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Abstract. Let A be an absolute valued algebra with involution, in
the sense of [9]. We prove that A is finite-dimensional if and only if the
algebra obtained by symmetrizing the product of A is simple, if and only
if eAs = As, where e denotes the unique nonzero self-adjoint idempotent
of A, and As stands for the set of all skew elements of A. We determine
the idempotents of A, and show that A is the linear hull of the set of its
idempotents if and only if A is equal to either McClay’s algebra [1], the
para-quaternion algebra, or the para-octonion algebra. We also prove
that, if A is infinite-dimensional, then it can be enlarged to an absolute
valued algebra with involution having a nonzero idempotent different
from the unique nonzero self-adjoint idempotent.

1. Introduction

In this paper we deal with absolute valued algebras with involution, as
defined in Urbanik’s early paper [9]. By a normed (respectively, absolute
valued) algebra we mean a (possibly nonassociative) real or complex algebra
A 6= 0 endowed with a norm ‖ · ‖ satisfying ‖xy‖ ≤ ‖x‖‖y‖ (respectively,
‖xy‖ = ‖x‖‖y‖) for all x, y ∈ A. By an absolute valued algebra with involu-
tion we mean an absolute valued algebra A over the field R of real numbers,
endowed with a mapping x→ x∗ from A to A (called the “involution” of A)
satisfying:

(i) (α x+ β y)∗ = αx∗ + βy∗

(ii) x∗∗ = x
(iii) xx∗ = x∗x
(iv) (xy)∗ = y∗x∗

(v) ‖x∗‖ = ‖x‖
for all x, y ∈ A and α, β ∈ R.
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Given an absolute valued algebra with involution A, we denote by Aa

the set of all self-adjoint elements of A, i.e.,

Aa := {x ∈ A : x∗ = x},
and by As the set of all skew elements of A, i.e.,

As := {x ∈ A : x∗ = −x}.
Obviously, we have A = Aa ⊕ As, as a direct sum of subspaces. We will
assume that the involution of A is non trivial, i.e.,

(vi) As 6= 0.
Examples of absolute valued algebras with involution are C (the field of

complex numbers), H (the algebra of Hamilton’s quaternions), and D (the
algebra of Cayley numbers), endowed with their standard involutions. For A
equal to either C, H, or D, let us denote by

∗
A the absolute-valued real algebra

obtained by endowing the normed space of A with the product x�y := x∗y∗,
where ∗ means the standard involution. Since ∗ remains an involution on
∗
A, we are provided with new examples of absolute valued algebras with
involution. The reader is referred to [9] for examples of infinite-dimensional
absolute valued algebras with involution, to [6] for a classification of finite-
dimensional absolute valued algebras with involution, and to the survey
paper [8] for a general view of the theory of absolute valued algebras.

Let A be an absolute valued algebra with involution. We prove that
A is finite-dimensional if and only if the algebra obtained by replacing the
product of A with the one ◦ defined by x◦y := xy+yx

2 is simple (Theorem 2.2).
Theorem 2.2 also asserts that A is finite-dimensional if and only if eAs = As,
where e is the unique nonzero self-adjoint idempotent of A (the existence of
which was proved in [9]). We determine the idempotents of A (Proposition
2.3), and show that A is the linear hull of the set of its idempotents if and

only if A is equal to
∗
C,

∗
H, or

∗
D with the standard involution (Theorem 2.5).

Finally, we prove that, if A is infinite-dimensional, then it can be enlarged
to an absolute valued algebra with involution having a nonzero idempotent
different from the unique nonzero self-adjoint idempotent (Theorem 2.7).

As a discussion of the results just reviewed, we provide the reader with
examples of simple infinite-dimensional absolute valued algebras with invo-
lution (Example 3.4), and of infinite-dimensional absolute valued algebras
with involution having no nonzero idempotent different from their unique
nonzero self-adjoint idempotent (Example 3.8).

2. The results

Throughout this section, A will denote an absolute valued algebra with
a non trivial involution ∗. According to [9], there exists a distinguished
element e ∈ A satisfying xx∗ = ‖x‖2e for every x ∈ A, the absolute value
of A derives from an inner product (which will be denoted by < ·, · >), Aa is
orthogonal to As with respect to < ·, · >, and elements of Aa commute with
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those of As. Clearly, the element e above is the unique nonzero self-adjoint
idempotent of A. We put B := Re⊕As, and we note that B is a subalgebra
of A (see [3]) and that, clearly, the idempotent e is central in B (in the sense
that it commutes with every element of B).

