Non self-adjoint idempotents in C^* - and JB^* -algebras

Julio Becerra Guerrero and Ángel Rodríguez Palacios

ABSTRACT. We prove that, if a JB^* -algebra contains a non self-adjoint idempotent, then it also contains a nonzero self-adjoint idempotent. This is achieved through an "almost description" of C^* - and JB^* -algebras generated by a non self-adjoint idempotent.

1. Introduction

It is well-known that, if a C^* -algebra contains a non self-adjoint idempotent, then it also contains a nonzero self-adjoint idempotent (see [3, 5]). In the more general case of JB^* -algebras, a similar result seems to be previously unknown. As a matter of fact, although the JB^* -algebra generated by a non self-adjoint idempotent can be seen as a closed *-invariant Jordan subalgebra of a suitable C^* -algebra, the nonzero self-adjoint idempotents built by the associative methods need not lie in the given JB^* -algebra. Nevertheless, by introducing new techniques, we prove in this paper that, in fact, JB^* -algebras containing non self-adjoint idempotents also contain nonzero self-adjoint idempotents. The key tool is an "almost description" of C^* - and JB^* -algebras generated by a non self-adjoint idempotent, which is summarized in what follows.

Let A be a C^* -algebra containing a non self-adjoint idempotent e. We show in Corollary 2.3 that $K := sp(\sqrt{e^*e}) \setminus \{0\}$ is a compact subset of $[1, \infty[$ whose maximum element is greater than 1, and that, in general, no more can be said about K. Then we construct a Banach *-algebra $\mathcal{A}(K)$, which consists of all 2×2 matrices over C(K) with an unusual multiplication, and has a distinguished non self-adjoint idempotent p, and prove in Theorem 2.6 the existence of a unique continuous *-homomorphism $F : \mathcal{A}(K) \to A$ such that F(p) = e. As a consequence, a C^* -algebra contains a non self-adjoint idempotent if and only if it contains a non central self-adjoint idempotent (Corollary 2.7).

²⁰⁰⁰ Mathematics Subject Classification. 46L05, 46L70.

Partially supported by Junta de Andalucía grants FQM 0199 and FQM 1215, and Project I+D MCYT MTM-2004-03882.

As a transition between the C^* - and the JB^* - case, we note that, for an element a in a C^{*}-algebra A, $sp(\sqrt{a^*a}) \setminus \{0\}$ can be determined in terms of the JB^* -algebra underlying A, and, even more, in terms of the JB^* -triple underlying A. Indeed, $sp(\sqrt{a^*a}) \setminus \{0\}$ coincides with the "triple spectrum" $\sigma(a)$ of a (Lemma 3.1).

Now, let J be a JB^* -algebra containing a non self-adjoint idempotent e. We prove in Theorem 3.4 that $K := \sigma(e)$ is a compact subset of $[1,\infty)$ whose maximum element is greater than 1, and that, for a canonical closed *-invariant Jordan subalgebra $\mathcal{J}(K)$ of $\mathcal{A}(K)$ containing the distinguished non self-adjoint idempotent $p \in \mathcal{A}(K)$, there exists a unique continuous *-homomorphism $G: \mathcal{J}(K) \to J$ such that G(p) = e. As a consequence, a JB^* -algebra contains a non self-adjoint idempotent if and only if it contains a non central self-adjoint idempotent (Corollary 3.5).

2. The case of C^* -algebras

Let A be a C^* -algebra. In the case that A has not a unit, we denote by A_1 the C^{*}-algebra obtained by adjoining a unit to A. Otherwise, we put $A_1 := A$. As usual, for $a \in A$, we define the spectrum of a as the nonempty compact subset sp(a) of \mathbb{C} given by

 $sp(a) := \{\lambda \in \mathbb{C} : a - \lambda \text{ is not invertible in } A_1\}.$

The following lemma exploits some ideas in page 28 of [10].

LEMMA 2.1. Let A be a C^* -algebra, and let e be a non self-adjoint idempotent in A. Then $sp(i(e - e^*))$ is a symmetric subset of the real line, and the mapping $\lambda \to 1 + \lambda^2$ becomes a surjection from $sp(i(e - e^*)) \setminus \{0\}$ onto $sp(e^*e) \setminus \{0,1\}$. Consequently, we have:

- (1) $||e||^2 = 1 + ||e e^*||^2$. (2) $\{0, ||e||^2\} \subseteq sp(e^*e) \subseteq \{0\} \cup [1, ||e||^2]$.

