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Abstract. We prove that, if a JB∗-algebra contains a non self-adjoint
idempotent, then it also contains a nonzero self-adjoint idempotent.
This is achieved through an “almost description” of C∗- and JB∗-
algebras generated by a non self-adjoint idempotent.

1. Introduction

It is well-known that, if a C∗-algebra contains a non self-adjoint idem-
potent, then it also contains a nonzero self-adjoint idempotent (see [3, 5]).
In the more general case of JB∗-algebras, a similar result seems to be pre-
viously unknown. As a matter of fact, although the JB∗-algebra generated
by a non self-adjoint idempotent can be seen as a closed ∗-invariant Jordan
subalgebra of a suitable C∗-algebra, the nonzero self-adjoint idempotents
built by the associative methods need not lie in the given JB∗-algebra.
Nevertheless, by introducing new techniques, we prove in this paper that,
in fact, JB∗-algebras containing non self-adjoint idempotents also contain
nonzero self-adjoint idempotents. The key tool is an “almost description”
of C∗- and JB∗-algebras generated by a non self-adjoint idempotent, which
is summarized in what follows.

Let A be a C∗-algebra containing a non self-adjoint idempotent e. We
show in Corollary 2.3 that K := sp(

√
e∗e)\{0} is a compact subset of [1,∞[

whose maximum element is greater than 1, and that, in general, no more
can be said about K. Then we construct a Banach ∗-algebra A(K), which
consists of all 2× 2 matrices over C(K) with an unusual multiplication, and
has a distinguished non self-adjoint idempotent p, and prove in Theorem 2.6
the existence of a unique continuous ∗-homomorphism F : A(K) → A such
that F (p) = e. As a consequence, a C∗-algebra contains a non self-adjoint
idempotent if and only if it contains a non central self-adjoint idempotent
(Corollary 2.7).
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As a transition between the C∗- and the JB∗- case, we note that, for an
element a in a C∗-algebra A, sp(

√
a∗a) \ {0} can be determined in terms of

the JB∗-algebra underlying A, and, even more, in terms of the JB∗-triple
underlying A. Indeed, sp(

√
a∗a) \ {0} coincides with the “triple spectrum”

σ(a) of a (Lemma 3.1).
Now, let J be a JB∗-algebra containing a non self-adjoint idempotent e.

We prove in Theorem 3.4 that K := σ(e) is a compact subset of [1,∞[
whose maximum element is greater than 1, and that, for a canonical closed
∗-invariant Jordan subalgebra J (K) of A(K) containing the distinguished
non self-adjoint idempotent p ∈ A(K), there exists a unique continuous
∗-homomorphism G : J (K) → J such that G(p) = e. As a consequence, a
JB∗-algebra contains a non self-adjoint idempotent if and only if it contains
a non central self-adjoint idempotent (Corollary 3.5).

2. The case of C∗-algebras

Let A be a C∗-algebra. In the case that A has not a unit, we denote
by A1 the C∗-algebra obtained by adjoining a unit to A. Otherwise, we put
A1 := A. As usual, for a ∈ A, we define the spectrum of a as the nonempty
compact subset sp(a) of C given by

sp(a) := {λ ∈ C : a− λ is not invertible in A1}.
The following lemma exploits some ideas in page 28 of [10].

Lemma 2.1. Let A be a C∗-algebra, and let e be a non self-adjoint idem-
potent in A. Then sp(i(e − e∗)) is a symmetric subset of the real line, and
the mapping λ → 1 + λ2 becomes a surjection from sp(i(e− e∗)) \ {0} onto
sp(e∗e) \ {0, 1}. Consequently, we have:

(1) ‖e‖2 = 1 + ‖e− e∗‖2.
(2) {0, ‖e‖2} ⊆ sp(e∗e) ⊆ {0} ∪ [1, ‖e‖2].

Proof. A straightforward computation shows that, for λ ∈ C, we have

λ(1 + λ2)[i(e− e∗)− λ] = (e∗ − iλ)[e∗e− (1 + λ2)](e + iλ).

