Numerical ranges of uniformly continuous functions on the unit sphere of a Banach space

Ángel Rodríguez Palacios

Dedicated to Professor John Horváth on the occasion of his 80th birthday

1. Introduction

Let X be a Banach space over \mathbb{K} (= \mathbb{R} or \mathbb{C}). We denote by S_X , B_X , and X^* the unit sphere, the closed unit ball, and the dual space of X, respectively. For u in S_X , we denote by D(X, u) the set of all states of X relative to u, namely

$$D(X, u) := \{ \phi \in S_{X^*} : \phi(u) = 1 \},\$$

and then, for x in X, we define the numerical range V(X, u, x) of x relative to u as the nonempty, convex, and compact subset of K given by the equality

$$V(X, u, x) := \{\phi(x) : \phi \in D(X, u)\}.$$

Given a mapping f from S_X into X, we can consider the so-called *spatial* numerical range W(f) of f, namely

$$W(f) := \bigcup \{ V(X, x, f(x)) : x \in S_X \}$$

or, equivalently,

$$W(f) := \{ \phi(f(x)) : (x, \phi) \in \Pi(X) \},\$$

where $\Pi(X)$ stands for the set of those couples $(x, \phi) \in S_X \times S_{X^*}$ satisfying $\phi(x) = 1$. If the mapping f above is bounded, then it also has an *intrinsic* numerical range V(f), given by the equality

$$V(f) := V(\ell_{\infty}(S_X, X), \mathbf{1}, f).$$

(Here, for any set E, $\ell_{\infty}(E, X)$ denotes the Banach space of all bounded functions from E to X, and **1** stands for the natural embedding $S_X \hookrightarrow X$.)

¹⁹⁹¹ Mathematics Subject Classification. Primary 46B04, secondary, 46B20, 47A12. Partially supported by Junta de Andalucía grant FQM 0199 and Projects I+D MCYT BFM2001-2335 and BFM2002-01810.

We note that, if f belongs to some subspace Y of $\ell_{\infty}(S_X, X)$ with $\mathbf{1} \in Y$, then we have

$$V(f) = V(Y, \mathbf{1}, f).$$

We also note that, for every $f \in \ell_{\infty}(S_X, X)$, the inclusion

 $\overline{co}W(f) \subseteq V(f)$

holds, where \overline{co} means closed convex hull. (Indeed, for $(x, \phi) \in D(X, x)$, the mapping $g \to \phi(g(x))$ from $\ell_{\infty}(S_X, X)$ to \mathbb{K} is an element of $D(\ell_{\infty}(S_X, X), \mathbf{1})$.) The inclusion above is known to be an equality whenever f is (the restriction to S_X of) a continuous linear operator on X [**6**], or $\mathbb{K} = \mathbb{C}$ and f is (the restriction to S_X of) a uniformly continuous function on B_X which is holomorphic on the interior of B_X [**4**]. More generally, the equality $\overline{co}W(f) = V(f)$ is true if the bounded function $f : S_X \to X$ is uniformly continuous [**5**]. On the other hand, the equality $\overline{co}W(f) = V(f)$ for arbitrary $f \in \ell_{\infty}(S_X, X)$ cannot be expected in general. Indeed, such an equality holds for every $f \in \ell_{\infty}(S_X, X)$ if and only if X is uniformly smooth [**8**].

If f is a continuous linear operator on X, or $\mathbb{K} = \mathbb{C}$ and f is a uniformly continuous function from B_X to X which is holomorphic on the interior of B_X , then we have in fact

(1.1)
$$V(f) = \overline{co}\{\phi(f(x)) : (x, \phi) \in \Gamma\},\$$

where Γ is any subset of $\Pi(X)$ such that the natural projection $\pi_X(\Gamma)$ is equal to S_X (see again [6] and [4]). Even, in the case of a linear operator, the requirement that $\pi_X(\Gamma) = S_X$ can be relaxed to the one that $\pi_X(\Gamma)$ is dense in S_X [2, Theorem 9.3]. The aim of this note is to prove that the equality (1.1) actually holds for every bounded and uniformly continuous function $f: S_X \to X$, and every subset Γ of $\Pi(X)$ such that $\pi_X(\Gamma)$ is dense in S_X . This refines the result of [5] quoted above.

2. The results

Throughout this section, X will denote a Banach space over \mathbb{K} , and Γ will stand for a subset of $\Pi(X)$ such that $\pi_X(\Gamma)$ is dense in S_X . The following lemma is a reformulation of [7, Lemma 5.1].

LEMMA 2.1. Let u be in S_X , Then, for every y in X we have

$$V(X, u, y) = \bigcap_{\delta > 0} \overline{co} \{ \phi(y) : (x, \phi) \in \Gamma, ||x - u|| < \delta \}.$$

LEMMA 2.2. For every g in $\ell_{\infty}(\pi_X(\Gamma), X)$ we have

$$V(\ell_{\infty}(\pi_X(\Gamma), X), \mathbf{1}_{\Gamma}, g) = \bigcap_{\delta > 0} \overline{co} \{ \phi(g(y)) : (x, \phi) \in \Gamma, y \in \pi_X(\Gamma), \|x - y\| < \delta \},$$

where $\mathbf{1}_{\Gamma}$ stands for the natural embedding $\pi_X(\Gamma) \hookrightarrow X$.