PROOF. A straightforward computation shows that, for $\lambda \in \mathbb{C}$, we have

$$\lambda(1+\lambda^2)[i(e-e^*)-\lambda] = (e^*-i\lambda)[e^*e-(1+\lambda^2)](e+i\lambda).$$

On the other hand, if λ is in $\mathbb{C} \setminus \{0, i, -i\}$, then $(e^* - i\lambda)$ and $(e + i\lambda)$ are invertible in A_1 , and we have $\lambda(1+\lambda^2) \neq 0$. It follows that, for such a λ , $i(e - e^*) - \lambda$ is invertible in A_1 if and only if so is $e^*e - (1 + \lambda^2)$. Now, keeping in mind that $sp(i(e-e^*))$ (respectively, $sp(e^*e)$) consists only of real (respectively, nonnegative real) numbers, we easily derive that $sp(i(e - e^*))$ is symmetric (relative to zero), and that the mapping $\lambda \to 1 + \lambda^2$ is a surjection from $sp(i(e - e^*)) \setminus \{0\}$ onto $sp(e^*e) \setminus \{0, 1\}$. The consequences, listed in the statement, are obvious.

The following corollary is well-known (see [3, 5]).

COROLLARY 2.2. Let A be a C^* -algebra, and let e be a non self-adjoint idempotent in A. Then there exists a self-adjoint idempotent $p \in A$ such that ep = e.

PROOF. By Lemma 2.1, zero is an isolated point of $sp(e^*e)$, and hence the function $\chi : sp(e^*e) \to \mathbb{C}$, defined by $\chi(0) := 0$ and $\chi(t) := 1$ for $t \in sp(e^*e) \setminus \{0\}$, is continuous. Now $p := \chi(e^*e)$ is a self-adjoint idempotent in A satisfying $e^*ep = e^*e \Rightarrow e^*e(1-p) = 0 \Rightarrow (1-p)e^*e(1-p) = 0 \Rightarrow e(1-p) = 0 \Rightarrow ep = p$.

We will see in Corollary 2.7 below that the self-adjoint idempotent p in the above proof is in fact non central.

COROLLARY 2.3. For a subset K of the complex plane, the following assertions are equivalent:

- (1) K is a compact subset of $[1, \infty]$ whose maximum element is greater than 1.
- (2) There exists a C^{*}-algebra A, and a non self-adjoint idempotent $e \in A$, such that $sp(\sqrt{e^*e}) \setminus \{0\} = K$.

PROOF. (2) \Rightarrow (1).- By Lemma 2.1

 $(1) \Rightarrow (2)$.- Assume that (1) holds. Let A denote the C^{*}-algebra of all continuous functions from K to the C^{*}-algebra $M_2(\mathbb{C})$ (of all 2×2 matrices with entries in \mathbb{C}), and let e stand for the element of A defined by

$$e(t) := \left(\begin{array}{cc} 1 & \sqrt{t^2 - 1} \\ 0 & 0 \end{array}\right)$$

for every $t \in K$. Then, for $t \in K$, e(t) is an idempotent in $M_2(\mathbb{C})$ different from 0 and 1. Moreover, since $e(t)e(t)^* = t^2 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, we have ||e(t)|| = t, and hence $sp(\sqrt{e(t)^*e(t)}) \setminus \{0\} = \{t\}$. It follows that e is a non self-adjoint idempotent of A satisfying $sp(\sqrt{e^*e}) \setminus \{0\} = K$.

Let K be a compact subset of \mathbb{C} . We denote by C(K) the C*-algebra of all continuous complex valued functions on K. In the case that $0 \in K$, we denote by $C_0(K)$ the closed ideal of C(K) consisting of those functions $f \in C(K)$ satisfying f(0) = 0.

LEMMA 2.4. Let A be a C^{*}-algebra, and let a be in A such that $0 \in sp(a^*a)$. Then there exists a unique linear isometry

$$\Phi: C_0(sp(\sqrt{a^*a})) \to A$$

satisfying $\Phi(f) = ah(\sqrt{a^*a})$ for those $f \in C_0(sp(\sqrt{a^*a}))$ for which there exists $h \in C(sp(\sqrt{a^*a}))$ such that f(t) = th(t) for every $t \in sp(\sqrt{a^*a})$. Moreover, for $f, g \in C_0(sp(\sqrt{a^*a}))$, we have

$$\begin{split} \Phi(f)\Phi(\overline{g})^* &= f(\sqrt{aa^*})g(\sqrt{aa^*}), \ \Phi(\overline{f})^*\Phi(g) = f(\sqrt{a^*a})g(\sqrt{a^*a}), \\ \Phi(f)g(\sqrt{a^*a}) &= \Phi(fg), \ and \ g(\sqrt{aa^*})\Phi(f) = \Phi(gf). \end{split}$$

