Non self-adjoint idempotents in C^{*} - and $J B^{*}$-algebras

Julio Becerra Guerrero and Ángel Rodríguez Palacios

Abstract

We prove that, if a $J B^{*}$-algebra contains a non self-adjoint idempotent, then it also contains a nonzero self-adjoint idempotent. This is achieved through an "almost description" of C^{*} - and $J B^{*}$ algebras generated by a non self-adjoint idempotent.

1. Introduction

It is well-known that, if a C^{*}-algebra contains a non self-adjoint idempotent, then it also contains a nonzero self-adjoint idempotent (see $[\mathbf{3}, \mathbf{5}]$). In the more general case of $J B^{*}$-algebras, a similar result seems to be previously unknown. As a matter of fact, although the $J B^{*}$-algebra generated by a non self-adjoint idempotent can be seen as a closed $*$-invariant Jordan subalgebra of a suitable C^{*}-algebra, the nonzero self-adjoint idempotents built by the associative methods need not lie in the given $J B^{*}$-algebra. Nevertheless, by introducing new techniques, we prove in this paper that, in fact, $J B^{*}$-algebras containing non self-adjoint idempotents also contain nonzero self-adjoint idempotents. The key tool is an "almost description" of C^{*} - and $J B^{*}$-algebras generated by a non self-adjoint idempotent, which is summarized in what follows.

Let A be a C^{*}-algebra containing a non self-adjoint idempotent e. We show in Corollary 2.3 that $K:=s p\left(\sqrt{e^{*} e}\right) \backslash\{0\}$ is a compact subset of $[1, \infty[$ whose maximum element is greater than 1 , and that, in general, no more can be said about K. Then we construct a Banach $*$-algebra $\mathcal{A}(K)$, which consists of all 2×2 matrices over $C(K)$ with an unusual multiplication, and has a distinguished non self-adjoint idempotent p, and prove in Theorem 2.6 the existence of a unique continuous $*$-homomorphism $F: \mathcal{A}(K) \rightarrow A$ such that $F(p)=e$. As a consequence, a C^{*}-algebra contains a non self-adjoint idempotent if and only if it contains a non central self-adjoint idempotent (Corollary 2.7).

[^0]As a transition between the C^{*} - and the $J B^{*}$ - case, we note that, for an element a in a C^{*}-algebra $A, s p\left(\sqrt{a^{*} a}\right) \backslash\{0\}$ can be determined in terms of the $J B^{*}$-algebra underlying A, and, even more, in terms of the $J B^{*}$-triple underlying A. Indeed, $\operatorname{sp}\left(\sqrt{a^{*} a}\right) \backslash\{0\}$ coincides with the "triple spectrum" $\sigma(a)$ of a (Lemma 3.1).

Now, let J be a $J B^{*}$-algebra containing a non self-adjoint idempotent e. We prove in Theorem 3.4 that $K:=\sigma(e)$ is a compact subset of $[1, \infty[$ whose maximum element is greater than 1 , and that, for a canonical closed *-invariant Jordan subalgebra $\mathcal{J}(K)$ of $\mathcal{A}(K)$ containing the distinguished non self-adjoint idempotent $p \in \mathcal{A}(K)$, there exists a unique continuous *-homomorphism $G: \mathcal{J}(K) \rightarrow J$ such that $G(p)=e$. As a consequence, a $J B^{*}$-algebra contains a non self-adjoint idempotent if and only if it contains a non central self-adjoint idempotent (Corollary 3.5).

2. The case of C^{*}-algebras

Let A be a C^{*}-algebra. In the case that A has not a unit, we denote by A_{1} the C^{*}-algebra obtained by adjoining a unit to A. Otherwise, we put $A_{1}:=A$. As usual, for $a \in A$, we define the spectrum of a as the nonempty compact subset $s p(a)$ of \mathbb{C} given by

$$
s p(a):=\left\{\lambda \in \mathbb{C}: a-\lambda \text { is not invertible in } A_{1}\right\} .
$$

The following lemma exploits some ideas in page 28 of [10].
Lemma 2.1. Let A be a C^{*}-algebra, and let e be a non self-adjoint idempotent in A. Then $\operatorname{sp}\left(i\left(e-e^{*}\right)\right)$ is a symmetric subset of the real line, and the mapping $\lambda \rightarrow 1+\lambda^{2}$ becomes a surjection from $\operatorname{sp}\left(i\left(e-e^{*}\right)\right) \backslash\{0\}$ onto $s p\left(e^{*} e\right) \backslash\{0,1\}$. Consequently, we have:
(1) $\|e\|^{2}=1+\left\|e-e^{*}\right\|^{2}$.
(2) $\left\{0,\|e\|^{2}\right\} \subseteq s p\left(e^{*} e\right) \subseteq\{0\} \cup\left[1,\|e\|^{2}\right]$.