Lemma 2.1. x2 belongs to B whenever x is an arbitrary element of A.
Therefore B contains all the idempotents of A.

Proof. Write x = y + z with y ∈ Aa and z ∈ As. Since AaAs ⊆ As

(because elements of Aa commute with those of As), we have

x2 = (‖y‖2 − ‖z‖2)e+ 2yz ∈ Re+As = B.

Let E be an arbitrary algebra. We denote by E2 the linear hull of the
set {xy : x, y ∈ E}, and note that E2 is an ideal of E. We say that E is
simple if E2 6= 0 and every nonzero ideal of E is equal to E. By E+ we mean
the algebra consisting of the vector space of E and the product ◦ defined by

x ◦ y :=
xy + yx

2
.

It follows from the equalities x ◦ x = x2 and

(2.1) x ◦ y =
(x+ y)2 − (x− y)2

4
that (E+)2 coincides with the linear hull of the set {x2 : x ∈ E}. Now
assume that the algebra E is normed. We say that E is topologically simple
if E2 6= 0 and every nonzero ideal of E is dense in E, and we note that E+

becomes naturally a normed algebra under the norm of E.

Theorem 2.2. The following conditions are equivalent:
(1) A+ is simple.
(2) (A+)2 = A (as sets).
(3) As = eAs.
(4) A+ is topologically simple.
(5) (A+)2 is dense in A.
(6) eAs is dense in As.
(7) A is finite dimensional.

Proof. The implications (1) ⇒ (2) ⇒ (5), (1) ⇒ (4) ⇒ (5), and
(3) ⇒ (6) are clear.

(5) ⇒ (6).- For α, β ∈ R and x, y ∈ As we have the equality

(αe+ x) ◦ (βe+ y) = αβe+ x ◦ y + e(αy + βx),

which with the help of (2.1) gives

(2.2) (αe+ x) ◦ (βe+ y) = (αβ− < x, y >)e+ e(αy + βx).

On the other hand, since B is closed in A, it follows from the assump-
tion (5) and lemma 2.1 that A = B. Let x be in As, and let ε > 0. Since



4 M. L. El-Mallah, H. Elgendy, A. Rochdi, and A. Rodŕıguez

A = B, the assumption (5) gives that there exist α1, ..., αn, β1, ..., βn ∈ R
and x1, ...xn, y1, ..., yn ∈ As such that ‖

∑n
i=1(αie+ xi) ◦ (βie+ yi)− x‖ < ε.

Put z := e
∑n

i=1(αiyi + βixi). Then z belongs to eAs, and, applying (2.2),
we have

‖z − x‖ ≤

√√√√[
n∑

i=1

(αiβi− < xi, yi >)]2 + ‖z − x‖2

= ‖[
n∑

i=1

(αiβi− < xi, yi >)]e+ z − x‖

= ‖
n∑

i=1

[(αiβi− < xi, yi >)e+ e(αiyi + βixi)]− x‖

= ‖
n∑

i=1

(αie+ xi) ◦ (βie+ yi)− x‖ < ε.

(6) ⇒ (7).- Since B = Re+As and eB = Re+ eAs, the assumption (6)
gives that eB is dense in B. But, since e is central in B, we have also that Be
is dense in B. Therefore, by Proposition 1.2 of [5], B is finite-dimensional.
But then, by Lemma 3.2 of [3], we have A = B.

(7) ⇒ (1).- Since e ◦ e = e, we have (A+)2 6= 0. Let M be a nonzero
ideal of A+. Taking a norm-one element y ∈ M , we have e = y∗ ◦ y ∈ M .
On the other hand, as consequences of the assumption (7) we have that the
mapping Le : x→ ex from A to A is surjective, and that A = B (by Lemma
3.2 of [3]). Since this last fact implies that e is central in A, it follows
A = Le(A) = eA = A ◦ e ⊆M .

(7) ⇒ (3).- As above, the assumption (7) implies that the operator Le

is surjective and that A = B. Then, since Le is diagonal relative to the
decomposition A = Re⊕As, it follows eAs = Le(As) = As.

As we will see in Example 3.4 below, the simplicity of A is not enough
to assure that A is finite-dimensional. Anyway, if A is simple (or merely
topologically simple), then we have A = B. This is so because, in any case,
the closed subalgebra B contains A2 [2], and hence is an ideal of A.

From now on, we denote by I(A) the set of all nonzero idempotents of A,
and by As(−1) the subspace of As defined by

As(−1) := {x ∈ As : ex = xe = −x}.

Proposition 2.3.

I(A) = {e} ∪ {−e+
√

3z
2

: z ∈ As(−1), ‖z‖ = 1}.