PROOF. The first conclusion in the statement is nothing other than Lemma 8 of [6]. In view of the Stone-Weierstrass theorem, to prove the equality $\Phi(f)\Phi(\overline{g})^* = f(\sqrt{aa^*})g(\sqrt{aa^*})$ for $f,g \in C_0(sp(\sqrt{a^*a}))$, we can assume that f and g are of the form $t \to tP(t^2)$ and $t \to tQ(t^2)$, for suitable complex polynomials P and Q, respectively. Then we have

 $\Phi(f)\Phi(\overline{g})^* = aP(a^*a)Q(a^*a)a^* = aa^*P(aa^*)Q(aa^*) = f(\sqrt{aa^*})g(\sqrt{aa^*}),$

as desired. The proof of the equality $\Phi(\overline{f})^*\Phi(g) = f(\sqrt{a^*a})g(\sqrt{a^*a})$ is similar. To realize that $\Phi(f)g(\sqrt{a^*a}) = \Phi(fg)$ and $g(\sqrt{aa^*})\Phi(f) = \Phi(gf)$, take f of the form $t \to tP(t^2)$ for a complex polynomial P, and g of the form $t \to Q(t^2)$, for a complex polynomial Q with Q(0) = 0.

Let K be a compact subset of $[1,\infty]$. Let u stand for the element of C(K) defined by u(t) := t for every $t \in K$. We denote by $\mathcal{A}(K)$ the complex Banach *-algebra whose vector space is that of all 2×2 matrices with entries in C(K), whose (bilinear) product is determined by the equalities (f[ij])(g[kl]) := (fg)[il] if j = k and $(f[ij])(g[kl]) := (u^{-1}fg)[il]$ if $j \neq k$, whose norm is given by $||(f_{ij})|| := ||f_{11}|| + ||f_{12}|| + ||f_{21}|| + ||f_{22}||$, and whose (conjugate-linear) involution * is determined by $(f[ij])^* := \overline{f}[ji]$. Here, as usual, for $f \in C(K)$ and $i, j \in \{1, 2\}, f[ij]$ means the matrix having f in the (i, j)-position and 0's elsewhere. For later computations, it is useful to see $\mathcal{A}(K)$ as a C(K)-module in the natural manner, namely by defining the product of a function $f \in C(K)$ and a matrix $(f_{ij}) \in \mathcal{A}(K)$ by $f(f_{ij}) := (ff_{ij})$. In this regarding, we straightforwardly realize that $\mathcal{A}(K)$ becomes in fact an algebra over C(K), i.e., the operators of left and right multiplication by arbitrary elements of $\mathcal{A}(K)$ are C(K)-module homomorphisms. Moreover, the symbol f[ij] can now be read as the product of the function $f \in C(K)$ and the matrix $[ij] \in \mathcal{A}(K)$, where, for $i, j \in \{1, 2\}$, [ij] stands for the matrix having the constant function equal to one in the (i, j)-position and 0's elsewhere.

LEMMA 2.5. Let K be a compact subset of $[1, \infty[$, and let u stand for the element of C(K) defined by u(t) := t for every $t \in K$. Then $\mathcal{A}(K)$ is generated by u[21] as a Banach *-algebra.

PROOF. Put p := u[21], and let C denote the closed *-invariant subalgebra of $\mathcal{A}(K)$ generated by p. We have $u^2[11] = p^*p \in C$. Therefore, since C(K) is bicontinuously algebra-isomorphic to C(K)[11] by means of the mapping $f \to f[11]$, and C(K) is generated by u^2 as a Banach algebra, we obtain that $C(K)[11] \subseteq C$, and hence that

$$C(K)[21] = uC(K)[21] = (u[21])(C(K)[11]) = p(C(K)[11]) \subseteq C.$$

Starting with the fact $u^2[22] = pp^* \in C$, a similar argument shows that C(K)[22] and C(K)[12] are contained in C. It follows that $\mathcal{A}(K) = C$.

Now, we are ready to prove the main result in this section.

Non self-adjoint idempotents

THEOREM 2.6. Let A be a C^* -algebra, and let e be a non self-adjoint idempotent in A. Then $K := sp(\sqrt{e^*e}) \setminus \{0\}$ is a compact subset of $[1, \infty[$ whose maximum element (namely ||e||) is grater than 1, and there exists a unique continuous *-homomorphism $F : \mathcal{A}(K) \to A$ such that F(u[21]) = e, where u stands for the function $t \to t$ from K to \mathbb{C} . Moreover we have:

- (1) The closure in A of the range of F coincides with the C^* -subalgebra of A generated by e.
- (2) F is injective if and only if either 1 does not belong to K or 1 is an accumulation point of K.
- (3) If 1 is an isolated point of K, then ker(F) consists precisely of those matrices $(f_{ij}) \in \mathcal{A}(K)$ which vanish at every $t \in K \setminus \{1\}$ and satisfy

$$f_{11}(1) + f_{12}(1) + f_{21}(1) + f_{22}(1) = 0.$$

PROOF. By Corollary 2.3, we have that $K := sp(\sqrt{e^*e}) \setminus \{0\}$ is a compact subset of $[1, \infty[$ whose maximum element (namely ||e||) is grater than 1. As a consequence, the C^* -algebras $C_0(sp(\sqrt{e^*e}))$ and C(K) can and will be identified in an obvious way. Let $\Phi : C(K) \to A$ be the linear isometry given by Lemma 2.4 when we take in such a lemma a := e. For $i, j \in \{1, 2\}$, consider the linear isometry $\Phi_{ij} : C(K) \to A$ defined, for $f \in C(K)$, by

$$\Phi_{11}(f) := f(\sqrt{e^*e}), \ \Phi_{22}(f) := f(\sqrt{ee^*}), \ \Phi_{21}(f) := \Phi(f), \ \Phi_{12}(f) := \Phi(\overline{f})^*.$$

We claim that, for $f, g \in C(K)$ and $i, j, k, l \in \{1, 2\}$, we have

$$\Phi_{ij}(f)\Phi_{kl}(g) = \Phi_{il}(fg)$$
 if $j = k$, and $\Phi_{ij}(f)\Phi_{kl}(g) = \Phi_{il}(u^{-1}fg)$ if $j \neq k$.

Indeed, the equality $\Phi_{ij}(f)\Phi_{kl}(g) = \Phi_{il}(fg)$ for j = k follows from Lemma 2.4. To realize that $\Phi_{ij}(f)\Phi_{kl}(g) = \Phi_{il}(u^{-1}fg)$ if $j \neq k$, keep in mind that e is an idempotent, and take f (respectively g) of the form $t \to P(t^2)$ for a complex polynomial P with P(0) = 0, if i = j (respectively, k = l), and of the form $t \to tP(t^2)$ for some complex polynomial P, otherwise. Now that the claim is proved, it is clear that the mapping $F : \mathcal{A}(K) \to A$ defined by

$$F((f_{ij})) := \Phi_{11}(f_{11}) + \Phi_{12}(f_{12}) + \Phi_{21}(f_{21}) + \Phi_{22}(f_{22})$$

becomes a continuous *-homomorphism satisfying F(u[21]) = e. Moreover, both the uniqueness of F under the above conditions, and that the closure in A of the range of F coincides with the C^* -subalgebra of A generated by e, follow from Lemma 2.5.

Let (f_{ij}) be in $\mathcal{A}(K)$. Then we have:

$$[11](f_{ij})[11] = (f_{11} + u^{-1}f_{12} + u^{-1}f_{21} + u^{-2}f_{22})[11],$$

$$[12](f_{ij})[12] = (u^{-1}f_{11} + u^{-2}f_{12} + f_{21} + u^{-1}f_{22})[12],$$

$$[21](f_{ij})[21] = (u^{-1}f_{11} + f_{12} + u^{-2}f_{21} + u^{-1}f_{22})[21],$$

$$[22](f_{ij})[22] = (u^{-2}f_{11} + u^{-1}f_{12} + u^{-1}f_{21} + f_{22})[22].$$

Assume that (f_{ij}) is in ker(F). Then, since ker(F) is an ideal of $\mathcal{A}(K)$, and, for all $i, j \in \{1, 2\}$, the restriction of F to C(K)[ij] is an isometry, we deduce:

$$f_{11} + u^{-1}f_{12} + u^{-1}f_{21} + u^{-2}f_{22} = 0,$$

$$u^{-1}f_{11} + u^{-2}f_{12} + f_{21} + u^{-1}f_{22} = 0,$$

$$u^{-1}f_{11} + f_{12} + u^{-2}f_{21} + u^{-1}f_{22} = 0,$$

$$u^{-2}f_{11} + u^{-1}f_{12} + u^{-1}f_{21} + f_{22} = 0.$$

Therefore, for every $t \in K$ we have:

$$t^{2}f_{11}(t) + tf_{12}(t) + tf_{21}(t) + f_{22}(t) = 0,$$

$$tf_{11}(t) + f_{12}(t) + t^{2}f_{21}(t) + tf_{22}(t) = 0,$$

$$tf_{11}(t) + t^{2}f_{12}(t) + f_{21}(t) + tf_{22}(t) = 0,$$

$$f_{11}(t) + tf_{12}(t) + tf_{21}(t) + t^{2}f_{22}(t) = 0.$$

As a first consequence, if 1 belongs to K, then

$$f_{11}(1) + f_{12}(1) + f_{21}(1) + f_{22}(1) = 0.$$

On the other hand, keeping in mind that, for $t \in K \setminus \{1\}$, we have

$$\begin{vmatrix} t^2 & t & t & 1 \\ t & 1 & t^2 & t \\ t & t^2 & 1 & t \\ 1 & t & t & t^2 \end{vmatrix} = -(t^2 - 1)^4 \neq 0,$$

for such a t we deduce

$$f_{11}(t) = f_{12}(t) = f_{21}(t) = f_{22}(t) = 0.$$

Therefore, if either 1 does not belong to K or 1 is an accumulation point of K, then

$$f_{11} = f_{12} = f_{21} = f_{22} = 0.$$

Thus F is injective when either 1 does not belong to K or 1 is an accumulation point of K.