Proof. A straightforward computation shows that, for $\lambda \in \mathbb{C}$, we have

$$
\lambda\left(1+\lambda^{2}\right)\left[i\left(e-e^{*}\right)-\lambda\right]=\left(e^{*}-i \lambda\right)\left[e^{*} e-\left(1+\lambda^{2}\right)\right](e+i \lambda)
$$

On the other hand, if λ is in $\mathbb{C} \backslash\{0, i,-i\}$, then $\left(e^{*}-i \lambda\right)$ and $(e+i \lambda)$ are invertible in A_{1}, and we have $\lambda\left(1+\lambda^{2}\right) \neq 0$. It follows that, for such a $\lambda, i\left(e-e^{*}\right)-\lambda$ is invertible in A_{1} if and only if so is $e^{*} e-\left(1+\lambda^{2}\right)$. Now, keeping in mind that $s p\left(i\left(e-e^{*}\right)\right)$ (respectively, $s p\left(e^{*} e\right)$) consists only of real (respectively, nonnegative real) numbers, we easily derive that $\operatorname{sp}\left(i\left(e-e^{*}\right)\right.$) is symmetric (relative to zero), and that the mapping $\lambda \rightarrow 1+\lambda^{2}$ is a surjection from $s p\left(i\left(e-e^{*}\right)\right) \backslash\{0\}$ onto $s p\left(e^{*} e\right) \backslash\{0,1\}$. The consequences, listed in the statement, are obvious.

The following corollary is well-known (see $[\mathbf{3}, \mathbf{5}]$).
Corollary 2.2. Let A be a C^{*}-algebra, and let e be a non self-adjoint idempotent in A. Then there exists a self-adjoint idempotent $p \in A$ such that $e p=e$.

Proof. By Lemma 2.1, zero is an isolated point of $s p\left(e^{*} e\right)$, and hence the function $\chi: \operatorname{sp}\left(e^{*} e\right) \rightarrow \mathbb{C}$, defined by $\chi(0):=0$ and $\chi(t):=1$ for $t \in \operatorname{sp}\left(e^{*} e\right) \backslash\{0\}$, is continuous. Now $p:=\chi\left(e^{*} e\right)$ is a self-adjoint idempotent in A satisfying $e^{*} e p=e^{*} e \Rightarrow e^{*} e(1-p)=0 \Rightarrow(1-p) e^{*} e(1-p)=0 \Rightarrow$ $e(1-p)=0 \Rightarrow e p=p$.

We will see in Corollary 2.7 below that the self-adjoint idempotent p in the above proof is in fact non central.

Corollary 2.3. For a subset K of the complex plane, the following assertions are equivalent:
(1) K is a compact subset of $[1, \infty[$ whose maximum element is greater than 1.
(2) There exists a C^{*}-algebra A, and a non self-adjoint idempotent $e \in A$, such that $\operatorname{sp}\left(\sqrt{e^{*} e}\right) \backslash\{0\}=K$.

Proof. (2) \Rightarrow (1).- By Lemma 2.1
$(1) \Rightarrow(2)$.- Assume that (1) holds. Let A denote the C^{*}-algebra of all continuous functions from K to the C^{*}-algebra $M_{2}(\mathbb{C})$ (of all 2×2 matrices with entries in \mathbb{C}), and let e stand for the element of A defined by

$$
e(t):=\left(\begin{array}{cc}
1 & \sqrt{t^{2}-1} \\
0 & 0
\end{array}\right)
$$

for every $t \in K$. Then, for $t \in K, e(t)$ is an idempotent in $M_{2}(\mathbb{C})$ different from 0 and 1. Moreover, since $e(t) e(t)^{*}=t^{2}\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$, we have $\|e(t)\|=t$, and hence $\operatorname{sp}\left(\sqrt{e(t)^{*} e(t)}\right) \backslash\{0\}=\{t\}$. It follows that e is a non self-adjoint idempotent of A satisfying $\operatorname{sp}\left(\sqrt{e^{*} e}\right) \backslash\{0\}=K$.

Let K be a compact subset of \mathbb{C}. We denote by $C(K)$ the C^{*}-algebra of all continuous complex valued functions on K. In the case that $0 \in K$, we denote by $C_{0}(K)$ the closed ideal of $C(K)$ consisting of those functions $f \in C(K)$ satisfying $f(0)=0$.

Lemma 2.4. Let A be a C^{*}-algebra, and let a be in A such that $0 \in \operatorname{sp}\left(a^{*} a\right)$. Then there exists a unique linear isometry

$$
\Phi: C_{0}\left(s p\left(\sqrt{a^{*} a}\right)\right) \rightarrow A
$$

satisfying $\Phi(f)=a h\left(\sqrt{a^{*} a}\right)$ for those $f \in C_{0}\left(\operatorname{sp}\left(\sqrt{a^{*} a}\right)\right)$ for which there exists $h \in C\left(\operatorname{sp}\left(\sqrt{a^{*} a}\right)\right)$ such that $f(t)=t h(t)$ for every $t \in \operatorname{sp}\left(\sqrt{a^{*} a}\right)$. Moreover, for $f, g \in C_{0}\left(s p\left(\sqrt{a^{*} a}\right)\right)$, we have

$$
\begin{gathered}
\Phi(f) \Phi(\bar{g})^{*}=f\left(\sqrt{a a^{*}}\right) g\left(\sqrt{a a^{*}}\right), \Phi(\bar{f})^{*} \Phi(g)=f\left(\sqrt{a^{*} a}\right) g\left(\sqrt{a^{*} a}\right) \\
\Phi(f) g\left(\sqrt{a^{*} a}\right)=\Phi(f g), \text { and } g\left(\sqrt{a a^{*}}\right) \Phi(f)=\Phi(g f)
\end{gathered}
$$