PROOF. Put $Y := \ell_{\infty}(\pi_X(\Gamma), X)$ and, for $(y, \phi) \in \pi_X(\Gamma) \times X^*$, denote by $y \otimes \phi$ the element of Y^* defined by $(y \otimes \phi)(h) := \phi(h(y))$ for every $h \in Y$. Now, consider the set $\widetilde{\Gamma}$ of all couples $(h, \psi) \in S_Y \times Y^*$ such that there exists $(y, \phi) \in \pi_X(\Gamma) \times X^*$ satisfying that $(h(y), \phi)$ belongs to Γ and that $\psi = y \otimes \phi$. Clearly $\widetilde{\Gamma}$ is a subset of $\Pi(Y)$. We claim that $\pi_Y(\widetilde{\Gamma})$ is dense in S_Y . Let f be in S_Y and $0 < \varepsilon < 1$. There exists $y \in \pi_X(\Gamma)$ with $\|f(y)\| > 1 - \varepsilon$, and, by the density of $\pi_X(\Gamma)$ in S_X , there exists $(x, \phi) \in \Gamma$ with $\|x - \frac{f(y)}{\|f(y)\|}\| < \varepsilon$. Consider the element h of Y defined by h(y) = x and h(z) = f(z) whenever z belongs to $\pi_X(\Gamma) \setminus \{y\}$. Then $(h, y \otimes \phi)$ belongs to $\widetilde{\Gamma}$ and $\|h - f\| = \|x - f(y)\| < \frac{\varepsilon(2-\varepsilon)}{1-\varepsilon}$. Now that the claim has been proved, we fix $g \in Y$, and apply Lemma 2.1 to obtain $V(Y, \mathbf{1}_{\Gamma}, g) = \bigcap_{\delta > 0} \overline{co}(A_{\delta})$, where

$$A_{\delta} := \{ \psi(g) : (h, \psi) \in \Gamma, \|h - \mathbf{1}_{\Gamma}\| < \delta \}.$$

Thus, to conclude the proof it is enough to show that

$$A_{\delta} = B_{\delta} := \{ \phi(g(y)) : (x,\phi) \in \Gamma, y \in \pi_X(\Gamma), \|x-y\| < \delta \}.$$

Let λ be in A_{δ} . Then there exists $(h, \psi) \in \overline{\Gamma}$ such that $||h - \mathbf{1}_{\Gamma}|| < \delta$ and $\psi(g) = \lambda$. By the definition of $\widetilde{\Gamma}$, there exists $(y, \phi) \in \pi_X(\Gamma) \times X^*$ such that $(h(y), \phi) \in \Gamma$ and $\psi = y \otimes \phi$. It follows that, putting x := h(y), we have $\lambda = \phi(g(y))$ with $(x, \phi) \in \Gamma$, $y \in \pi_X(\Gamma)$, and $||x - y|| < \delta$, i.e., λ belongs to B_{δ} . Conversely, assume that λ is in B_{δ} . Then there exist $(x, \phi) \in \Gamma$ and $y \in \pi_X(\Gamma)$ such that $||x - y|| < \delta$ and $\phi(g(y)) = \lambda$. Considering the element h of Y defined by h(y) = x and h(z) = z whenever z belongs to $\pi_X(\Gamma) \setminus \{y\}$, and putting $\psi := y \otimes \phi$, we have $\lambda = \psi(g)$ with $(h, \psi) \in \widetilde{\Gamma}$ and $||h - \mathbf{1}_{\Gamma}|| < \delta$, i.e., λ belongs to A_{δ} .

The choice $\Gamma = \Pi(X)$ in Lemma 2.2 yields the following.

COROLLARY 2.3. Let f be a bounded function from S_X to X. Then we have

$$V(f) = \bigcap_{\delta > 0} \overline{co} \{ \phi(f(y)) : (x, \phi) \in \Pi(X), y \in S_X, \|x - y\| < \delta \}.$$

COROLLARY 2.4. Let f be a bounded continuous function from S_X to X. Then we have

$$V(f) = \bigcap_{\delta > 0} \overline{co} \{ \phi(f(y)) : (x, \phi) \in \Gamma, y \in \pi_X(\Gamma), \|x - y\| < \delta \}$$
$$= \bigcap_{\delta > 0} \overline{co} \{ \phi(f(y)) : (x, \phi) \in \Gamma, y \in S_X, \|x - y\| < \delta \}.$$

PROOF. Denoting by Z the subspace of $\ell_{\infty}(S_X, X)$ consisting of all bounded continuous functions from S_X to X, and putting $Y := \ell_{\infty}(\pi_X(\Gamma), X)$, the mapping $f \to f_{|\pi_X(\Gamma)}$ from Z to Y becomes a linear isometry sending **1** to $\mathbf{1}_{\Gamma}$. Therefore, for every $f \in Z$ we have

$$V(f) = V(Z, \mathbf{1}, f) = V(Y, \mathbf{1}_{\Gamma}, f_{|\pi_X(\Gamma)}).$$

Now, the first equality in the present corollary follows from Lemma 2.2. The second equality is a consequence of the former, obvious inclusions, and Corollary 2.3. \blacksquare

Now, we are ready to prove the main result in this note.

