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1. Introduction

Let X be a Banach space over K (= R or C). We denote by Sx, Bx,
and X* the unit sphere, the closed unit ball, and the dual space of X,
respectively. For w in Sx, we denote by D(X,u) the set of all states of X
relative to u, namely

D(X,u) :={¢ € Sx~: ¢p(u) =1},

and then, for z in X, we define the numerical range V (X, u, x) of x relative
to u as the nonempty, convex, and compact subset of K given by the equality

V(X,u,x) :={é(x): ¢ € D(X,u)}.

Given a mapping f from Sx into X, we can consider the so-called spatial
numerical range W (f) of f, namely

W(f) = VX, 2, f(2)) : 2 € Sx}
or, equivalently,

W(f) =A{o(f(2)) : (z,¢) € TI(X)},

where II(X) stands for the set of those couples (x, ¢) € Sx x Sx~ satisfying
¢(x) = 1. If the mapping f above is bounded, then it also has an intrinsic
numerical range V(f), given by the equality

V(f) = V(goo(SXyX)7 17f)'

(Here, for any set E, {-(FE,X) denotes the Banach space of all bounded
functions from E to X, and 1 stands for the natural embedding Sx — X.)
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We note that, if f belongs to some subspace Y of (o (Sx,X) with 1 € Y,
then we have

V() =V, 1,[).
We also note that, for every f € £ (Sx, X), the inclusion

coW (f) € V()

holds, where ¢o means closed convex hull. (Indeed, for (z,¢) € D(X, z), the
mapping g — ¢(g(z)) from l((Sx,X) to K is an element of
D({s(Sx,X),1).) The inclusion above is known to be an equality when-
ever f is (the restriction to Sx of) a continuous linear operator on X [6], or
K = C and f is (the restriction to Sx of) a uniformly continuous function
on Bx which is holomorphic on the interior of By [4]. More generally, the
equality coW (f) = V(f) is true if the bounded function f : Sx — X is
uniformly continuous [5]. On the other hand, the equality coW (f) = V (f)
for arbitrary f € ¢ (Sx,X) cannot be expected in general. Indeed, such
an equality holds for every f € fo(Sx,X) if and only if X is uniformly
smooth [8].

If f is a continuous linear operator on X, or K = C and f is a uniformly
continuous function from Bx to X which is holomorphic on the interior of
Bx, then we have in fact

(1.1) V(f) =cofo(f(2)) : (x,0) €T},

where I' is any subset of II(X) such that the natural projection mx(I') is
equal to Sx (see again [6] and [4]). Even, in the case of a linear operator,
the requirement that mx(I') = Sx can be relaxed to the one that mx(I") is
dense in Sx [2, Theorem 9.3]. The aim of this note is to prove that the
equality (1.1) actually holds for every bounded and uniformly continuous
function f : Sy — X, and every subset I' of II(X) such that 7x(T") is dense
in Sy. This refines the result of [5] quoted above.

2. The results

Throughout this section, X will denote a Banach space over K, and
I' will stand for a subset of II(X) such that wx(I') is dense in Sx. The
following lemma is a reformulation of [7, Lemma 5.1].

LEMMA 2.1. Let u be in Sx, Then, for every y in X we have
V(X,u,y) = [ o{dy) : (x,¢) €T, |lz —ul < 6}.
6>0
LEMMA 2.2. For every g in loo(mx(I"), X) we have
V(loo(mx(T), X), 1r,9) = (| e0{8(9(v)) : (z,¢) € T,y € mx (), [a—y] < 5},
6>0

where 1r stands for the natural embedding wx (I') — X.
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PROOF. Put Y := lo(mx(T'), X) and, for (y,¢) € nx(I') x X*, denote
by y ® ¢ the element of Y* defined by (y ® ¢)(h) := ¢(h(y)) for every
h € Y. Now, consider the set ' of all couples (h,?) € Sy x Y* such that
there exists (y,¢) € mx(I') x X* satisfying that (h(y), ¢) belongs to I' and
that ¢ = y ® ¢. Clearly T is a subset of II(Y). We claim that my (I) is
dense in Sy. Let f be in Sy and 0 < € < 1. There exists y € mx(I') with
I f ()] > 1 - E and, by the density of mx(I') in Sx, there exists (x,¢) € I’
with ||z — Hf li H < e. Consider the element h of Y defined by h(y) = = and
h(z) = f(z) whenever z belongs to 7x(I') \ {y}. Then (h,y ® ¢) belongs to
T and |[h—f]| = |z — f(y)] < 5(2 E) . Now that the claim has been proved,
we fix g € Y, and apply Lemma 2 1 to obtain V(Y,1r,g) = [\s-0 c0(4s),
where _

