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ABSTRACT. Let A be an absolute valued algebra with involution, in
the sense of [9]. We prove that A is finite-dimensional if and only if the
algebra obtained by symmetrizing the product of A is simple, if and only
if eAs = A, where e denotes the unique nonzero self-adjoint idempotent
of A, and A; stands for the set of all skew elements of A. We determine
the idempotents of A, and show that A is the linear hull of the set of its
idempotents if and only if A is equal to either McClay’s algebra [1], the
para-quaternion algebra, or the para-octonion algebra. We also prove
that, if A is infinite-dimensional, then it can be enlarged to an absolute
valued algebra with involution having a nonzero idempotent different
from the unique nonzero self-adjoint idempotent.

1. Introduction

In this paper we deal with absolute valued algebras with involution, as
defined in Urbanik’s early paper [9]. By a normed (respectively, absolute
valued) algebra we mean a (possibly nonassociative) real or complex algebra
A # 0 endowed with a norm || - || satisfying ||zy| < ||z|||ly|| (respectively,
llzyll = ||z||l|y||) for all z,y € A. By an absolute valued algebra with involu-
tion we mean an absolute valued algebra A over the field R of real numbers,
endowed with a mapping z — z* from A to A (called the “involution” of A)
satisfying:

(i) (a z+By)" =az”+ By"
(i) o™ ==
(iii) zz* = 2™z
(iv) (xy)" = y's"
(v) [ = {l]

for all x,y € A and «, 8 € R.
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Given an absolute valued algebra with involution A, we denote by A,
the set of all self-adjoint elements of A4, i.e.,

Ay ={r € A: 2" ==z},
and by A, the set of all skew elements of A, i.e.,
As={r e A: 2" = —z}.

Obviously, we have A = A, & As, as a direct sum of subspaces. We will
assume that the involution of A is non trivial, i.e.,

(vi) As #0.
Examples of absolute valued algebras with involution are C (the field of

complex numbers), H (the algebra of Hamilton’s quaternions), and I (the
algebra of Cayley numbers), endowed with their standard involutions. For A

equal to either C, H, or D, let us denote by 1*& the absolute-valued real algebra
obtained by endowing the normed space of A with the product x®y := z*y*,
\;vhere * means the standard involution. Since % remains an involution on
A, we are provided with new examples of absolute valued algebras with
involution. The reader is referred to [9] for examples of infinite-dimensional
absolute valued algebras with involution, to [6] for a classification of finite-
dimensional absolute valued algebras with involution, and to the survey
paper [8] for a general view of the theory of absolute valued algebras.

Let A be an absolute valued algebra with involution. We prove that
A is finite-dimensional if and only if the algebra obtained by replacing the
product of A with the one o defined by zoy := 4T is simple (Theorem 2.2).
Theorem 2.2 also asserts that A is finite-dimensional if and only if eA; = A,
where e is the unique nonzero self-adjoint idempotent of A (the existence of
which was proved in [9]). We determine the idempotents of A (Proposition
2.3), and show that A is the linear hull of the set of its idempotents if and

only if A is equal to (&, ﬁ, or ]B) with the standard involution (Theorem 2.5).
Finally, we prove that, if A is infinite-dimensional, then it can be enlarged
to an absolute valued algebra with involution having a nonzero idempotent
different from the unique nonzero self-adjoint idempotent (Theorem 2.7).

As a discussion of the results just reviewed, we provide the reader with
examples of simple infinite-dimensional absolute valued algebras with invo-
lution (Example 3.4), and of infinite-dimensional absolute valued algebras
with involution having no nonzero idempotent different from their unique
nonzero self-adjoint idempotent (Example 3.8).

2. The results

Throughout this section, A will denote an absolute valued algebra with
a non trivial involution *. According to [9], there exists a distinguished
element e € A satisfying zo* = ||z||%e for every x € A, the absolute value
of A derives from an inner product (which will be denoted by < -, - >), A, is
orthogonal to Ag with respect to < -,- >, and elements of 4, commute with
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those of A,. Clearly, the element e above is the unique nonzero self-adjoint
idempotent of A. We put B := Re® A, and we note that B is a subalgebra
of A (see [3]) and that, clearly, the idempotent e is central in B (in the sense
that it commutes with every element of B).