THEOREM 2.5. For every bounded and uniformly continuous function $f: S_X \to X$, we have

$$V(f) = \overline{co}\{\phi(f(x)) : (x,\phi) \in \Gamma\}.$$

PROOF. Let $\varepsilon > 0$. Take $\delta > 0$ such that $||f(x) - f(y)|| < \varepsilon$ whenever x, y are in S_X and $||x - y|| < \delta$. Then we have $\Re e(\phi(f(y))) < \Re e(\phi(f(x)))) + \varepsilon$ whenever (x, ϕ) is in Γ , y is in S_X , and $||x - y|| < \delta$. Since

$$V(f) \subseteq \overline{co}\{\phi(f(y)) : (x,\phi) \in \Gamma, y \in S_X, \|x-y\| < \delta\}$$

(by Corollary 2.4), we deduce

$$\max \Re e(V(f)) \le \max \Re e(C) + \varepsilon,$$

where

$$C := \overline{co} \{ \phi(f(x)) : (x, \phi) \in \Gamma \}.$$

Now, the arbitraryness of ε yields

$$\max \Re e(V(f)) \le \max \Re e(C).$$

Finally, for $\mu \in S_{\mathbb{K}}$, the last inequality, applied to μf instead f, gives

$$\max \Re e(\mu V(f)) \le \max \Re e(\mu C),$$

which implies that $V(f)\subseteq C$ because C is a compact and convex subset of $\mathbb{K}.$ \blacksquare

Keeping in mind the Bishop-Phelps theorem, Corollaries 2.6, 2.7, and 2.8 immediately below are straightforward consequences of Lemma 2.1, Corollary 2.4, and Theorem 2.5, respectively.

COROLLARY 2.6. Let χ be in S_{X^*} , Then, for every ψ in X^* we have

$$V(X^*, \chi, \psi) = \bigcap_{\delta > 0} \overline{co} \{ \psi(x) : (x, \phi) \in \Pi(X), \| \phi - \chi \| < \delta \}$$

COROLLARY 2.7. Let f be a bounded continuous function from S_{X^*} to X^* . Then we have

$$V(f) = \bigcap_{\delta > 0} \overline{co} \{ f(\varphi)(x) : (x, \phi) \in \Pi(X), \varphi \in S_{X^*}, \|\phi - \varphi\| < \delta \}.$$

COROLLARY 2.8. For every bounded and uniformly continuous function $f: S_{X^*} \to X^*$, we have

$$V(f) = \overline{co}\{f(\phi)(x) : (x,\phi) \in \Pi(X)\}.$$

Invoking the Bishop-Phelps-Bollobás theorem [3, Theorem 16.1], it is proved in [1, Lemma 2.7] that, for every bounded continuous function $f: S_{X^*} \to X^*, W(f)$ is contained in the closure in K of the set

$$\{f(\phi)(x) : (x,\phi) \in \Pi(X)\}.$$

Thus, Corollary 2.8 can be also derived from the result in [1] just quoted and the one in [5], already commented in the introduction, that $V(f) = \overline{co}W(f)$ whenever the bounded function f is actually uniformly continuous.

Acknowledgements. The author is grateful to M. Martín for fruitful remarks concerning the content of this note.

References

- J. BECERRA, A. RODRÍGUEZ, and G. V. WOOD, Banach spaces whose algebras of operators are unitary: a holomorphic approach. *Bull. London Math, Soc.* 35 (2003), 218-224.
- [2] F. F. BONSALL and J. DUNCAN, Numerical ranges of operators on normed spaces and of elements of normed algebras. London Math. Soc. Lecture Note Series 2, Cambridge University Press, Cambridge, 1971.
- [3] F. F. BONSALL and J. DUNCAN, Numerical ranges II, London Math. Soc. Lecture Note Series 10, Cambridge University Press, Cambridge, 1973.
- [4] L. A. HARRIS, The numerical range of holomorphic functions in Banach spaces. Amer. J. Math. 93 (1971), 1005-1119.
- [5] L. A. HARRIS, The numerical range of functions and best approximation. Proc. Cambridge Philos. Soc. 76 (1974), 133-141.
- [6] G. LUMER, Semi-inner product spaces. Trans. Amer. Math. Soc. 100 (1961), 29-43.
- [7] G. LUMER and R. S. PHILLIPS, Dissipative operators in a Banach space. Pacific J. Math. 11 (1961), 679-698.
- [8] A. RODRÍGUEZ, A numerical range characterization of uniformly smooth Banach spaces. Proc. Amer. Math. Soc. 129 (2001), 815-821.

Universidad de Granada, Facultad de Ciencias. Departamento de Análisis Matemático, 18071-Granada (Spain)

E-mail address: apalacio@ugr.es