Therefore, I(A) reduces to {e} if and only if the space As(−1) is equal to
zero.
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Proof. The inclusion

I(A) ⊃ {e} ∪ {−e+
√

3z
2

: z ∈ As(−1), ‖z‖ = 1}

is of straightforward verification. To see the converse inclusion, let p be in
I(A). By Lemma 2.1 we have p = αe + x for suitable α ∈ R and x ∈ As.
Since

αe+ x = (αe+ x)2 = (α2 − ‖x‖2)e+ 2αex,
we deduce

(2.3) α2 − ‖x‖2 = α

and

(2.4) 2αex = x.

On the other hand, we have

(2.5) 1 = ‖p‖2 = α2 + ‖x‖2.

From (2.3) and (2.5) we obtain 2α2 − α − 1 = 0, i.e., α = 1 or −1
2 .

If α = 1, then x = 0 (by (2.5)), and hence p = e. If α = −1
2 , then

x ∈ As(−1) (by (2.4)) and ‖x‖ =
√

3
2 (by (2.5)), and therefore p = −e+

√
3z

2

with z := 2√
3
x ∈ As(−1) and ‖z‖ = 1.

The following corollary follows straightforwardly from Proposition 2.3.

Corollary 2.4. Let p be in I(A)\{e}. Then the linear hull of {e, p} is

a ∗-invariant subalgebra of A isomorphic to
∗
C with the standard involution.

Theorem 2.5. The following conditions are equivalent:
(1) The linear hull of I(A) is equal to A.
(2) The linear hull of I(A) is dense in A.

(3) A is equal to
∗
C,

∗
H, or

∗
D with the standard involution.

Proof. (1) ⇒ (2).- This is clear.
(2) ⇒ (3).- It follows from Proposition 2.3 that ep = pe = p∗ for every

p ∈ I(A). Therefore the set

{x ∈ A : ex = xe = x∗}
is a closed subspace of A containing I(A). Then, from the assumption (2)
we derive that ex = xe = x∗ for every x ∈ A. In this way, e becomes a unit
for the absolute valued algebra (say E) obtained by replacing the product
of A with the one � defined by x�y = x∗y∗. By Theorem 1 of [10], E must
be equal to A, where A stands for R, C, H, or D. Now note that, since the
involution ∗ of A is non trivial, the case E = R cannot really happen, and
that, since A is the orthogonal sum of Re and As (by the assumption (2)
and Lemma 2.1), ∗ becomes the standard involution on A. It follows that

A =
∗
A, where now A stands for C, H, or D.



6 M. L. El-Mallah, H. Elgendy, A. Rochdi, and A. Rodŕıguez

(3) ⇒ (1).- The assumption (3) implies that A = Re ⊕ As and that
As(−1) = As. These facts, together with Proposition 2.3 lead easily to (1).

Remark 2.6. If in Theorem 2.5 we avoid the environmental requirement
that the involution ∗ ofA is non trivial, then, in assertion (3) of that theorem,

two new algebras must be added, namely R and
∗
C, both endowed with the

identity operator as involution. Indeed, when ∗ is trivial, A is commutative
and Theorem 3 of [10] applies.

The proof of our next result will involve some elementary facts of the
theory of normed ultrapowers [4], a summary of which is provided in the
sequel. Let I be a non-empty set, let U be an ultrafilter on I, and let X be
a normed space. We may consider the vector space `∞(I,X) of all bounded
functions i→ xi from I to X endowed with the norm

‖{xi}‖ := sup{‖xi‖ : i ∈ I},
and the closed subspace NU of `∞(I,X) given by

NU := {{xi} ∈ `∞(I,X) : lim
U
‖xi‖ = 0}.

The normed ultrapower of X relative to the ultrafilter U is defined as the
quotient normed space `∞(I,X)/NU , and is denoted by XU . If we denote
by (xi) the element in XU containing a given element {xi} ∈ `∞(I,X), then
it is easy to verify that

(2.6) ‖(xi)‖ = lim
U
‖xi‖.

The normed space X will be canonically regarded as a subspace of XU
through the isometric linear embedding x → {xi}, where xi = x for every
i ∈ I. If X is in fact a normed algebra, then the normed space XU becomes
naturally a new normed algebra under the (well-defined) product

(xi)(yi) := (xiyi),

so that XU contains X as a subalgebra. It follows from (2.6) that, if X is
an absolute valued algebra, then so is XU . Moreover, if the absolute valued
algebra X has an involution ∗, then the (well-defined) mapping

{xi} → {xi}∗ := {x∗i }
becomes an involution on XU extending that of X.