Assume that 1 is an isolated point of K. Then the function $\chi: K \to \mathbb{C}$, defined by $\chi(1) := 1$ and $\chi(t) := 0$ for $t \in K \setminus \{1\}$, is continuous. Put $p := F(\chi[11]), q := F(\chi[22]), \text{ and } r := F(\chi[12]).$ Since, for $i, j, k, l \in \{1, 2\}$ the equalities $(\chi[ij])^* = \chi[ji]$ and $(\chi[ij])(\chi[kl]) = \chi[il]$ hold, we have that p and q are self-adjoint idempotents of A satisfying pqp = p (equivalently, $p \leq q$) and qpq = q (equivalently, $q \leq p$), and that pq = r. It follows

$$p = q = r = r^*.$$

Let (f_{ij}) be in $\mathcal{A}(K)$ vanishing at every $t \in K \setminus \{1\}$ and such that $f_{11}(1) + f_{12}(1) + f_{21}(1) + f_{22}(1) = 0$. Then we have

$$(f_{ij}) = f_{11}(1)(\chi[11]) + f_{12}(1)(\chi[12]) + f_{21}(1)(\chi[21]) + f_{22}(1)(\chi[22]),$$

and hence

$$F((f_{ij})) = (f_{11}(1) + f_{12}(1) + f_{21}(1) + f_{22}(1))p = 0.$$

COROLLARY 2.7. Let A be a C^* -algebra. Then the following assertions are equivalent:

- (1) For every $s \in [1, \infty[$ there exists an idempotent $e \in A$ such that ||e|| = s.
- (2) There exists a non self-adjoint idempotent in A.
- (3) There exists a non central self-adjoint idempotent in A.

PROOF. The implication $(1) \Rightarrow (2)$ is clear.

 $(2) \Rightarrow (3)$.- Let e be the non self-adjoint idempotent of A whose existence is assumed. Let K and $F : \mathcal{A}(K) \to A$ be the compact set and the *homomorphism, respectively, given by Theorem 2.6. Put $p := [11] \in \mathcal{A}(K)$ and $q := [12] \in \mathcal{A}(K)$. Then p is a self-adjoint idempotent, and we have $pq - qp = [12] - u^{-1}[11]$, where u stands for the function $t \to t$ from K to \mathbb{C} . Noticing that, by Theorem 2.6, pq - qp does not belong to ker(F), it follows that F(p) is a non central self-adjoint idempotent of A.

 $(3) \Rightarrow (1)$.- Let e be the non central self-adjoint idempotent of A whose existence is assumed. Take $a \in A$ with $ea - ae \neq 0$. Then the mapping $D: A \to A$ defined by D(b) := ba - ab for every $b \in A$ becomes a continuous derivation such that $D(e) \neq 0$. Since, for $z \in \mathbb{C}$, $\exp(zD)$ is a continuous automorphism of A, it follows that the mapping $f: z \to \exp(zD)(e)$ from \mathbb{C} to A is an entire function with $f'(0) = D(e) \neq 0$, and whose range consists only of nonzero idempotents of A. Now, since ||f(0)|| = 1, Liouville's theorem implies that $\{||f(z)||: z \in \mathbb{C}\} = [1, \infty[$.

3. The case of JB^* -algebras

We recall that a JB^* -triple is a complex Banach space X with a continuous triple product $\{\cdot, \cdot, \cdot\} : X \times X \times X \to X$ which is linear and symmetric in the outer variables, and conjugate-linear in the middle variable, and satisfies:

- (1) For all x in X, the mapping $y \to \{x, x, y\}$ from X to X is a hermitian
- operator on X and has nonnegative spectrum. (2) The main identity

$$\{a,b,\{x,y,z\}\}=\{\{a,b,x\},y,z\}-\{x,\{b,a,y,\},z\}+\{x,y,\{a,b,z\}\}$$

- holds for all a, b, x, y, z in X.
- (3) $||\{x, x, x\}|| = ||x||^3$ for every x in X.

Concerning Condition (1) above, we also recall that a bounded linear operator T on a complex Banach space X is said to be hermitian if $\|\exp(irT)\| = 1$ for every r in \mathbb{R} .