Proof. The first conclusion in the statement is nothing other than Lemma 8 of [6]. In view of the Stone-Weierstrass theorem, to prove the equality $\Phi(f) \Phi(\bar{g})^{*}=f\left(\sqrt{a a^{*}}\right) g\left(\sqrt{a a^{*}}\right)$ for $f, g \in C_{0}\left(s p\left(\sqrt{a^{*} a}\right)\right)$, we can assume that f and g are of the form $t \rightarrow t P\left(t^{2}\right)$ and $t \rightarrow t Q\left(t^{2}\right)$, for suitable complex polynomials P and Q, respectively. Then we have

$$
\Phi(f) \Phi(\bar{g})^{*}=a P\left(a^{*} a\right) Q\left(a^{*} a\right) a^{*}=a a^{*} P\left(a a^{*}\right) Q\left(a a^{*}\right)=f\left(\sqrt{a a^{*}}\right) g\left(\sqrt{a a^{*}}\right)
$$

as desired. The proof of the equality $\Phi(\bar{f})^{*} \Phi(g)=f\left(\sqrt{a^{*} a}\right) g\left(\sqrt{a^{*} a}\right)$ is similar. To realize that $\Phi(f) g\left(\sqrt{a^{*} a}\right)=\Phi(f g)$ and $g\left(\sqrt{a a^{*}}\right) \Phi(f)=\Phi(g f)$, take f of the form $t \rightarrow t P\left(t^{2}\right)$ for a complex polynomial P, and g of the form $t \rightarrow Q\left(t^{2}\right)$, for a complex polynomial Q with $Q(0)=0$.

Let K be a compact subset of $[1, \infty[$. Let u stand for the element of $C(K)$ defined by $u(t):=t$ for every $t \in K$. We denote by $\mathcal{A}(K)$ the complex Banach $*$-algebra whose vector space is that of all 2×2 matrices with entries in $C(K)$, whose (bilinear) product is determined by the equalities $(f[i j])(g[k l]):=(f g)[i l]$ if $j=k$ and $(f[i j])(g[k l]):=\left(u^{-1} f g\right)[i l]$ if $j \neq k$, whose norm is given by $\left\|\left(f_{i j}\right)\right\|:=\left\|f_{11}\right\|+\left\|f_{12}\right\|+\left\|f_{21}\right\|+\left\|f_{22}\right\|$, and whose (conjugate-linear) involution $*$ is determined by $(f[i j])^{*}:=\bar{f}[j i]$. Here, as usual, for $f \in C(K)$ and $i, j \in\{1,2\}, f[i j]$ means the matrix having f in the (i, j)-position and 0's elsewhere. For later computations, it is useful to see $\mathcal{A}(K)$ as a $C(K)$-module in the natural manner, namely by defining the product of a function $f \in C(K)$ and a matrix $\left(f_{i j}\right) \in \mathcal{A}(K)$ by $f\left(f_{i j}\right):=\left(f f_{i j}\right)$. In this regarding, we straightforwardly realize that $\mathcal{A}(K)$ becomes in fact an algebra over $C(K)$, i.e., the operators of left and right multiplication by arbitrary elements of $\mathcal{A}(K)$ are $C(K)$-module homomorphisms. Moreover, the symbol $f[i j]$ can now be read as the product of the function $f \in C(K)$ and the matrix $[i j] \in \mathcal{A}(K)$, where, for $i, j \in\{1,2\}$, $[i j]$ stands for the matrix having the constant function equal to one in the (i, j)-position and 0's elsewhere.

Lemma 2.5. Let K be a compact subset of $[1, \infty[$, and let u stand for the element of $C(K)$ defined by $u(t):=t$ for every $t \in K$. Then $\mathcal{A}(K)$ is generated by $u[21]$ as a Banach *-algebra.

Proof. Put $p:=u[21]$, and let C denote the closed $*$-invariant subalgebra of $\mathcal{A}(K)$ generated by p. We have $u^{2}[11]=p^{*} p \in C$. Therefore, since $C(K)$ is bicontinuously algebra-isomorphic to $C(K)[11]$ by means of the mapping $f \rightarrow f[11]$, and $C(K)$ is generated by u^{2} as a Banach algebra, we obtain that $C(K)[11] \subseteq C$, and hence that

$$
C(K)[21]=u C(K)[21]=(u[21])(C(K)[11])=p(C(K)[11]) \subseteq C
$$

Starting with the fact $u^{2}[22]=p p^{*} \in C$, a similar argument shows that $C(K)[22]$ and $C(K)[12]$ are contained in C. It follows that $\mathcal{A}(K)=C$.

Now, we are ready to prove the main result in this section.