LEMMA 2.1. 22 belongs to B whenever x is an arbitrary element of A.
Therefore B contains all the idempotents of A.

PROOF. Write z = y + z with y € A, and z € A;. Since AAs C A,
(because elements of A, commute with those of A;), we have

z® = (lyl* = ll2*)e + 2yz € Re + A, = B.

Let E be an arbitrary algebra. We denote by E? the linear hull of the
set {zy : z,y € E}, and note that E? is an ideal of E. We say that E is
simple if E? # 0 and every nonzero ideal of E is equal to E. By ET we mean
the algebra consisting of the vector space of E and the product o defined by
Ty + yx

5
It follows from the equalities z o = 22 and
(z+y)* = (z—y)°

4
that (E1)? coincides with the linear hull of the set {2% : x € E}. Now
assume that the algebra E is normed. We say that E is topologically simple
if E? # 0 and every nonzero ideal of E is dense in E, and we note that £+
becomes naturally a normed algebra under the norm of FE.

Toy:=

(2.1) Txoy=

THEOREM 2.2. The following conditions are equivalent:
(1) A* is simple.
(2) (AT)2 = A (as sets).
(3) As = eAs.
(4) AT is topologically simple.
(5) (A*)? is dense in A.
(6) eAs is dense in As.
(7) A is finite dimensional.

PrOOF. The implications (1) = (2) = (5), (1) = (4) = (5), and
(3) = (6) are clear.
(5) = (6).- For o, 8 € R and x,y € A5 we have the equality

(ae+z) o (Be +y) = afe+z oy +e(ay + fz),
which with the help of (2.1) gives
(2:2) (ae+ )0 (fe+y) = (af— <,y >)e+ e(ay + fz).

On the other hand, since B is closed in A, it follows from the assump-
tion (5) and lemma 2.1 that A = B. Let x be in A, and let € > 0. Since
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A = B, the assumption (5) gives that there exist aq,...,an, 01, ....,0, € R
and 1, ...2n, Y1, ..., Yn € As such that || D7 | (e + ;) o (Bie+y;) — 2| < e.
Put z:=e) " | (aqy; + Biz;). Then z belongs to eA, and, applying (2.2),
we have

n

Iz — 2 < (| D (iBi— < mi,yi >)2 + ||z — 2
=1

n
= 1D (uiBi— < zi,yi >)le+ 2 — x
i=1
n

=l Z[(azﬂi— < i,y >)e +e(ay; + Biwi)| — ]

=1
n
= || Z(Oéie +zi) o (Bie +yi) —z|| <e.
=1

(6) = (7).- Since B = Re + A; and eB = Re + eAg, the assumption (6)
gives that eB is dense in B. But, since e is central in B, we have also that Be
is dense in B. Therefore, by Proposition 1.2 of [5], B is finite-dimensional.
But then, by Lemma 3.2 of [3], we have A = B.

(7) = (1).- Since eo e = e, we have (AT)? # 0. Let M be a nonzero
ideal of AT. Taking a norm-one element y € M, we have e = y* oy € M.
On the other hand, as consequences of the assumption (7) we have that the
mapping L. : ¢ — ex from A to A is surjective, and that A = B (by Lemma
3.2 of [3]). Since this last fact implies that e is central in A, it follows
A=L.(A)=eA=AoeC M.

(7) = (3).- As above, the assumption (7) implies that the operator L.
is surjective and that A = B. Then, since L. is diagonal relative to the
decomposition A = Re @ Ay, it follows eAs = L(As) = As. =

As we will see in Example 3.4 below, the simplicity of A is not enough
to assure that A is finite-dimensional. Anyway, if A is simple (or merely
topologically simple), then we have A = B. This is so because, in any case,
the closed subalgebra B contains A2 [2], and hence is an ideal of A.

From now on, we denote by I(A) the set of all nonzero idempotents of A,
and by Ag(—1) the subspace of A4 defined by

As(—1) :={z € As : ex = ze = —z}.