Examples of JB^* -triples are all C^* -algebras under the triple product $\{\cdot, \cdot, \cdot\}$ determined by $\{a, b, a\} := ab^*a$.

Let X be a JB^* -triple, and let x be in X. It is well-known that there is a unique couple (K, ϕ) , where K is a compact subset of $[0, \infty)$ with $0 \in K$, and ϕ is an isometric triple homomorphism from $C_0(K)$ to X, such that

the range of ϕ coincides with the JB^* -subtriple of X generated by x, and $\phi(u) = x$, where u stands for the mapping $t \to t$ from K to \mathbb{C} (see [8, 4.8], [9, 1.15], and [2]). The locally compact subset $K \setminus \{0\}$ of $]0, \infty[$ is called the triple spectrum of x, and will be denoted by $\sigma(x)$. We note that $\sigma(x)$ does not change when we replace X with any JB^* -subtriple of X containing x.

LEMMA 3.1. Let A be a C^{*}-algebra, and let a be in A such that $0 \in sp(a^*a)$. Then we have $\sigma(a) = sp(\sqrt{a^*a}) \setminus \{0\}$.

PROOF. Let $\Phi : C_0(sp(\sqrt{a^*a})) \to A$ be the linear isometry given by Lemma 2.4. It is enough to show that Φ is a triple homomorphism, and that the range of Φ coincides with the JB^* -subtriple of A generated by a. In its turn, to verify the first fact, it is enough to prove that $\Phi(f\overline{g}f) = \Phi(f)\Phi(g)^*\Phi(f)$ for those $f, g \in C_0(sp(\sqrt{a^*a}))$ which are of the form $t \to tP(t^2)$ and $t \to tQ(t^2)$, for suitable complex polynomials P and Q, respectively. But, for such f, g we have

$$\Phi(f)\Phi(g)^*\Phi(f) = aP(a^*a)\overline{Q}(a^*a)a^*aP(a^*a) = \Phi(f\overline{g}f).$$

Let X denote the JB^* -subtriple generated by a. Since $\Phi(u) = a$, where u denotes the mapping $t \to t$ from $sp(\sqrt{a^*a})$ to \mathbb{C} , and Φ is an isometric triple homomorphism, we have that X is contained in the range of Φ . On the other hand, since $a(a^*a)^{n+1} = \{a, a(a^*a)^n, a\}$ for every $n \in \mathbb{N}$, an induction argument shows that $a(a^*a)^n$ belongs to X for every $n \in \mathbb{N}$, and hence that $\Phi(f)$ lies in X whenever $f \in C_0(sp(\sqrt{a^*a}))$ is of the form $t \to tP(t^2)$ for a suitable complex polynomial P. Since the set of such f's is dense in $C_0(sp(\sqrt{a^*a}))$, the range of Φ is contained in X.

Over fields of characteristic different from two, Jordan algebras are defined as those (possibly non associative) commutative algebras satisfying the identity $(x \cdot y) \cdot x^2 = x \cdot (y \cdot x^2)$. For a and b in a Jordan algebra, we put $U_a(b) := 2a \cdot (a \cdot b) - a^2 \cdot b$. Let A be an associative algebra. Then A becomes a Jordan algebra under the Jordan product defined by

$$a \cdot b := \frac{1}{2}(ab + ba).$$

Moreover, for all $a, b \in A$ we have

$$U_a(b) := 2a \cdot (a \cdot b) - a^2 \cdot b = aba.$$

Jordan subalgebras of A are, by definition, those subspaces J of A satisfying $J \cdot J \subseteq J$.

LEMMA 3.2. Let A be an associative algebra, let a and b be in A, and let n be in \mathbb{N} . Then both $a(ba)^n$ and $(ab)^n + (ba)^n$ belong to the Jordan subalgebra of A generated by $\{a, b\}$.

PROOF. Let C denote the Jordan subalgebra of A generated by $\{a, b\}$. We argue by induction on n. The lemma is true for n = 1 because $aba = U_a(b)$ and $ab + ba = 2(a \cdot b)$. Assume that the lemma is true for some value of n (say m). Then we have $a(ba)^{m+1} = U_a[b(ab)^m] \in C$ and $(ab)^{m+1} + (ba)^{m+1} = ab(ab)^m + b(ab)^m a = 2a \cdot [b(ab)^m] \in C$.