As i =A{(g) : (h,) € T, |h = 1p[| < 6}
Thus, to conclude the proof it is enough to show that
As = Bs :={o(9(v)) : (z,¢) e I,y e mx(I'), lz — y|| <0}

Let A be in As. Then there exists (h, 1) € I such that ||h — 1p|| < & and
¥(g) = A. By the definition of T', there exists (y, ¢) € mx(I') x X* such that
(h(y),¢) € T and ¢ = y ® ¢. It follows that, putting = := h(y), we have
A = ¢(g(y)) with (z,¢) € T, y € nx(T), and ||z — y|| < 0, i.e., A belongs
to Bs. Conversely, assume that A is in Bs. Then there exist (z,¢) € I' and

y € mx(T) such that ||z — y|| < and ¢(g(y)) = . Considering the element
h of Y defined by h(y) = x and h(z) = z whenever z belongs to mx (I') \ {y},

and putting ¥ 1= y® ¢, we have A = 1(g) with (h,v)) € I and ||h—1p|| < 6,
i.e., A belongs to As. =

The choice I' = II(X) in Lemma 2.2 yields the following.

COROLLARY 2.3. Let f be a bounded function from Sx to X. Then we
have

V(f) = [eole(f(v) : (z,¢) € I(X),y € Sx, [l — y|| < 5}.
6>0

COROLLARY 2.4. Let f be a bounded continuous function from Sx to X.
Then we have

V(f) = eo{e(f()) : (z.4) €T,y € mx (D), |z — y|| < 5}

6>0
= [ eo{e(f( ,¢) €T,y € S, ||z — y|| < 8.
6>0

PROOF. Denoting by Z the subspace of lo(Sx,X) consisting of all
bounded continuous functions from Sy to X, and putting Y := loo (7 x (T'), X),
the mapping f — fjzy(r) from Z to Y becomes a linear isometry sending 1
to 1p. Therefore, for every f € Z we have

V(f) = V(Z’ ]-vf> = V(Yv 1r, f\wx(l"))'



4 A. Rodriguez Palacios

Now, the first equality in the present corollary follows from Lemma 2.2.
The second equality is a consequence of the former, obvious inclusions, and
Corollary 2.3. =

Now, we are ready to prove the main result in this note.

THEOREM 2.5. For every bounded and uniformly continuous function
f:Sx — X, we have

V(f) =cofo(f(x)) : (z,¢) €T}

PROOF. Let e > 0. Take § > 0 such that || f(x)—f(y)|| < € whenever z,y
are in Sy and ||z — y|| < . Then we have Re(o(f(y))) < Re(o(f(x)))) + ¢
whenever (z,¢) isin ', y is in Sx, and ||z — y|| < 4. Since

V(f) Ceo{o(f(y)) : (x,¢) €Ty € Sx, [l —yl| <0}

(by Corollary 2.4), we deduce
max Re(V(f)) < maxRe(C) + ¢,
where
C:=co{¢(f(z)): (v,¢) €T},
Now, the arbitraryness of ¢ yields
max Re(V(f)) < max Re(C).
Finally, for u € Sk, the last inequality, applied to pf instead f, gives
max Re(uV (f)) < max Re(uC),

which implies that V(f) C C because C' is a compact and convex subset
of K. m

Keeping in mind the Bishop-Phelps theorem, Corollaries 2.6, 2.7, and 2.8
immediately below are straightforward consequences of Lemma 2.1, Corol-
lary 2.4, and Theorem 2.5, respectively.

COROLLARY 2.6. Let x be in Sx=, Then, for every 1 in X* we have
V(X" x,¢) = () eo{d(@) : (2, 0) € (X)), [|¢ — x| < 5}
6>0

COROLLARY 2.7. Let f be a bounded continuous function from Sx=«
to X*. Then we have

V(f) = (ol f(@)(x) : (,0) € TUX), ¢ € Sx=. [|¢ — o] < Y.

>0

COROLLARY 2.8. For every bounded and uniformly continuous function
f:Sx= — X*, we have

V(f) =co{f(9)(x) : (z,¢) € TI(X)}.
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Invoking the Bishop-Phelps-Bollobds theorem [3, Theorem 16.1], it is

proved

in [1, Lemma 2.7] that, for every bounded continuous function

f:Sx» — X* W(f) is contained in the closure in K of the set

{f(9)(x) : (z,9) € IN(X)}.

Thus, Corollary 2.8 can be also derived from the result in [1] just quoted and
the one in [5], already commented in the introduction, that V(f) = coW (f)
whenever the bounded function f is actually uniformly continuous.
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