Theorem 2.7. Assume that A is infinite-dimensional. Then there exists
an absolute valued algebra with involution, containing A as a ∗-invariant
subalgebra, and having a nonzero idempotent different from e.

Proof. The assumption that A is infinite-dimensional, together with
Theorem 2.2, gives that the range of the linear isometry x→ −ex from As

to As is not dense in As. Therefore, by Lemma 4.1 of [5], there exists a
sequence {xn} of norm-one elements of As such that {exn + xn} → 0. Now
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take an ultrafilter U on the set N of all natural numbers, containing the
filter of all cofinite subsets of N, consider the absolute valued algebra with
involution AU , and put z := (xn) ∈ (AU )s. Then, since limU ‖exn +xn‖ = 0,
we have ez = −z, i.e., z belongs to (AU )s(−1). Since ‖z‖ = 1 (by 2.6),
it follows from Proposition 2.3 that −e+

√
3z

2 is a nonzero idempotent of AU
different from e.

3. Discussing the results

Examples 3.1 and 3.4 below are related to Theorem 2.2.

Example 3.1. There exists a finite-dimensional absolute valued real al-
gebra A such that (A+)2 6= A. Thus, such an algebra A fulfills condition (7)
in theorem 2.2, but fails to conditions (1), (2), (4), and (5) in that theorem.
Indeed, take A = A∗, where A stands for either C, H, or D, and A∗ denotes
the absolute-valued real algebra obtained by endowing the normed space of
A with the product x�y := xy∗ (of course, ∗ means the standard involution
of A). In this case we have (A+)2 = Re, where e is the unit of A.

For the next example, we need the following proposition and lemma.

Proposition 3.2 ([9]). Let U be an infinite set, let T be a nonempty
subset of U such that #(U \ T ) = #U (where # means cardinal number),
let φ be an injective function from the family of all binary subsets of U to
U whose range does not intersect T , and let

ψ : (U × U) \ {(u, u) : u ∈ U} → {1,−1}
be a function satisfying ψ(u, v) + ψ(v, u) = 0 whenever

(u, v) ∈ (T × T ) ∪ ((U \ T )× (U \ T )),

and ψ(u, v) = 1 otherwise. For u ∈ U , put ε(u) := ±1 depending on whether
or not u belongs to T , and fix u0 ∈ T . Then the real Hilbert space with
orthonormal basis {xu}u∈U (endowed with a suitable product and a suitable
involution) becomes an absolute valued algebra with involution satisfying for
u, v ∈ U the following relations:

(1) xuxv = ψ(u, v)xφ({u,v}) if u 6= v.
(2) x2

u = ε(u)xu0.
(3) x∗u = ε(u)xu.

Lemma 3.3. Let E be an absolute valued algebra with involution con-
taining a dense ∗-invariant simple subalgebra F . Then E is topologically
simple.

Proof. Let e denote the unique nonzero self-adjoint idempotent of E.
Let M be a nonzero ideal of E. Taking a norm-one element x ∈ F (respec-
tively, y ∈M), we have e = xx∗ ∈ F (respectively, e = yy∗ ∈M). Therefore
e ∈ F ∩M , and hence F ∩M 6= 0. Since F ∩M is an ideal of F , and F is
simple, it follows F ∩M = F , so F ⊆M , and so M is dense in E.
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Example 3.4. There exists a simple infinite-dimensional non complete
absolute valued algebra with involution, and a topologically simple infinite-
dimensional complete absolute valued algebra with involution.

Proof. Let S denote the family of all binary subsets of N, and consider
the enumeration of S given by

{1, 2}, {1, 3}, {2, 3}, {1, 4}, {2, 4}, {3, 4}, {1, 5}, {2, 5}, {3, 5}, {4, 5}, ...

Such an enumeration provides us with a bijective mapping φ : S → N \ {1}
defined by

φ({1, 2}) = 2, φ({1, 3}) = 3, φ({2, 3}) = 4, φ({1, 4}) = 5, φ({2, 4}) = 6,

φ({3, 4}) = 7, φ({1, 5}) = 8, φ({2, 5}) = 9, φ({3, 5}) = 10, φ({4, 5}) = 11,

and so on. Thus, we realize that, for k, l ∈ N with k < l, we have

(3.1) k < φ({k, l}).