Let K be a compact subset of $[1, \infty[$. Then the linear mapping $\Psi : \mathcal{A}(K) \to \mathcal{A}(K)$, determined by

$$\Psi(f[ij]) := f[ij] \text{ if } i \neq j, \ \Psi(f[11]) := f[22], \ \Psi(f[22]) := f[11]$$

for every $f \in C(K)$, becomes an isometric involutive *-antiautomorphism of $\mathcal{A}(K)$. Therefore, the set of fixed elements for Ψ is a closed *-invariant Jordan subalgebra of $\mathcal{A}(K)$, and hence a Banach-Jordan *-algebra. Such a Banach-Jordan *-algebra will be denoted by $\mathcal{J}(K)$. Note that elements of $\mathcal{J}(K)$ are precisely those matrices $(f_{ij}) \in \mathcal{A}(K)$ satisfying $f_{11} = f_{22}$, or equivalently, those elements of $\mathcal{A}(K)$ of the form f([11]+[22])+g[12]+h[21]with $f, g, h \in C(K)$.

LEMMA 3.3. Let K be a compact subset of $[1, \infty[$, and let u stand for the element of C(K) defined by u(t) := t for every $t \in K$. Then $\mathcal{J}(K)$ is generated by u[21] as a Jordan-Banach *-algebra.

PROOF. Put $p := u[21] \in \mathcal{J}(K)$, and let J denote the closed *-invariant subalgebra of $\mathcal{J}(K)$ generated by p. We have $u^2[11] = p^*p$ and $u^2[22] = pp^*$, which, in view of Lemma 3.2, implies for $n \in \mathbb{N}$ that $u^{2n+1}[21] = p(p^*p)^n \in J$, $u^{2n+1}[12] = p^*(pp^*)^n \in J$, and

$$u^{2n}([11] + [22]) = (p^*p)^n + (pp^*)^n \in J.$$

Therefore, for every complex polynomial P, $uP(u^2)[21]$ and $uP(u^2)[12]$ lie in J, and, if P(0) = 0, then also $P(u^2)([11] + [22])$ lies in J. It follows $C(K)[21] \subseteq J$, $C(K)[21] \subseteq J$, and $C(K)([11] + [22]) \subseteq J$. This implies $\mathcal{J}(K) = J$.

 JB^* -algebras are defined as those Banach-Jordan *-algebras J satisfying $||U_a(a^*)|| = ||a||^3$ for every $a \in J$. C^* -algebras are JB^* -algebras under their Jordan products. As in the particular case of C^* -algebras, already commented, JB^* -algebras are JB^* -triples under the triple product $\{\cdot, \cdot, \cdot\}$ determined by $\{a, b, a\} := U_a(b^*)$ (see [1] and [12]).

THEOREM 3.4. Let J be a JB^* -algebra, and let e be a non self-adjoint idempotent in J. Then $K := \sigma(e)$ is a compact subset of $[1, \infty[$ whose maximum element (namely ||e||) is grater than 1, and there exists a unique continuous *-homomorphism $G : \mathcal{J}(K) \to J$ such that G(u[21]) = e, where u stand for the function $t \to t$ from K to \mathbb{C} . Moreover we have:

- The closure in J of the range of G coincides with the JB*-subalgebra of J generated by e.
- (2) G is injective if and only if 1 is not an isolated point of K.
- (3) If 1 is an isolated point of K, then ker(G) consists precisely of those matrices $(f_{ij}) \in \mathcal{J}(K)$ which vanish at every $t \in K \setminus \{1\}$ and satisfy

$$f_{11}(1) + f_{12}(1) + f_{21}(1) + f_{22}(1) = 0.$$

PROOF. Let J_e denote the JB^* -subalgebra of J generated by e. By [12] and [11], there exists a C^* -algebra A containing J_e as a JB^* -subalgebra. Therefore, by Lemma 3.1 and Theorem 2.6, $K := \sigma(e)$ is a compact subset of $[1, \infty[$ whose maximum element (namely ||e||) is grater than 1, and there exists a unique continuous *-homomorphism $F : \mathcal{A}(K) \to A$ such that F(u[21]) = e. Let G stands for the restriction of F to $\mathcal{J}(K)$. Then, clearly, G is a continuous *-homomorphism from $\mathcal{J}(K)$ to the JB^* -algebra underlying A, which satisfies G(u[21]) = e. Noticing that the JB^* -subalgebras of Aand J generated by e coincide, it follows from Lemma 3.3 that G is unique under the above conditions, and that the closure of the range of G is J_e . This last fact allows us to see G as a continuous *-homomorphisms from $\mathcal{J}(K)$ to J. Finally, Properties (2) and (3) for G in the present theorem follow from the corresponding ones for F in Theorem 2.6.

Let J be a Jordan algebra. For $a, b, c \in J$, we put

$$[a, b, c] := (a \cdot b) \cdot c - a \cdot (b \cdot c).$$

The centre of J is defined as the set of those elements $a \in J$ such that [a, J, J] = 0. It is well-known and easy to see that central elements a of J satisfy [J, J, a] = [J, a, J] = 0.