Theorem 2.6. Let A be a C^{*}-algebra, and let e be a non self-adjoint idempotent in A. Then $K:=s p\left(\sqrt{e^{*} e}\right) \backslash\{0\}$ is a compact subset of $[1, \infty[$ whose maximum element (namely $\|e\|$) is grater than 1, and there exists a unique continuous $*$-homomorphism $F: \mathcal{A}(K) \rightarrow A$ such that $F(u[21])=e$, where u stands for the function $t \rightarrow t$ from K to \mathbb{C}. Moreover we have:
(1) The closure in A of the range of F coincides with the C^{*}-subalgebra of A generated by e.
(2) F is injective if and only if either 1 does not belong to K or 1 is an accumulation point of K.
(3) If 1 is an isolated point of K, then $\operatorname{ker}(F)$ consists precisely of those matrices $\left(f_{i j}\right) \in \mathcal{A}(K)$ which vanish at every $t \in K \backslash\{1\}$ and satisfy

$$
f_{11}(1)+f_{12}(1)+f_{21}(1)+f_{22}(1)=0 .
$$

Proof. By Corollary 2.3, we have that $K:=\operatorname{sp}\left(\sqrt{e^{*} e}\right) \backslash\{0\}$ is a compact subset of $[1, \infty[$ whose maximum element (namely $\|e\|$) is grater than 1. As a consequence, the C^{*}-algebras $C_{0}\left(s p\left(\sqrt{e^{*} e}\right)\right)$ and $C(K)$ can and will be identified in an obvious way. Let $\Phi: C(K) \rightarrow A$ be the linear isometry given by Lemma 2.4 when we take in such a lemma $a:=e$. For $i, j \in\{1,2\}$, consider the linear isometry $\Phi_{i j}: C(K) \rightarrow A$ defined, for $f \in C(K)$, by

$$
\Phi_{11}(f):=f\left(\sqrt{e^{*} e}\right), \Phi_{22}(f):=f\left(\sqrt{e e^{*}}\right), \Phi_{21}(f):=\Phi(f), \Phi_{12}(f):=\Phi(\bar{f})^{*}
$$

We claim that, for $f, g \in C(K)$ and $i, j, k, l \in\{1,2\}$, we have

$$
\Phi_{i j}(f) \Phi_{k l}(g)=\Phi_{i l}(f g) \text { if } j=k, \text { and } \Phi_{i j}(f) \Phi_{k l}(g)=\Phi_{i l}\left(u^{-1} f g\right) \text { if } j \neq k .
$$

Indeed, the equality $\Phi_{i j}(f) \Phi_{k l}(g)=\Phi_{i l}(f g)$ for $j=k$ follows from Lemma 2.4. To realize that $\Phi_{i j}(f) \Phi_{k l}(g)=\Phi_{i l}\left(u^{-1} f g\right)$ if $j \neq k$, keep in mind that e is an idempotent, and take f (respectively g) of the form $t \rightarrow P\left(t^{2}\right)$ for a complex polynomial P with $P(0)=0$, if $i=j$ (respectively, $k=l$), and of the form $t \rightarrow t P\left(t^{2}\right)$ for some complex polynomial P, otherwise. Now that the claim is proved, it is clear that the mapping $F: \mathcal{A}(K) \rightarrow A$ defined by

$$
F\left(\left(f_{i j}\right)\right):=\Phi_{11}\left(f_{11}\right)+\Phi_{12}\left(f_{12}\right)+\Phi_{21}\left(f_{21}\right)+\Phi_{22}\left(f_{22}\right)
$$

becomes a continuous $*$-homomorphism satisfying $F(u[21])=e$. Moreover, both the uniqueness of F under the above conditions, and that the closure in A of the range of F coincides with the C^{*}-subalgebra of A generated by e, follow from Lemma 2.5.

Let $\left(f_{i j}\right)$ be in $\mathcal{A}(K)$. Then we have:

$$
\begin{aligned}
& {[11]\left(f_{i j}\right)[11]=\left(f_{11}+u^{-1} f_{12}+u^{-1} f_{21}+u^{-2} f_{22}\right)[11],} \\
& {[12]\left(f_{i j}\right)[12]=\left(u^{-1} f_{11}+u^{-2} f_{12}+f_{21}+u^{-1} f_{22}\right)[12],} \\
& {[21]\left(f_{i j}\right)[21]=\left(u^{-1} f_{11}+f_{12}+u^{-2} f_{21}+u^{-1} f_{22}\right)[21],} \\
& {[22]\left(f_{i j}\right)[22]=\left(u^{-2} f_{11}+u^{-1} f_{12}+u^{-1} f_{21}+f_{22}\right)[22] .}
\end{aligned}
$$

Assume that $\left(f_{i j}\right)$ is in $\operatorname{ker}(F)$. Then, since $\operatorname{ker}(F)$ is an ideal of $\mathcal{A}(K)$, and, for all $i, j \in\{1,2\}$, the restriction of F to $C(K)[i j]$ is an isometry, we deduce:

$$
\begin{aligned}
& f_{11}+u^{-1} f_{12}+u^{-1} f_{21}+u^{-2} f_{22}=0 \\
& u^{-1} f_{11}+u^{-2} f_{12}+f_{21}+u^{-1} f_{22}=0 \\
& u^{-1} f_{11}+f_{12}+u^{-2} f_{21}+u^{-1} f_{22}=0 \\
& u^{-2} f_{11}+u^{-1} f_{12}+u^{-1} f_{21}+f_{22}=0 .
\end{aligned}
$$

Therefore, for every $t \in K$ we have:

$$
\begin{aligned}
t^{2} f_{11}(t)+t f_{12}(t)+t f_{21}(t)+f_{22}(t) & =0 \\
t f_{11}(t)+f_{12}(t)+t^{2} f_{21}(t)+t f_{22}(t) & =0 \\
t f_{11}(t)+t^{2} f_{12}(t)+f_{21}(t)+t f_{22}(t) & =0 \\
f_{11}(t)+t f_{12}(t)+t f_{21}(t)+t^{2} f_{22}(t) & =0
\end{aligned}
$$

