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1. Introduction

Let X be a Banach space over K (= R or C). We denote by SX , BX ,
and X∗ the unit sphere, the closed unit ball, and the dual space of X,
respectively. For u in SX , we denote by D(X,u) the set of all states of X
relative to u, namely

D(X,u) := {φ ∈ SX∗ : φ(u) = 1},

and then, for x in X, we define the numerical range V (X,u, x) of x relative
to u as the nonempty, convex, and compact subset of K given by the equality

V (X,u, x) := {φ(x) : φ ∈ D(X,u)}.

Given a mapping f from SX into X, we can consider the so-called spatial
numerical range W (f) of f , namely

W (f) :=
⋃
{V (X,x, f(x)) : x ∈ SX}

or, equivalently,

W (f) := {φ(f(x)) : (x, φ) ∈ Π(X)},

where Π(X) stands for the set of those couples (x, φ) ∈ SX ×SX∗ satisfying
φ(x) = 1. If the mapping f above is bounded, then it also has an intrinsic
numerical range V (f), given by the equality

V (f) := V (`∞(SX , X),1, f).

(Here, for any set E, `∞(E,X) denotes the Banach space of all bounded
functions from E to X, and 1 stands for the natural embedding SX ↪→ X.)
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We note that, if f belongs to some subspace Y of `∞(SX , X) with 1 ∈ Y ,
then we have

V (f) = V (Y,1, f).

We also note that, for every f ∈ `∞(SX , X), the inclusion

coW (f) ⊆ V (f)

holds, where co means closed convex hull. (Indeed, for (x, φ) ∈ D(X,x), the
mapping g → φ(g(x)) from `∞(SX , X) to K is an element of
D(`∞(SX , X),1).) The inclusion above is known to be an equality when-
ever f is (the restriction to SX of) a continuous linear operator on X [6], or
K = C and f is (the restriction to SX of) a uniformly continuous function
on BX which is holomorphic on the interior of BX [4]. More generally, the
equality coW (f) = V (f) is true if the bounded function f : SX → X is
uniformly continuous [5]. On the other hand, the equality coW (f) = V (f)
for arbitrary f ∈ `∞(SX , X) cannot be expected in general. Indeed, such
an equality holds for every f ∈ `∞(SX , X) if and only if X is uniformly
smooth [8].

If f is a continuous linear operator on X, or K = C and f is a uniformly
continuous function from BX to X which is holomorphic on the interior of
BX , then we have in fact

(1.1) V (f) = co{φ(f(x)) : (x, φ) ∈ Γ},

where Γ is any subset of Π(X) such that the natural projection πX(Γ) is
equal to SX (see again [6] and [4]). Even, in the case of a linear operator,
the requirement that πX(Γ) = SX can be relaxed to the one that πX(Γ) is
dense in SX [2, Theorem 9.3]. The aim of this note is to prove that the
equality (1.1) actually holds for every bounded and uniformly continuous
function f : SX → X, and every subset Γ of Π(X) such that πX(Γ) is dense
in SX . This refines the result of [5] quoted above.

2. The results

Throughout this section, X will denote a Banach space over K, and
Γ will stand for a subset of Π(X) such that πX(Γ) is dense in SX . The
following lemma is a reformulation of [7, Lemma 5.1].

Lemma 2.1. Let u be in SX , Then, for every y in X we have

V (X,u, y) =
⋂
δ>0

co{φ(y) : (x, φ) ∈ Γ, ‖x− u‖ < δ}.

Lemma 2.2. For every g in `∞(πX(Γ), X) we have

V (`∞(πX(Γ), X),1Γ, g) =
⋂
δ>0

co{φ(g(y)) : (x, φ) ∈ Γ, y ∈ πX(Γ), ‖x−y‖ < δ},

where 1Γ stands for the natural embedding πX(Γ) ↪→ X.
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Proof. Put Y := `∞(πX(Γ), X) and, for (y, φ) ∈ πX(Γ) ×X∗, denote
by y ⊗ φ the element of Y ∗ defined by (y ⊗ φ)(h) := φ(h(y)) for every
h ∈ Y . Now, consider the set Γ̃ of all couples (h, ψ) ∈ SY × Y ∗ such that
there exists (y, φ) ∈ πX(Γ) ×X∗ satisfying that (h(y), φ) belongs to Γ and
that ψ = y ⊗ φ. Clearly Γ̃ is a subset of Π(Y ). We claim that πY (Γ̃) is
dense in SY . Let f be in SY and 0 < ε < 1. There exists y ∈ πX(Γ) with
‖f(y)‖ > 1− ε, and, by the density of πX(Γ) in SX , there exists (x, φ) ∈ Γ
with ‖x− f(y)

‖f(y)‖‖ < ε. Consider the element h of Y defined by h(y) = x and
h(z) = f(z) whenever z belongs to πX(Γ) \ {y}. Then (h, y ⊗ φ) belongs to
Γ̃ and ‖h− f‖ = ‖x− f(y)‖ < ε(2−ε)

1−ε . Now that the claim has been proved,
we fix g ∈ Y , and apply Lemma 2.1 to obtain V (Y,1Γ, g) =

⋂
δ>0 co(Aδ),

where
Aδ := {ψ(g) : (h, ψ) ∈ Γ̃, ‖h− 1Γ‖ < δ}.

