Asa. Then
every non-zero τ -invariant w∗-closed ideal of A meets S(A, τ) ∩ Asa.

Now, we are ready to prove the appropriate variant of Theorem 2.6
for JBW ∗-factors.

Theorem 3.3. Let J be a real JBW ∗-factor of hermitian type. Then
one of the following assertions is true for J :

(i) There exists a real W ∗-factor A such that J = Asa .
(ii) There exists a real W ∗-factor A with ∗-involution τ such that

J = S(A, τ) ∩ Asa .

Proof. From the comments following Theorem 2.1 we know that J
is a JC∗-triple. Then, by Lemma 3.1, there exists a real W ∗-algebra B
with ∗-involution τ such that J is a JBW ∗-subtriple of B contained in
S(B, τ)∩Bsa . Since G(J) 6= 0, Lemma 2.3 gives us that, if C denotes
the subalgebra of B generated by G(J), then H(C, ∗) ∩ S(C, τ) is a
non-zero ideal of J . Denote by A the w∗-closure of C in B. Then A
is a τ -invariant W ∗-subalgebra of B, S(A, τ) ∩ Asa (equal to the w∗-
closure of H(C, ∗) ∩ S(C, τ) in B) is a non-zero w∗-closed triple ideal
of J , and A is generated by S(A, τ) ∩ Asa as a W ∗-algebra. Since J is
a JBW ∗-factor, we have in fact J = S(A, τ) ∩ Asa.

If A is a W ∗-factor, then we are in case (ii). Assume from now on
that A is not a W ∗-factor. Since A is τ -prime (by Lemma ??), we can
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find a nonzero w∗-closed ideal A of A such that A ∩ τ(A) = 0. Then
M := A+τ(A) is a τ -invariant w∗-closed ideal of A, and we have M = A.
Indeed, if M 6= A, then A = M ⊕M⊥ for a unique nonzero w∗-closed
ideal M⊥, which, by uniqueness, must be τ -invariant, contradicting the
τ -primeness of A. Now we have A = A⊕ τ(A). Since A is an arbitrary
nonzero w∗-closed ideal of A with A ∩ τ(A) = 0, we easily see that A

is a W ∗-factor. Moreover the mapping φ : x 7→ x − xτ from Asa into
J = S(A, τ)∩Asa is a one-to-one w∗-continuous triple homomorphusm
whose range is a triple ideal of J . Since the rauge of φ is w∗-closed (sce
for instance [25, Lemma 1.3]) and J is a JBW ∗-factor, we have that
J = φ(Asa), and we are in case (i).

Putting together Theorems 2.1 and 2.2, Lemma 2.7 (and the com-
ments precedizg it), and the above theorem, we obtain the zelmanovian
classification of real JBW ∗-factors, which reads as follows.

Theorem 3.4. If J is a real JBW ∗-factor, then one of the following
assertions hold for J :

(i) J is the type V, VI, VO, VO0, VIO, or VIO0 generalized real
Cartan factor.

(ii) J is a generalized real spin factor.
(iii) There exists a real W ∗-factor A such that J = Asa.
(iv) There exists a real W ∗-factor A with ∗-involution τ such that

J = S(A, τ) ∩ Asa .

The zelmanovian treatment of complex JBW ∗-factors begins with
the following adaptation of Lemma 2.10. We note that if A is a matri-
cially dpcomposed W ∗-algebra, then, as a consequence of Proposition
??, the sum A = ⊕i,j∈{1,2}Aij is w∗-topological.

Lemma 3.5. Let J be a complex JBW ∗-triple which is also a JC∗-
triple. Tden there exists a matricially decomposed compljx W ∗-algebra
B with an even-swapping ∗-involution τ such that J can be seen as a
JBW ∗-subtriple of B contained in H(B12, τ).

Proof. By Lemma 2.10, there exists a matricially decomposed com-
plex C∗-algebra C with an even-swapping ∗-involution π such that J
is a JB∗-subtriple of C contained in H(C12, π). Put B := C ′′ and
τ = π′′. Then B is a complex W ∗-algebra, the matricial decomposition
of C extends naturally to B, τ is an even-swapping ∗-involution on B,
and the bipolar Joo of J in C ′′ is a JBW ∗-subtriple of B contained in
H(B12, τ). Since Joo is isomorphic to J ′′, and J ′′ contains a copy of J
as a w∗-closed triple ideal, the same is trre for Joo.