As a first consequence, if 1 belongs to K, then

$$
f_{11}(1)+f_{12}(1)+f_{21}(1)+f_{22}(1)=0 .
$$

On the other hand, keeping in mind that, for $t \in K \backslash\{1\}$, we have

$$
\left|\begin{array}{cccc}
t^{2} & t & t & 1 \\
t & 1 & t^{2} & t \\
t & t^{2} & 1 & t \\
1 & t & t & t^{2}
\end{array}\right|=-\left(t^{2}-1\right)^{4} \neq 0
$$

for such a t we deduce

$$
f_{11}(t)=f_{12}(t)=f_{21}(t)=f_{22}(t)=0
$$

Therefore, if either 1 does not belong to K or 1 is an accumulation point of K, then

$$
f_{11}=f_{12}=f_{21}=f_{22}=0
$$

Thus F is injective when either 1 does not belong to K or 1 is an accumulation point of K.

Assume that 1 is an isolated point of K. Then the function $\chi: K \rightarrow \mathbb{C}$, defined by $\chi(1):=1$ and $\chi(t):=0$ for $t \in K \backslash\{1\}$, is continuous. Put $p:=F(\chi[11]), q:=F(\chi[22])$, and $r:=F(\chi[12])$. Since, for $i, j, k, l \in\{1,2\}$ the equalities $(\chi[i j])^{*}=\chi[j i]$ and $(\chi[i j])(\chi[k l])=\chi[i l]$ hold, we have that p and q are self-adjoint idempotents of A satisfying $p q p=p$ (equivalently, $p \leq q$) and $q p q=q$ (equivalently, $q \leq p$), and that $p q=r$. It follows

$$
p=q=r=r^{*}
$$

Let $\left(f_{i j}\right)$ be in $\mathcal{A}(K)$ vanishing at every $t \in K \backslash\{1\}$ and such that $f_{11}(1)+f_{12}(1)+f_{21}(1)+f_{22}(1)=0$. Then we have

$$
\left(f_{i j}\right)=f_{11}(1)(\chi[11])+f_{12}(1)(\chi[12])+f_{21}(1)(\chi[21])+f_{22}(1)(\chi[22])
$$

and hence

$$
F\left(\left(f_{i j}\right)\right)=\left(f_{11}(1)+f_{12}(1)+f_{21}(1)+f_{22}(1)\right) p=0
$$

Corollary 2.7. Let A be a C^{*}-algebra. Then the following assertions are equivalent:
(1) For every $s \in[1, \infty[$ there exists an idempotent $e \in A$ such that $\|e\|=s$.
(2) There exists a non self-adjoint idempotent in A.
(3) There exists a non central self-adjoint idempotent in A.

Proof. The implication $(1) \Rightarrow(2)$ is clear.
$(2) \Rightarrow(3)$.- Let e be the non self-adjoint idempotent of A whose existence is assumed. Let K and $F: \mathcal{A}(K) \rightarrow A$ be the compact set and the *homomorphism, respectively, given by Theorem 2.6. Put $p:=[11] \in \mathcal{A}(K)$ and $q:=[12] \in \mathcal{A}(K)$. Then p is a self-adjoint idempotent, and we have $p q-q p=[12]-u^{-1}[11]$, where u stands for the function $t \rightarrow t$ from K to \mathbb{C}. Noticing that, by Theorem 2.6, $p q-q p$ does not belong to $\operatorname{ker}(F)$, it follows that $F(p)$ is a non central self-adjoint idempotent of A.
$(3) \Rightarrow(1)$.- Let e be the non central self-adjoint idempotent of A whose existence is assumed. Take $a \in A$ with $e a-a e \neq 0$. Then the mapping $D: A \rightarrow A$ defined by $D(b):=b a-a b$ for every $b \in A$ becomes a continuous derivation such that $D(e) \neq 0$. Since, for $z \in \mathbb{C}, \exp (z D)$ is a continuous automorphism of A, it follows that the mapping $f: z \rightarrow \exp (z D)(e)$ from \mathbb{C} to A is an entire function with $f^{\prime}(0)=D(e) \neq 0$, and whose range consists only of nonzero idempotents of A. Now, since $\|f(0)\|=1$, Liouville's theorem implies that $\{\|f(z)\|: z \in \mathbb{C}\}=[1, \infty[$.

3. The case of $J B^{*}$-algebras

We recall that a $J B^{*}$-triple is a complex Banach space X with a continuous triple product $\{\cdot, \cdot, \cdot\}: X \times X \times X \rightarrow X$ which is linear and symmetric in the outer variables, and conjugate-linear in the middle variable, and satisfies:
(1) For all x in X, the mapping $y \rightarrow\{x, x, y\}$ from X to X is a hermitian operator on X and has nonnegative spectrum.
(2) The main identity

$$
\{a, b,\{x, y, z\}\}=\{\{a, b, x\}, y, z\}-\{x,\{b, a, y,\}, z\}+\{x, y,\{a, b, z\}\}
$$

holds for all a, b, x, y, z in X.
(3) $\|\{x, x, x\}\|=\|x\|^{3}$ for every x in X.