PROPOSITION 2.3.
—e + \/gz

1(4) = {e} U {—

Therefore, 1(A) reduces to {e} if and only if the space As(—1) is equal to
zero.

tz € Ag(—1), ||z]| = 1}.
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Proor. The inclusion

—e+ \/gz
1(4) 5 (U {EYE e ) 2 = 1)
is of straightforward verification. To see the converse inclusion, let p be in
I(A). By Lemma 2.1 we have p = ae + z for suitable o € R and z € A;.
Since

ae+ 1z = (ae+ )% = (a® — ||z]|*)e + 2aex,

we deduce

(2.3) R P

and

(2.4) 2aer = x.

On the other hand, we have

(2.5) 1= |lp]2 = a2 + |Jo]?.

From (2.3) and (2.5) we obtain 20> —a — 1 = 0, ie, a = 1 or —3.
If « = 1, then z = 0 (by (2.5)), and hence p = e. If @ = —3, then

x € As(—1) (by (2.4)) and ||z| = @ (by (2.5)), and therefore p = %‘/gz
with z := %:{: € Ag(—1)and ||z =1. =
The following corollary follows straightforwardly from Proposition 2.3.

COROLLARY 2.4. Let p be in I(A)\{e}. Then the linear hull of {e,p} is

*
a x-invariant subalgebra of A isomorphic to C with the standard involution.

THEOREM 2.5. The following conditions are equivalent:

(1) The linear hull of I(A) is equal to A.
(2) The linear hull of I(A) is dense in A.

(3) A is equal to &, }ﬁl, or ]]5) with the standard involution.

PROOF. (1) = (2).- This is clear.
(2) = (3).- It follows from Proposition 2.3 that ep = pe = p* for every
p € I(A). Therefore the set

{reA:ex=ne=2a"}

is a closed subspace of A containing I(A). Then, from the assumption (2)
we derive that ex = xe = z* for every x € A. In this way, e becomes a unit
for the absolute valued algebra (say E) obtained by replacing the product
of A with the one ® defined by z ®y = z*y*. By Theorem 1 of [10], E' must
be equal to A, where A stands for R, C, H, or D. Now note that, since the
involution * of A is non trivial, the case ¥ = R cannot really happen, and
that, since A is the orthogonal sum of Re and A, (by the assumption (2)
and Lemma 2.1), * becomes the standard involution on A. It follows that

A :A, where now A stands for C, H, or D.
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(3) = (1).- The assumption (3) implies that A = Re @& As and that
As(—1) = As. These facts, together with Proposition 2.3 lead easily to (1).

REMARK 2.6. If in Theorem 2.5 we avoid the environmental requirement
that the involution x of A is non trivial, then, in assertion (3) of that theorem,

*
two new algebras must be added, namely R and C, both endowed with the
identity operator as involution. Indeed, when * is trivial, A is commutative
and Theorem 3 of [10] applies.

The proof of our next result will involve some elementary facts of the
theory of normed ultrapowers [4], a summary of which is provided in the
sequel. Let I be a non-empty set, let U be an ultrafilter on I, and let X be
a normed space. We may consider the vector space ¢, (I, X) of all bounded
functions 7 — z; from I to X endowed with the norm

[{@i}| == sup{l|z:] - i € I},
and the closed subspace Ny of ¢o (I, X) given by
Ny = {{z;} € loo(I, X) : liLI[n ||z || = 0}.

The normed ultrapower of X relative to the ultrafilter U is defined as the
quotient normed space {0 (I, X)/Ny, and is denoted by Xy. If we denote
by (z;) the element in X7 containing a given element {x;} € ¢ (I, X), then
it is easy to verify that

(2.6) (o)l = Litn fl].

The normed space X will be canonically regarded as a subspace of Xy
through the isometric linear embedding * — {x;}, where x; = z for every
i1 € 1. If X is in fact a normed algebra, then the normed space X;; becomes
naturally a new normed algebra under the (well-defined) product

(@i) (i) = (ziyi),
so that X;; contains X as a subalgebra. It follows from (2.6) that, if X is

an absolute valued algebra, then so is Xi;. Moreover, if the absolute valued
algebra X has an involution *, then the (well-defined) mapping

{zi} = {wi}" = {27}
becomes an involution on X;; extending that of X.

THEOREM 2.7. Assume that A is infinite-dimensional. Then there exists
an absolute valued algebra with involution, containing A as a *-invariant
subalgebra, and having a nonzero idempotent different from e.