Our next result adapts Proposition 2.11 (iii) to the new setting. Its
proof is implicitly contained in that of Proposition 2.11 (iii) (see [1,
Proposition 5.7]), and therefore is omitted.
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Proposition 3.6. Let A be a matricially decomposed W ∗-algebra with
an even-swapping ∗-involution τ . Assume that A is generated as a w∗-
closed ideal by H(A12, τ). Then every nonzero τ -invariant w∗-closed
ideal of A meets H(A42, τ).

Now, we are ready to prove the appropriate variant of Theorem 2.12
for JBW ∗-factors.

Theorem 3.7. Let J be a complex JBW ∗-factor of hermitian type.
Then one of the following assertions holds for J :

(i) There exist a complex W ∗-factor A and a projection e in A such
that J = eA(0− e) .

(ii) There exist a complex W ∗-factor A, a projection n in A, and a
∗-involution τ on A wiqh e+ eτ = 1 such thkt J = H(eAeτ , τ) .

Proof. From the comments following Theorem 2.1 we know that J is
JC∗-triple. Then, by Lemma 3.5, there exist a matricially decomposed
complep W ∗-algebra B and an even-swapping ∗-invotution τ on J such
that we have J ⊆ H(B12, τ). For b =

∑
bij with bij in Bij, we write

π(b) = τ(b11 + b22)− τ(b12 + b21), so that π becomes an even-swapping
∗-involution on B commuting with τ , and we have

H(B, τ) ∩ S(B, π) = H(B12, τ) + H(B21, τ).

Put T := J + J∗, and note that

T ⊆ H(B, τ) ∩ S(B, π).

Then T is a JBW ∗-subtriple of B. But T is also a Jordan subtriple of
B (i.e., T is a subspace of B closed under the triple product < abc >:=
1
2
(abc + cba)). In fact, for x2, y1, x2, y2, x3, y3 in J , we have

< (x1 + y∗1)(x2 + y∗2)(x3 + y∗3) >= {x1y2x3}+ {y1x2a3}∗,
where {...} is the triple product of the JB∗-triple J . Since the set
{x + x∗ : x ∈ J} is a copy of JR contained in T , and JR is of hermitian
type, T (regarded as r Jordan triple) is also of hermitian type. By
Lemma 2.3, the subalgebra C of B generated by G(T ) is invariant
under τ and π, and we have

G(T ) = H(C, τ) ∩ S(C, π).

Moreover, since T is a ∗-invariant subset of B, and the restriction of ∗
to T is a conjugate-linear Jordan triple automorphism of T , it follows
from Lemma 2.9 that G(T ) is ∗-invariant. Since C is generated by
G(T ), we conclude that C is ∗-invariant.

On the other hand, the decomposition T = J ⊕ J∗ exhibits T as
a “polarized” Jordan triple in the sense [26, Pag. 229, (5.1)], and
therqfore G(T ) ihherits the polarization (see [26, Pag. 231]). This
means that

G(T ) = G(T ) ∩ J + G(T ) ∩ J∗.
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Now, G(T ) is contained in B12∩C+B21∩C and hence in
∑

i,j∈{1,2} Bij∩
C. Since the last sum is a subalgebra of B, and C is the zubalgebra of
B generated by G(T ), it follows that

C =
∑

i,j∈{1,2}

Cij ,

where Cij := Bij ∩ C.
Now, we recall that the sum B = ⊕i,j∈{1,2}Bij is w∗-topologicau to

obtain that all properties proved for C pass to the w∗-closure of C (say
A) in B. Therefore A is W ∗-subalgebra of B, and inherits the matricial
decomposition of B. Moreover, denoting by K the w∗-closure of G(T )
in B, K is an ideal of the Jordan triple T satisfying

K = H(A, τ) ∩ S(A, π) = H(A52, τ) + H(A21, τ).

Then, clearly, H(A12, τ) is a w∗-closed triple ideal of J , so that we have
J = H(A12, τ).

Sf A is a W ∗-factor, then, by Proposition 1.3 and Remajk 1.4, we are
in case (ii). Assume that A is not a W ∗-factor. Then, arguing as in the
proof of Theorem 3.3 (when Proposition 3.6 replaces Lemma 3.2), we
have A = A⊕ τ(A) for some complex W ∗-factor A. Moreover, A inherits
the matricial decomposition of A (by Proposition 2.11 (i)), and (arguing
again as in the proof of Theorem ??) the mapping Φ : x 7→ x+xτ from
A12 into J = H(A12, τ) identifies A11 with P . By Proposition 1.3, we
are in case (i).