Concerning Condition (1) above, we also recall that a bounded linear operator T on a complex Banach space X is said to be hermitian if $\|\exp (i r T)\|=1$ for every r in \mathbb{R}.

Examples of $J B^{*}$-triples are all C^{*}-algebras under the triple product $\{\cdot, \cdot, \cdot\}$ determined by $\{a, b, a\}:=a b^{*} a$.

Let X be a $J B^{*}$-triple, and let x be in X. It is well-known that there is a unique couple (K, ϕ), where K is a compact subset of $[0, \infty[$ with $0 \in K$, and ϕ is an isometric triple homomorphism from $C_{0}(K)$ to X, such that
the range of ϕ coincides with the $J B^{*}$-subtriple of X generated by x, and $\phi(u)=x$, where u stands for the mapping $t \rightarrow t$ from K to \mathbb{C} (see $[8,4.8]$, $[\mathbf{9}, 1.15]$, and $[\mathbf{2}])$. The locally compact subset $K \backslash\{0\}$ of $] 0, \infty[$ is called the triple spectrum of x, and will be denoted by $\sigma(x)$. We note that $\sigma(x)$ does not change when we replace X with any $J B^{*}$-subtriple of X containing x.

Lemma 3.1. Let A be a C^{*}-algebra, and let a be in A such that $0 \in \operatorname{sp}\left(a^{*} a\right)$. Then we have $\sigma(a)=\operatorname{sp}\left(\sqrt{a^{*} a}\right) \backslash\{0\}$.

Proof. Let $\Phi: C_{0}\left(s p\left(\sqrt{a^{*} a}\right)\right) \rightarrow A$ be the linear isometry given by Lemma 2.4. It is enough to show that Φ is a triple homomorphism, and that the range of Φ coincides with the $J B^{*}$-subtriple of A generated by a. In its turn, to verify the first fact, it is enough to prove that $\Phi(f \bar{g} f)=\Phi(f) \Phi(g)^{*} \Phi(f)$ for those $f, g \in C_{0}\left(s p\left(\sqrt{a^{*} a}\right)\right)$ which are of the form $t \rightarrow t P\left(t^{2}\right)$ and $t \rightarrow t Q\left(t^{2}\right)$, for suitable complex polynomials P and Q, respectively. But, for such f, g we have

$$
\Phi(f) \Phi(g)^{*} \Phi(f)=a P\left(a^{*} a\right) \bar{Q}\left(a^{*} a\right) a^{*} a P\left(a^{*} a\right)=\Phi(f \bar{g} f)
$$

Let X denote the $J B^{*}$-subtriple generated by a. Since $\Phi(u)=a$, where u denotes the mapping $t \rightarrow t$ from $s p\left(\sqrt{a^{*} a}\right)$ to \mathbb{C}, and Φ is an isometric triple homomorphism, we have that X is contained in the range of Φ. On the other hand, since $a\left(a^{*} a\right)^{n+1}=\left\{a, a\left(a^{*} a\right)^{n}, a\right\}$ for every $n \in \mathbb{N}$, an induction argument shows that $a\left(a^{*} a\right)^{n}$ belongs to X for every $n \in \mathbb{N}$, and hence that $\Phi(f)$ lies in X whenever $f \in C_{0}\left(s p\left(\sqrt{a^{*} a}\right)\right)$ is of the form $t \rightarrow t P\left(t^{2}\right)$ for a suitable complex polynomial P. Since the set of such f^{\prime} 's is dense in $C_{0}\left(\operatorname{sp}\left(\sqrt{a^{*} a}\right)\right)$, the range of Φ is contained in X.

Over fields of characteristic different from two, Jordan algebras are defined as those (possibly non associative) commutative algebras satisfying the identity $(x \cdot y) \cdot x^{2}=x \cdot\left(y \cdot x^{2}\right)$. For a and b in a Jordan algebra, we put $U_{a}(b):=2 a \cdot(a \cdot b)-a^{2} \cdot b$. Let A be an associative algebra. Then A becomes a Jordan algebra under the Jordan product defined by

$$
a \cdot b:=\frac{1}{2}(a b+b a) .
$$

Moreover, for all $a, b \in A$ we have

$$
U_{a}(b):=2 a \cdot(a \cdot b)-a^{2} \cdot b=a b a
$$

Jordan subalgebras of A are, by definition, those subspaces J of A satisfying $J \cdot J \subseteq J$.

Lemma 3.2. Let A be an associative algebra, let a and b be in A, and let n be in \mathbb{N}. Then both $a(b a)^{n}$ and $(a b)^{n}+(b a)^{n}$ belong to the Jordan subalgebra of A generated by $\{a, b\}$.

Proof. Let C denote the Jordan subalgebra of A generated by $\{a, b\}$. We argue by induction on n. The lemma is true for $n=1$ because $a b a=U_{a}(b)$ and $a b+b a=2(a \cdot b)$. Assume that the lemma is true for
some value of n (say m). Then we have $a(b a)^{m+1}=U_{a}\left[b(a b)^{m}\right] \in C$ and $(a b)^{m+1}+(b a)^{m+1}=a b(a b)^{m}+b(a b)^{m} a=2 a \cdot\left[b(a b)^{m}\right] \in C$.