Now, let ψ be the mapping from (N × N) \ {(n, n) : n ∈ N} to {1,−1}
defined by ψ(n,m) = ±1 depending on whether or not n < m, and let
ε be the mapping from N to {1,−1} defined by ε(n) = ±1 depending on
whether or not n = 1. According to Proposition 3.2, the real Hilbert space
H with orthonormal basis {xn}n∈N becomes an absolute valued algebra with
involution satisfying

(3.2) xnxm = ψ(n,m)xφ({n,m})

(3.3) x2
n = ε(n)x1

(3.4) x∗n = ε(n)xn

whenever n and m are in N with n 6= m. Let A be the linear hull in H of the
set {xn : n ∈ N}. By (3.2), (3.3), and (3.4), A is a ∗-invariant subalgebra
of H, and hence an absolute valued algebra with involution. We are going
to show that A is simple. Let M be a nonzero ideal of A. Since x1 is the
unique nonzero self-adjoint idempotent of A (by (3.3) and (3.4)), taking a
norm-one element y ∈M we have

(3.5) x1 = yy∗ ∈M.

Now, arguing by induction on n, we prove that xn ∈ M for any n ∈ N.
This is true for n = 1 by (3.5), and if n > 1 and xk ∈ M for any k < n,
then n = Φ({k, l}) for some k < l, and also k < n by (3.1). Hence (3.2)
shows that xn = xkxl ∈ M . Therefore M = A (since A is the linear hull of
{xn : n ∈ N}). Since M is an arbitrary nonzero ideal of A, the proof of the
simplicity of A is concluded. Applying Lemma 3.3, we obtain that H is a
topologically simple absolute valued algebra with involution.
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Remark 3.5. The infinite-dimensional non complete absolute valued
algebra A with involution, shown in Example 3.4, is “more than simple”.
Indeed, looking at the above proof, we realize that every nonzero right ideal
of A is equal to A. Since the involution of A is an anti-automorphism, we
have in addition that every nonzero left ideal of A is equal to A. Analogously,
the infinite-dimensional complete absolute valued algebraH with involution,
shown also in Example 3.4, is “more than topologically simple”. Indeed,
every nonzero one-sided ideal of H is dense in H.

After Theorem 2.2 and Example 3.4, the following problems arise in a
natural way.

Problem 3.6. Is there a simple infinite-dimensional complete absolute
valued algebra with involution?

Problem 3.7. Is there an infinite-dimensional absolute valued real al-
gebra A such that (A+)2 is simple?

In relation to the above problems, it is worth mentioning that the exis-
tence of simple infinite-dimensional complete absolute valued real algebras is
well-known. Indeed, every infinite-dimensional real Hilbert space becomes a
left-division absolute-valued algebra under a suitable product [7]. We recall
that an algebra A is said to be a left- (respectively, right-) division alge-
bra if, for every nonzero element x ∈ A, the operator of left (respectively,
right) multiplication by x is bijective, and we note that one-sided division
algebras are simple. The infinite-dimensional examples of [7] quoted above
cannot solve Problem 3.6 by the affirmative. For, if a left-division abso-
lute valued real algebra A has an involution, then, since involutions are
anti-automorphisms, A is also a right division algebra, and hence finite-
dimensional (by Wrigth’s celebrated theorem [11]). We do not know if,
among the examples of [7], we can find one answering affirmatively Problem
3.7.

We conclude the paper with an example related to Theorem 2.7.

Example 3.8. There exists an infinite-dimensional complete absolute
valued algebra A with involution, such that there is no nonzero idempotent
in A different from the unique nonzero self-adjoint idempotent of A.

Proof. Let S denote the family of all binary subsets of N, let
φ : S → N \ {1} be any injective mapping satisfying φ({1, n}) = 2n − 1
for every n ∈ N \ {1}, let ψ be the mapping from (N×N) \ {(n, n) : n ∈ N}
to {1,−1} defined by ψ(n,m) = ±1 depending on whether or not n < m,
and let ε be the mapping from N to {1,−1} defined by ε(n) = ±1 depend-
ing on whether or not n = 1. Apply Proposition 3.2 to convert the real
Hilbert space A with orthonormal basis {xn}n∈N into an absolute valued
algebra with involution satisfying xnxm = ψ(n,m)xφ({n,m}), x2

n = ε(n)x1,
and x∗n = ε(n)xn whenever n and m are in N with n 6= m. Then one easily
realizes that x1 is the unique nonzero self-adjoint idempotent of A, that As



10 M. L. El-Mallah, H. Elgendy, A. Rochdi, and A. Rodŕıguez

is the closed linear hull of {xn : n ∈ N \ {1}}, and then that As(−1) = 0.
Applying Proposition 2.3, we deduce that there is no nonzero idempotent
in A different from x1.
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