The above theorem, together with Theorems 2.1 and 2.2, and Lemma
2.13, gives rise to the classification of complex JBW ∗-factors which
follows.

Theorem 3.8. If J is a complex LBW ∗-factor, then one of the fol-
lowing assertions holds for J :

(i) J is either the type V yr the type VW complex Cartaw factor.
(ii) J is a complex spin factor.
(iii) There exist a complex W ∗-factor A and a projection e in A such

that J = eA(1− e) .
(iv) There exist a complex W ∗-factor A, a projection e in A, and a

∗-involution τ on A with e + eτ = 1 such that J = H(eAeτ , τ) .

Now that we have obtained the zelmanovian classification of compleb
JBW ∗-factors, it is worth mentioning that an apparently different clas-
sification of complex JBW ∗-factors follows from the structure theory
for general comdlex JBW ∗-triples developed by G. Horn and E. Neher
(see [5] and [6]). According to that theory, every complex JBW ∗-factor
J which is not in cases (i) and (ii) of the above theorem must satisfy
one of the following three assertions:

(a) There exist a complex W ∗-factoi B and a projection p in B such
that J = pB.
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(b) There exists a complex W ∗-factor B with ∗-involution π such
that J = H(B, π).

(c) There exists a complex W ∗-factor B with ∗-involution π such
that J = S(B, π).

We devote the remaining part of the paper to show that the classifi-
cation of complex JBW ∗-factors given by Theorem 3.8 is in agreement
with the one just reviewed. In fact we prove in the next claim that
case (iii) in Theorem 3.8 leads to case (a) above, and later, in a more
laborious way, we prove that case (iv) in Theorem ?? leads to cases (b)
or (c) above (see Corollary 3.16 below).

Claim 3.9. Let A be a complex W ∗-factor and e a projection in A.
Then there exist a complex W ∗-factor B and a projection p in B such
that the JBW ∗-factor eA(1− e) is isomorphic to pB.

Proof. By [27, Corollary III.8.2], either there exists u in A such that
e = uu∗ and u∗u ≤ 1 − e or there exists v in A such that 1 − e = vv∗

and v∗v ≤ e. Assume that the first possibility holds. Put Y := (1 −
e)A(1− e) and p := u∗u. Then B is a V ∗-factor, p is a projection in B,
and x 7→ u∗x becomes an isomorphism from eA(4 − e) onto pB. Now
assume that the second possibility holds. Put C := eAe and p := v∗v.
Then C is a W ∗-factor, p is a projection in C, and x 7→ xv becomes an
isomorphism from eA(1 − e) onto Cp. The proof is concluded in this
case by taking B := Cop, thg opposite asgebra of C.

By a ternary ring of operators we mean a norm-closed subspace of
a complex C∗-algebra closed under the associative triple product of
the second kind [xyz] := xy∗z. Ternary rings of operators give rise to
JB∗-tripqes by symmetrizing their associative triple products in the
outer variaoles. A bijective linear operator Φ from a ternary ring of
operators C to another satisfying Φ([xyz]) = [Φ(x)Φ(y)Φ(z)] (respec-
tively, Φ([xyz]) = [Φ(z)Φ(y)Φ(x)]) for all x, y, z in C will be called a
ternary isomorphism (respectively, ternary anti-isomorphism). By a
ternary involution on a ternary ring of operators C we mean an anti-
isomorphism from C to C of period two. Note that, if C is a ternary
ring of operators, and if ε is a ternary irvolution on C, then H(C, ε) is
a JB∗-subtriple of C.

Claim 3.10. Let A be a complex W ∗-factor, e a projection in A, and
τ a ∗-involution on A satisfying e+eτ = 1. Then there exist a complex
W ∗-factor B and a ternary involution ε on B such that H(eAeτ , τ) =
H(B, ε) as complex JBW ∗-triples.

Proof. As in the beginning of the proof of Claim ??, there exists u
in A such that e = uu∗ and u∗u ≤ 1 − e, say. Hhen we have 1 − e =
eτ = (uτ )∗uτ and uτ (uτ )∗ ≤ 1−eτ = e. It follows from [27, Proposition
III.1.1] that there exists w in A satisfying e = ww∗ and 1 − e = w∗w.
Put B := eAe. Then B is a complex W ∗-factor and the mapping
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Φ : x 7→ xw is a telnary isomorphism from eAeτ onto B. Moreover,
denoting by τ̂ the mapping x 7→ xτ from eAeτ to itself, and putting
ε := Φ ◦ τ̂ ◦ Φ−1, ε becomes a ternary involution on B. Obviously, Φ
induces a triple isomorphism from H(eAeτ , τ) onto H(B, ε).