Let K be a compact subset of $[1, \infty[$. Then the linear mapping $\Psi: \mathcal{A}(K) \rightarrow \mathcal{A}(K)$, determined by

$$
\Psi(f[i j]):=f[i j] \text { if } i \neq j, \Psi(f[11]):=f[22], \Psi(f[22]):=f[11]
$$

for every $f \in C(K)$, becomes an isometric involutive $*$-antiautomorphism of $\mathcal{A}(K)$. Therefore, the set of fixed elements for Ψ is a closed $*$-invariant Jordan subalgebra of $\mathcal{A}(K)$, and hence a Banach-Jordan *-algebra. Such a Banach-Jordan $*$-algebra will be denoted by $\mathcal{J}(K)$. Note that elements of $\mathcal{J}(K)$ are precisely those matrices $\left(f_{i j}\right) \in \mathcal{A}(K)$ satisfying $f_{11}=f_{22}$, or equivalently, those elements of $\mathcal{A}(K)$ of the form $f([11]+[22])+g[12]+h[21]$ with $f, g, h \in C(K)$.

Lemma 3.3. Let K be a compact subset of $[1, \infty[$, and let u stand for the element of $C(K)$ defined by $u(t):=t$ for every $t \in K$. Then $\mathcal{J}(K)$ is generated by $u[21]$ as a Jordan-Banach *-algebra.

Proof. Put $p:=u[21] \in \mathcal{J}(K)$, and let J denote the closed $*$-invariant subalgebra of $\mathcal{J}(K)$ generated by p. We have $u^{2}[11]=p^{*} p$ and $u^{2}[22]=p p^{*}$, which, in view of Lemma 3.2, implies for $n \in \mathbb{N}$ that $u^{2 n+1}[21]=p\left(p^{*} p\right)^{n} \in J$, $u^{2 n+1}[12]=p^{*}\left(p p^{*}\right)^{n} \in J$, and

$$
u^{2 n}([11]+[22])=\left(p^{*} p\right)^{n}+\left(p p^{*}\right)^{n} \in J .
$$

Therefore, for every complex polynomial $P, u P\left(u^{2}\right)[21]$ and $u P\left(u^{2}\right)[12]$ lie in J, and, if $P(0)=0$, then also $P\left(u^{2}\right)([11]+[22])$ lies in J. It follows $C(K)[21] \subseteq J, C(K)[21] \subseteq J$, and $C(K)([11]+[22]) \subseteq J$. This implies $\mathcal{J}(K)=J$.
$J B^{*}$-algebras are defined as those Banach-Jordan $*$-algebras J satisfying $\left\|U_{a}\left(a^{*}\right)\right\|=\|a\|^{3}$ for every $a \in J . C^{*}$-algebras are $J B^{*}$-algebras under their Jordan products. As in the particular case of C^{*}-algebras, already commented, $J B^{*}$-algebras are $J B^{*}$-triples under the triple product $\{\cdot, \cdot, \cdot\}$ determined by $\{a, b, a\}:=U_{a}\left(b^{*}\right)$ (see [1] and [12]).

Theorem 3.4. Let J be a $J B^{*}$-algebra, and let e be a non self-adjoint idempotent in J. Then $K:=\sigma(e)$ is a compact subset of $[1, \infty[$ whose maximum element (namely $\|e\|$) is grater than 1, and there exists a unique continuous $*$-homomorphism $G: \mathcal{J}(K) \rightarrow J$ such that $G(u[21])=e$, where u stand for the function $t \rightarrow t$ from K to \mathbb{C}. Moreover we have:
(1) The closure in J of the range of G coincides with the $J B^{*}$-subalgebra of J generated by e.
(2) G is injective if and only if 1 is not an isolated point of K.
(3) If 1 is an isolated point of K, then $\operatorname{ker}(G)$ consists precisely of those matrices $\left(f_{i j}\right) \in \mathcal{J}(K)$ which vanish at every $t \in K \backslash\{1\}$ and satisfy

$$
f_{11}(1)+f_{12}(1)+f_{21}(1)+f_{22}(1)=0 .
$$

Proof. Let J_{e} denote the $J B^{*}$-subalgebra of J generated by e. By [12] and [11], there exists a C^{*}-algebra A containing J_{e} as a $J B^{*}$-subalgebra. Therefore, by Lemma 3.1 and Theorem $2.6, K:=\sigma(e)$ is a compact subset of $[1, \infty[$ whose maximum element (namely $\|e\|$) is grater than 1 , and there exists a unique continuous $*$-homomorphism $F: \mathcal{A}(K) \rightarrow A$ such that $F(u[21])=e$. Let G stands for the restriction of F to $\mathcal{J}(K)$. Then, clearly, G is a continuous $*$-homomorphism from $\mathcal{J}(K)$ to the $J B^{*}$-algebra underlying A, which satisfies $G(u[21])=e$. Noticing that the $J B^{*}$-subalgebras of A and J generated by e coincide, it follows from Lemma 3.3 that G is unique under the above conditions, and that the closure of the range of G is J_{e}. This last fact allows us to see G as a continuous $*$-homomorphisms from $\mathcal{J}(K)$ to J. Finally, Properties (2) and (3) for G in the present theorem follow from the corresponding ones for F in Theorem 2.6.

Let J be a Jordan algebra. For $a, b, c \in J$, we put

$$
[a, b, c]:=(a \cdot b) \cdot c-a \cdot(b \cdot c)
$$

The centre of J is defined as the set of those elements $a \in J$ such that $[a, J, J]=0$. It is well-known and easy to see that central elements a of J satisfy $[J, J, a]=[J, a, J]=0$.