PrOOF. The assumption that A is infinite-dimensional, together with
Theorem 2.2, gives that the range of the linear isometry x — —ex from Ag
to As is not dense in Ag. Therefore, by Lemma 4.1 of [5], there exists a
sequence {x,} of norm-one elements of A; such that {ex, + z,} — 0. Now
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take an ultrafilter U on the set N of all natural numbers, containing the
filter of all cofinite subsets of N, consider the absolute valued algebra with
involution Ay, and put z := (z,,) € (Ay)s. Then, since limy, ||ez,, +z,| = 0,
we have ez = —z, i.e., z belongs to (Ay)s(—1). Since ||z|| = 1 (by 2.6),

7e+\/§z
2

it follows from Proposition 2.3 that is a nonzero idempotent of Ay

different from e. =

3. Discussing the results
Examples 3.1 and 3.4 below are related to Theorem 2.2.

EXAMPLE 3.1. There exists a finite-dimensional absolute valued real al-
gebra A such that (A*)? # A. Thus, such an algebra A fulfills condition (7)
in theorem 2.2, but fails to conditions (1), (2), (4), and (5) in that theorem.
Indeed, take A = A*, where A stands for either C, H, or D, and A* denotes
the absolute-valued real algebra obtained by endowing the normed space of
A with the product z ®y := xy* (of course, * means the standard involution
of A). In this case we have (AT)? = Re, where e is the unit of A.

For the next example, we need the following proposition and lemma.

PROPOSITION 3.2 ([9]). Let U be an infinite set, let T be a nonempty
subset of U such that #(U \ T) = #U (where # means cardinal number),
let ¢ be an injective function from the family of all binary subsets of U to
U whose range does not intersect T', and let

Y (UxU)\{(u,u) :ueU} — {1,-1}
be a function satisfying ¥ (u,v) + (v, u) = 0 whenever
(u,0) € (T xT)U((U\T) x (U\T)),

and Y(u,v) = 1 otherwise. Foru € U, put (u) := +1 depending on whether
or not u belongs to T, and fit ug € T. Then the real Hilbert space with
orthonormal basis {xy}uey (endowed with a suitable product and a suitable
involution) becomes an absolute valued algebra with involution satisfying for
u,v € U the following relations:

(1) Tyzy = Y(u, V) Tg({u,py) if U # V.
(2) 23 = (),
(3) 7, = e(u)zy.

LEMMA 3.3. Let E be an absolute valued algebra with involution con-
taining a dense x-invariant simple subalgebra F'. Then E is topologically
stmple.

PROOF. Let e denote the unique nonzero self-adjoint idempotent of E.
Let M be a nonzero ideal of E. Taking a norm-one element x € F' (respec-
tively, y € M), we have e = xa™ € F (respectively, e = yy* € M). Therefore
e € FN M, and hence FN M # 0. Since F N M is an ideal of F, and F is
simple, it follows FN M = F,so F C M, and so M is dense in E. u
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EXAMPLE 3.4. There exists a simple infinite-dimensional non complete
absolute valued algebra with involution, and a topologically simple infinite-
dimensional complete absolute valued algebra with involution.

PRrOOF. Let S denote the family of all binary subsets of N, and consider
the enumeration of S given by

{1,2},{1,3},{2,3},{1,4},{2,4},{3,4},{1,5},{2,5},{3,5},{4,5}, ...

Such an enumeration provides us with a bijective mapping ¢ : S — N\ {1}
defined by

o({1,2}) = 2,0({1,3}) = 3,0({2,3}) = 4,0({1,4}) = 5, 6({2,4}) = 6,
¢({3,4}) = 7,0({1,5}) = 8,6({2,5}) = 9,6({3,5}) = 10, 6({4,5}) = 11,

and so on. Thus, we realize that, for k,l € N with k < [, we have

(3.1) k< o({k,1}).