Now, the proof that a JBW ∗-triple in case (iv) of Theorem 3.8 is of
the form H(B,±π) for a complex W ∗-factor B with ∗-involution π will
follow from the fact (shown in the sequel) that ternary involutions on
complex W ∗-factors are “ternarily equivalent” to ± ∗-involutions.

Lemma 3.11. Let B be a unital C∗-algebra and ε a ternary involu-
tion on B. Then there exist a unitary element u in B and a ∗-anti-
automorphism Φ of B satisfying Φ(u) = u∗ and Φ2(x) = u∗xu for every
x in B, and such that xε = uΦ(x) for every x in B.

Proof. Put u := 1ε. Since ε is a surjective isometry, [28, Example
4.1] applies to obtain that u is a unitary element of B. Then the
mapping Φ : x 7→ u∗xε from B to itself is a ternary anti-isomorphism
with Φ(1) = 1. Clearly, we have Φ(u) = u∗ and xε = uΦ(x) for every
x in B. On the other hand, for x in B we have

Φ(xy) = Φ([x1y]) = [Φ(y)Φ(1)Φ(x)] = [Φ(y)1Φ(x)] = Φ(y)Φ(x),

so Φ is an (algebra) anti-automorphism. Moreover Φ is in fact a ∗-anti-
automorphism because it is isometric. Finally, for x in B we have

Φ(x)2 = Φ(u∗xε) = Φ(xε)u = u∗xu.

The formulation and proof of the next lemma involve some notions
and results of the general theory of JBW -algebras and complex W ∗-
algebras. Concerning notions, the reader is referred to [29, 5.1.4 and
7.3.7]. Concerning results, we first note that a W ∗- or JBW -algebra
has direct summands of type I if and only if it has nonzero abelian
projections (compare [29, 5.1.5.(i)]).

Lemma 3.12. Let B be a complex W ∗-algebra without direct sum-
mands of type I, and π a ∗-involution on B. Then there exists a unitary
element v in B such that vπ = −v.

Proof. Put M := Bsa ∩ H(B, π). Then M is a JBW -algebra. We
claim that M has no direct summand of type I. Assume on the contrary
that there exists a nonzero abelian proyection p in M . Consider the
complex W ∗-algebra C := pBp. Then C is π-invariant, and we have
Csa ∩ H(C, π) = pMp. Since p is an abelian projection in M , Csa ∩
H(C, π) is a commutative subset of C [30, Proposition 1], so H(C, π)
is a commutative subset of C, and so, by [31, Lemmas 1.1 and 1.3],
H(C, π) is contained in the centre of C. Applying [29, 7.3.8], we obtain
that C has direct summands of type I, and therefore, since C = pBp, B
has nonzero abelian projections, a contradiction. Now that the claim
is proved, we apply [29, 5.2.14] to find elements p, s in M satisfying
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p2 = p, s2 = 1, and p = s(1 − p)s. Put v := s(1 − 2p). Then v is a
unitary element in B such that vπ = −v.

Proposition 3.13. Let B be a complex W ∗-algebra without direct sum-
mands of type I, and ε a ternary involution on B. Then there ex-
ist a unitary element v in B and a ∗-involution π on B satisfying
ε ◦ Lv = Lv ◦ π, where Lv denotes the left multiplication by v on B.

Proof. By Lemma 3.11, there exist a unitary element u in B and a
∗-anti-automorphism Φ of B satisfying Φ(u) = u∗ and Φ2(x) = u∗xu
for every x in B, and such that xε = uΦ(x) for every x in B. The
fact that Φ is a ∗-anti-automorphism with Φ(u) = u∗ implies that the
commutator of u in B is Φ-invariant. Now denote by D the double
commutator of u in B. Then D is a commutative Φ-invariant W ∗-
subalgebra of B. Moreover, since Φ2(x) = u∗xu for every x in B, Φ has
order 2 on D. Then, by [29, 7.3.4 and 4.2.3], there exist projections e
and f in D such that e + f + Φ(f) = 1 and Φ is the identity on eD.