Thus, to conclude the proof it is enough to show that

Aδ = Bδ := {φ(g(y)) : (x, φ) ∈ Γ, y ∈ πX(Γ), ‖x− y‖ < δ}.

Let λ be in Aδ. Then there exists (h, ψ) ∈ Γ̃ such that ‖h − 1Γ‖ < δ and
ψ(g) = λ. By the definition of Γ̃, there exists (y, φ) ∈ πX(Γ)×X∗ such that
(h(y), φ) ∈ Γ and ψ = y ⊗ φ. It follows that, putting x := h(y), we have
λ = φ(g(y)) with (x, φ) ∈ Γ, y ∈ πX(Γ), and ‖x − y‖ < δ, i.e., λ belongs
to Bδ. Conversely, assume that λ is in Bδ. Then there exist (x, φ) ∈ Γ and
y ∈ πX(Γ) such that ‖x− y‖ < δ and φ(g(y)) = λ. Considering the element
h of Y defined by h(y) = x and h(z) = z whenever z belongs to πX(Γ)\{y},
and putting ψ := y⊗φ, we have λ = ψ(g) with (h, ψ) ∈ Γ̃ and ‖h−1Γ‖ < δ,
i.e., λ belongs to Aδ.

The choice Γ = Π(X) in Lemma 2.2 yields the following.

Corollary 2.3. Let f be a bounded function from SX to X. Then we
have

V (f) =
⋂
δ>0

co{φ(f(y)) : (x, φ) ∈ Π(X), y ∈ SX , ‖x− y‖ < δ}.

Corollary 2.4. Let f be a bounded continuous function from SX to X.
Then we have

V (f) =
⋂
δ>0

co{φ(f(y)) : (x, φ) ∈ Γ, y ∈ πX(Γ), ‖x− y‖ < δ}

=
⋂
δ>0

co{φ(f(y)) : (x, φ) ∈ Γ, y ∈ SX , ‖x− y‖ < δ}.

Proof. Denoting by Z the subspace of `∞(SX , X) consisting of all
bounded continuous functions from SX toX, and putting Y := `∞(πX(Γ), X),
the mapping f → f|πX(Γ) from Z to Y becomes a linear isometry sending 1
to 1Γ. Therefore, for every f ∈ Z we have

V (f) = V (Z,1, f) = V (Y,1Γ, f|πX(Γ)).
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Now, the first equality in the present corollary follows from Lemma 2.2.
The second equality is a consequence of the former, obvious inclusions, and
Corollary 2.3.

Now, we are ready to prove the main result in this note.

Theorem 2.5. For every bounded and uniformly continuous function
f : SX → X, we have

V (f) = co{φ(f(x)) : (x, φ) ∈ Γ}.

Proof. Let ε > 0. Take δ > 0 such that ‖f(x)−f(y)‖ < ε whenever x, y
are in SX and ‖x− y‖ < δ. Then we have <e(φ(f(y))) < <e(φ(f(x)))) + ε
whenever (x, φ) is in Γ, y is in SX , and ‖x− y‖ < δ. Since

V (f) ⊆ co{φ(f(y)) : (x, φ) ∈ Γ, y ∈ SX , ‖x− y‖ < δ}

(by Corollary 2.4), we deduce

max<e(V (f)) ≤ max<e(C) + ε,

where
C := co{φ(f(x)) : (x, φ) ∈ Γ}.

Now, the arbitraryness of ε yields

max<e(V (f)) ≤ max<e(C).

Finally, for µ ∈ SK, the last inequality, applied to µf instead f , gives

max<e(µV (f)) ≤ max<e(µC),

which implies that V (f) ⊆ C because C is a compact and convex subset
of K.

Keeping in mind the Bishop-Phelps theorem, Corollaries 2.6, 2.7, and 2.8
immediately below are straightforward consequences of Lemma 2.1, Corol-
lary 2.4, and Theorem 2.5, respectively.

Corollary 2.6. Let χ be in SX∗, Then, for every ψ in X∗ we have

V (X∗, χ, ψ) =
⋂
δ>0

co{ψ(x) : (x, φ) ∈ Π(X), ‖φ− χ‖ < δ}.

Corollary 2.7. Let f be a bounded continuous function from SX∗

to X∗. Then we have

V (f) =
⋂
δ>0

co{f(ϕ)(x) : (x, φ) ∈ Π(X), ϕ ∈ SX∗ , ‖φ− ϕ‖ < δ}.

Corollary 2.8. For every bounded and uniformly continuous function
f : SX∗ → X∗, we have

V (f) = co{f(φ)(x) : (x, φ) ∈ Π(X)}.
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Invoking the Bishop-Phelps-Bollobás theorem [3, Theorem 16.1], it is
proved in [1, Lemma 2.7] that, for every bounded continuous function
f : SX∗ → X∗, W (f) is contained in the closure in K of the set

{f(φ)(x) : (x, φ) ∈ Π(X)}.
Thus, Corollary 2.8 can be also derived from the result in [1] just quoted and
the one in [5], already commented in the introduction, that V (f) = coW (f)
whenever the bounded function f is actually uniformly continuous.
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