Now, let ¢ be the mapping from (N x N) \ {(n,n) : n € N} to {1,—1}
defined by ¢(n,m) = +1 depending on whether or not n < m, and let
¢ be the mapping from N to {1, —1} defined by e(n) = £1 depending on
whether or not n = 1. According to Proposition 3.2, the real Hilbert space
H with orthonormal basis {x,, } neny becomes an absolute valued algebra with
involution satisfying

(3.2) Tntim = (10, )T g {n,m})
(3.3) zy, = e(n)a
(3.4) z, =¢e(n)x,

whenever n and m are in N with n # m. Let A be the linear hull in H of the
set {z,, : n € N}. By (3.2), (3.3), and (3.4), A is a -invariant subalgebra
of H, and hence an absolute valued algebra with involution. We are going
to show that A is simple. Let M be a nonzero ideal of A. Since x; is the
unique nonzero self-adjoint idempotent of A (by (3.3) and (3.4)), taking a
norm-one element y € M we have

(3.5) x1 =yy* € M.

Now, arguing by induction on n, we prove that z, € M for any n € N.
This is true for n = 1 by (3.5), and if n > 1 and x € M for any k < n,
then n = ®({k,l}) for some k < [, and also k¥ < n by (3.1). Hence (3.2)
shows that x,, = zxx; € M. Therefore M = A (since A is the linear hull of
{zy, : n € N}). Since M is an arbitrary nonzero ideal of A, the proof of the
simplicity of A is concluded. Applying Lemma 3.3, we obtain that H is a
topologically simple absolute valued algebra with involution. m
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REMARK 3.5. The infinite-dimensional non complete absolute valued
algebra A with involution, shown in Example 3.4, is “more than simple”.
Indeed, looking at the above proof, we realize that every nonzero right ideal
of A is equal to A. Since the involution of A is an anti-automorphism, we
have in addition that every nonzero left ideal of A is equal to A. Analogously,
the infinite-dimensional complete absolute valued algebra H with involution,
shown also in Example 3.4, is “more than topologically simple”. Indeed,
every nonzero one-sided ideal of H is dense in H.

After Theorem 2.2 and Example 3.4, the following problems arise in a
natural way.

PROBLEM 3.6. Is there a simple infinite-dimensional complete absolute
valued algebra with involution?

PROBLEM 3.7. Is there an infinite-dimensional absolute valued real al-
gebra A such that (AT)? is simple?

In relation to the above problems, it is worth mentioning that the exis-
tence of simple infinite-dimensional complete absolute valued real algebras is
well-known. Indeed, every infinite-dimensional real Hilbert space becomes a
left-division absolute-valued algebra under a suitable product [7]. We recall
that an algebra A is said to be a left- (respectively, right-) division alge-
bra if, for every nonzero element z € A, the operator of left (respectively,
right) multiplication by x is bijective, and we note that one-sided division
algebras are simple. The infinite-dimensional examples of [7] quoted above
cannot solve Problem 3.6 by the affirmative. For, if a left-division abso-
lute valued real algebra A has an involution, then, since involutions are
anti-automorphisms, A is also a right division algebra, and hence finite-
dimensional (by Wrigth’s celebrated theorem [11]). We do not know if,
among the examples of [7], we can find one answering affirmatively Problem
3.7.

We conclude the paper with an example related to Theorem 2.7.

ExaMPLE 3.8. There exists an infinite-dimensional complete absolute
valued algebra A with involution, such that there is no nonzero idempotent
in A different from the unique nonzero self-adjoint idempotent of A.

PrROOF. Let S denote the family of all binary subsets of N, let
¢ : S — N\ {1} be any injective mapping satisfying ¢({1,n}) = 2n — 1
for every n € N\ {1}, let ¢ be the mapping from (N x N)\ {(n,n) : n € N}
to {1, —1} defined by ¥ (n,m) = +1 depending on whether or not n < m,
and let € be the mapping from N to {1, —1} defined by £(n) = +1 depend-
ing on whether or not n = 1. Apply Proposition 3.2 to convert the real
Hilbert space A with orthonormal basis {z,},cn into an absolute valued
algebra with involution satisfying z,zm = ¥(n, m)T(nm})s r2 = e(n)xy,
and z}, = e(n)x, whenever n and m are in N with n # m. Then one easily
realizes that x1 is the unique nonzero self-adjoint idempotent of A, that A
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is the closed linear hull of {z,, : n € N\ {1}}, and then that As(—1) = 0.
Applying Proposition 2.3, we deduce that there is no nonzero idempotent
in A different from z1. =
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