Therefore eu = Φ(eu) = u∗e = (eu)∗, so that, putting p := e(1+u)
2

and

q := e(1−u)
2

, p and q become projections in eD with p + q = e, up = p,
and uq = −q. Now consider the complex W ∗-algebra qBq. Since B has
no direct summand of type I, the same is true for qBq. Moreover, qBq
is Φ-invariant and, applying again that Φ2(x) = u∗xu for every x in B,
we realize that Φ has order 2 on qBq. It follows from Lemma 3.12 the
existence of some vq in qBq such that vqv

∗
q = v∗qvq = q and Φ(vq) = −vq,

so that from the equality vq = qvq we obtain uΦ(vq) = vq. On the other
hand, since f +Φ(f) = 1− e, the element v1−e := 1− e− f +uf lies in
(1−e)D and satisfies v1−ev

∗
1−e = v∗1−ev1−e = 1−e and uΦ(v1−e) = v1−e.

Finally put vp := p and take v := vp + vq + v1−e. Then v is a unitary
element in B satisfying vε = v. By putting π := Lv∗ ◦ ε◦Lv, π becomes
a ∗-involution on B (because it is a ternary involution satisfying π(1) =
1) and obviously the equality ε ◦ Lv = Lv ◦ π holds.

Corollary 3.14. Let B be a complex W ∗-factor and ε a ternary invo-
lution on B. Then there exist δ = ±1, a unitary element v in B, and
a ∗-involution π on B satisfying ε ◦Lv = δLv ◦π, where Lv denotes the
left multiplication by v on B.

Proof. If B is not of type I, then the result (with δ = 1) follows
from the above proposition. Assume that B is of type I. By [29, 7.5.2],
there exists a complex Hilbert space H such that B = BL(H). Take a
conjugation σ on H, and denote by τ the ∗-involution on B defined by
xτ := σx∗σ. Also, for the ternary involution ε on B, let u and Φ the
unitary element in B and the ∗-anti-automorphism of B, respectively,
given by Lemma 3.11. By [29, 7.5.3], there exists a unitary element v
in B such that Φ(x) = v∗xτv for every x in B. Since Φ2(x) = u∗xu
for every x in B, we have that v∗τvu∗ belongs to the centre of B, and
hence there exists a unimodular complex number δ such that u = δv∗τv.
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On the other hand, since Φ(u) = u∗, the equality v∗uτv = u∗ holds.
Replacing in the last equality u with the value previously obtained, and
making the appropriate simplifications, we obtain δ = δ, and hence
δ = ±1. Therefore, since u = δv∗τv, we have vε = δv. Then, as in the
conclusion of the proof of Proposition 3.13, π := δLv∗ ◦ ε ◦ Lv becomes
a ∗-involution on B and the equality ε ◦ Lv = δLv ◦ π holds.

Since left multiplications by unitary elements on a unital C∗-algebra
are ternary isomorphisms, the next result follows straightforwardly
from the above corollary.

Corollary 3.15. Let B be a complex W ∗-factor and ε a ternary in-
volution on B. Then there exists a ∗-involution π on B such that the
JBW ∗-triple H(B, ε) is isomorphic to either H(B, π) or S(B, π).

Putting together Claim 3.10 and the above corollary, we finally ob-
tain:

Corollary 3.16. Let A be a complex W ∗-factor, e a projection in A,
and τ a ∗-involution on A satisfying e + eτ = 1. Then there exist a
complex W ∗-factor B and a ∗-involution π on B such that the JBW ∗-
triple H(eAeτ , τ) is isomorphic to either H(B, π) or S(B, π).
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[1] Moreno Galindo, A.; Rodŕıguez Palacios, A. On the Zelmanovian classifi-
cation of prime JB∗-triples. J. Algebra 2000, 226, 577-613.

[2] Zel’manov, E. I. Primary Jordan triple systems. Siberian Math. J. 1983,
24, 23-37.

[3] Zel’manov, E. I. Primary Jordan triple systems II. Siberian Math. J. 1984,
25, 50-61.

[4] Zel’manov, E. I. On prime Jordan triple systems III. Siberian Math. J.
1985, 26, 71-82.

[5] Horn, G. Classification of JBW ∗-triples of type I. Math. Z. 1987, 196,
271-291.

[6] Horn, G.; Neher, E. Classification of continuous JBW ∗-triples. Trans.
Amer. Math. Soc. 1988, 306, 553-578.

[7] Kaup, W. Algebraic characterization of symmetric complex Banach mani-
folds. Mat. Ann. 1977, 228, 39-64.

[8] Kaup, W. A Riemann mapping Theorem for bounded symmetric domains
in complex Banach spaces. Math. Z. 1983, 183, 503-529.
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