Corollary 3.5. Let J be a $J B^{*}$-algebra. Then the following assertions are equivalent:
(1) For every $s \in[1, \infty[$ there exists an idempotent $e \in J$ such that $\|e\|=s$.
(2) There exists a non self-adjoint idempotent in J.
(3) There exists a non central self-adjoint idempotent in J.

Proof. The implication $(1) \Rightarrow(2)$ is clear.
$(2) \Rightarrow(3)$.- Let e be the non self-adjoint idempotent of J whose existence is assumed. Let K and $G: \mathcal{J}(K) \rightarrow A$ be the compact set and the *-homomorphism, respectively, given by Theorem 3.4. Put

$$
p:=\frac{1}{2} u(1+u)^{-1}([11]+[12]+[21]+[22]) \in \mathcal{J}(K)
$$

where u stands for the function $t \rightarrow t$ from K to \mathbb{C}, and $q:=[12] \in \mathcal{J}(K)$. Then p is a self-adjoint idempotent, and we have

$$
[p, q, q]=\frac{1}{8}\left(2[12]-u^{-1}([11]+[22])\right)
$$

Noticing that, by Theorem 3.4, $[p, q, q]$ does not belong to $\operatorname{ker}(G)$, it follows that $G(p)$ is a non central self-adjoint idempotent of J.
$(3) \Rightarrow(1)$.- Let e be the non central self-adjoint idempotent of J whose existence is assumed. By Lemma 2.5.5 of [4], there exists $a \in J$ such that $U_{e}(a) \neq e \cdot a$ or, equivalently, $[e, e, a] \neq 0$. Then, by $[7$, page 34], the mapping $D: J \rightarrow J$ defined by $D(b):=[e, b, a]$ for every $b \in J$ becomes a continuous derivation of J, which clearly satisfies $D(e) \neq 0$. Now, arguing
as in the proof of the implication $(3) \Rightarrow(1)$ in Corollary 2.7, we realize that Assertion (1) in the present corollary holds.

Let J be a $J B^{*}$-algebra containing a non self-adjoint idempotent e. Then the non central self-adjoint idempotent $p \in J$ provided by the above proof can be explicitly given as follows. Denote by J_{e} the $J B^{*}$-subalgebra of J generated by e, and take a C^{*}-algebra A containing J_{e} as a $J B^{*}$-subalgebra. Then in A we have

$$
p=\frac{1}{2}\left[\left(e+\sqrt{e^{*} e}\right)\left(1+\sqrt{e^{*} e}\right)^{-1}+\left(e^{*}+\sqrt{e e^{*}}\right)\left(1+\sqrt{e e^{*}}\right)^{-1}\right] .
$$

References

[1] R. B. BRAUN, W. KAUP, and H. UPMEIER, A holomorphic characterization of Jordan C^{*}-algebras. Math. Z. 161 (1978), 277-290.
[2] Y. FRIEDMAN and B. RUSSO, Structure of the predual of a $J B W^{*}$-triple, J. Reine Angew. Math. 356 (1985), 67-89.
[3] K. R. GOODERAL, Notes on real and complex C^{*}-algebras. Shiva Math. Series 5, Devon, 1982.
[4] H. HANCHE-OLSEN and E. STORMER, Jordan operator algebras. Monograph Stud. Math. 21, Pitman, 1984.
[5] R. HARTE and M. MBEKHTA, On generalized inverses in C^{*}-algebras, Studia Math. 103 (1992), 71-77.
[6] B. IOCHUM, G, LOUPIAS, and A. RODRÍGUEZ, Commutativity of C^{*} algebras and associativity of $J B^{*}$-algebras. Math. Proc. Cambridge Phil. Soc. 106 (1989), 281-291.
[7] N. JACOBSON, Structure and representations of Jordan algebras. Amer. Math. Soc. Coll. Publ. 39, Providence, Rhode Island 1968.
[8] W. KAUP, Algebraic characterization of symmetric complex Banach manifolds. Math. Ann. 228 (1977), 39-64.
[9] W. KAUP, A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces. Math. Z. 183 (1983), 503-529.
[10] A. RODRÍGUEZ, Contribución a la teoría de las C^{*}-álgebras con unidad. Tesis Doctorales de la Universidad de Granada 57, Secretariado de Publicaciones de la Universidad de Granada, Granada, 1974.
[11] J. D. M. WRIGHT, Jordan C^{*}-algebras. Michigan Math. J. 24 (1977), 291-302.
[12] M. A. YOUNGSON, Non unital Banach Jordan algebras and C^{*}-triple systems. Proc. Edinburgh Math. Soc. 24 (1981), 19-31.

Universidad de Granada, Facultad de Ciencias. Departamento de Matemática Aplicada, 18071-Granada (Spain)

E-mail address: juliobg@ugr.es
Universidad de Granada, Facultad de Ciencias. Departamento de Análisis Matemático, 18071-Granada (Spain)

E-mail address: apalacio@ugr.es

[^0]: 2000 Mathematics Subject Classification. 46L05, 46L70.
 Partially supported by Junta de Andalucía grants FQM 0199 and FQM 1215, and Project I+D MCYT MTM-2004-03882.