COROLLARY 3.5. Let J be a JB^* -algebra. Then the following assertions are equivalent:

- (1) For every $s \in [1, \infty[$ there exists an idempotent $e \in J$ such that ||e|| = s.
- (2) There exists a non self-adjoint idempotent in J.
- (3) There exists a non central self-adjoint idempotent in J.

PROOF. The implication $(1) \Rightarrow (2)$ is clear.

 $(2) \Rightarrow (3)$.- Let *e* be the non self-adjoint idempotent of *J* whose existence is assumed. Let *K* and $G : \mathcal{J}(K) \to A$ be the compact set and the *-homomorphism, respectively, given by Theorem 3.4. Put

$$p := \frac{1}{2}u(1+u)^{-1}([11] + [12] + [21] + [22]) \in \mathcal{J}(K),$$

where u stands for the function $t \to t$ from K to C, and $q := [12] \in \mathcal{J}(K)$. Then p is a self-adjoint idempotent, and we have

$$[p,q,q] = \frac{1}{8}(2[12] - u^{-1}([11] + [22])).$$

Noticing that, by Theorem 3.4, [p, q, q] does not belong to ker(G), it follows that G(p) is a non central self-adjoint idempotent of J.

 $(3) \Rightarrow (1)$.- Let *e* be the non central self-adjoint idempotent of *J* whose existence is assumed. By Lemma 2.5.5 of [4], there exists $a \in J$ such that $U_e(a) \neq e \cdot a$ or, equivalently, $[e, e, a] \neq 0$. Then, by [7, page 34], the mapping $D: J \to J$ defined by D(b) := [e, b, a] for every $b \in J$ becomes a continuous derivation of *J*, which clearly satisfies $D(e) \neq 0$. Now, arguing as in the proof of the implication $(3) \Rightarrow (1)$ in Corollary 2.7, we realize that Assertion (1) in the present corollary holds.

Let J be a JB^* -algebra containing a non self-adjoint idempotent e. Then the non central self-adjoint idempotent $p \in J$ provided by the above proof can be explicitly given as follows. Denote by J_e the JB^* -subalgebra of Jgenerated by e, and take a C^* -algebra A containing J_e as a JB^* -subalgebra. Then in A we have

$$p = \frac{1}{2} [(e + \sqrt{e^* e})(1 + \sqrt{e^* e})^{-1} + (e^* + \sqrt{ee^*})(1 + \sqrt{ee^*})^{-1}].$$

References

- R. B. BRAUN, W. KAUP, and H. UPMEIER, A holomorphic characterization of Jordan C^{*}-algebras. Math. Z. 161 (1978), 277-290.
- [2] Y. FRIEDMAN and B. RUSSO, Structure of the predual of a JBW*-triple, J. Reine Angew. Math. 356 (1985), 67-89.
- [3] K. R. GOODERAL, Notes on real and complex C^{*}-algebras. Shiva Math. Series 5, Devon, 1982.
- [4] H. HANCHE-OLSEN and E. STORMER, Jordan operator algebras. Monograph Stud. Math. 21, Pitman, 1984.
- [5] R. HARTE and M. MBEKHTA, On generalized inverses in C^{*}-algebras, Studia Math. 103 (1992), 71-77.
- [6] B. IOCHUM, G, LOUPIAS, and A. RODRÍGUEZ, Commutativity of C^{*}algebras and associativity of JB^{*}-algebras. Math. Proc. Cambridge Phil. Soc. 106 (1989), 281-291.
- [7] N. JACOBSON, Structure and representations of Jordan algebras. Amer. Math. Soc. Coll. Publ. 39, Providence, Rhode Island 1968.
- [8] W. KAUP, Algebraic characterization of symmetric complex Banach manifolds. Math. Ann. 228 (1977), 39-64.
- [9] W. KAUP, A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces. *Math. Z.* 183 (1983), 503-529.
- [10] A. RODRÍGUEZ, Contribución a la teoría de las C^{*}-álgebras con unidad. Tesis Doctorales de la Universidad de Granada 57, Secretariado de Publicaciones de la Universidad de Granada, Granada, 1974.
- [11] J. D. M. WRIGHT, Jordan C*-algebras. Michigan Math. J. 24 (1977), 291-302.
- [12] M. A. YOUNGSON, Non unital Banach Jordan algebras and C^{*}-triple systems. Proc. Edinburgh Math. Soc. 24 (1981), 19-31.

UNIVERSIDAD DE GRANADA, FACULTAD DE CIENCIAS. DEPARTAMENTO DE MATEMÁTICA APLICADA, 18071-GRANADA (SPAIN) *E-mail address*: juliobg@ugr.es

UNIVERSIDAD DE GRANADA, FACULTAD DE CIENCIAS. DEPARTAMENTO DE ANÁLISIS MATEMÁTICO, 18071-GRANADA (SPAIN)

E-mail address: apalacio@ugr.es