On the other hand, if λ is in C \ {0, i,−i}, then (e∗ − iλ) and (e + iλ)
are invertible in A1, and we have λ(1 + λ2) 6= 0. It follows that, for such
a λ, i(e− e∗)− λ is invertible in A1 if and only if so is e∗e− (1 + λ2). Now,
keeping in mind that sp(i(e−e∗)) (respectively, sp(e∗e)) consists only of real
(respectively, nonnegative real) numbers, we easily derive that sp(i(e− e∗))
is symmetric (relative to zero), and that the mapping λ → 1 + λ2 is a
surjection from sp(i(e− e∗)) \ {0} onto sp(e∗e) \ {0, 1}. The consequences,
listed in the statement, are obvious.

The following corollary is well-known (see [3, 5]).

Corollary 2.2. Let A be a C∗-algebra, and let e be a non self-adjoint
idempotent in A. Then there exists a self-adjoint idempotent p ∈ A such
that ep = e.
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Proof. By Lemma 2.1, zero is an isolated point of sp(e∗e), and hence
the function χ : sp(e∗e) → C, defined by χ(0) := 0 and χ(t) := 1 for
t ∈ sp(e∗e)\{0}, is continuous. Now p := χ(e∗e) is a self-adjoint idempotent
in A satisfying e∗ep = e∗e ⇒ e∗e(1 − p) = 0 ⇒ (1 − p)e∗e(1 − p) = 0 ⇒
e(1− p) = 0 ⇒ ep = p.

We will see in Corollary 2.7 below that the self-adjoint idempotent p in
the above proof is in fact non central.

Corollary 2.3. For a subset K of the complex plane, the following
assertions are equivalent:

(1) K is a compact subset of [1,∞[ whose maximum element is greater
than 1.

(2) There exists a C∗-algebra A, and a non self-adjoint idempotent
e ∈ A, such that sp(

√
e∗e) \ {0} = K.

Proof. (2) ⇒ (1).- By Lemma 2.1
(1) ⇒ (2).- Assume that (1) holds. Let A denote the C∗-algebra of all

continuous functions from K to the C∗-algebra M2(C) (of all 2× 2 matrices
with entries in C), and let e stand for the element of A defined by

e(t) :=
(

1
√

t2 − 1
0 0

)
for every t ∈ K. Then, for t ∈ K, e(t) is an idempotent in M2(C) different

from 0 and 1. Moreover, since e(t)e(t)∗ = t2
(

1 0
0 0

)
, we have ‖e(t)‖ = t,

and hence sp(
√

e(t)∗e(t)) \ {0} = {t}. It follows that e is a non self-adjoint
idempotent of A satisfying sp(

√
e∗e) \ {0} = K.

Let K be a compact subset of C. We denote by C(K) the C∗-algebra
of all continuous complex valued functions on K. In the case that 0 ∈ K,
we denote by C0(K) the closed ideal of C(K) consisting of those functions
f ∈ C(K) satisfying f(0) = 0.

Lemma 2.4. Let A be a C∗-algebra, and let a be in A such that
0 ∈ sp(a∗a). Then there exists a unique linear isometry

Φ : C0(sp(
√

a∗a)) → A

satisfying Φ(f) = ah(
√

a∗a) for those f ∈ C0(sp(
√

a∗a)) for which there
exists h ∈ C(sp(

√
a∗a)) such that f(t) = th(t) for every t ∈ sp(

√
a∗a).

Moreover, for f, g ∈ C0(sp(
√

a∗a)), we have

Φ(f)Φ(g)∗ = f(
√

aa∗)g(
√

aa∗), Φ(f)∗Φ(g) = f(
√

a∗a)g(
√

a∗a),

Φ(f)g(
√

a∗a) = Φ(fg), and g(
√

aa∗)Φ(f) = Φ(gf).
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Proof. The first conclusion in the statement is nothing other than
Lemma 8 of [6]. In view of the Stone-Weierstrass theorem, to prove the
equality Φ(f)Φ(g)∗ = f(

√
aa∗)g(

√
aa∗) for f, g ∈ C0(sp(

√
a∗a)), we can as-

sume that f and g are of the form t → tP (t2) and t → tQ(t2), for suitable
complex polynomials P and Q, respectively. Then we have

Φ(f)Φ(g)∗ = aP (a∗a)Q(a∗a)a∗ = aa∗P (aa∗)Q(aa∗) = f(
√

aa∗)g(
√

aa∗),

as desired. The proof of the equality Φ(f)∗Φ(g) = f(
√

a∗a)g(
√

a∗a) is sim-
ilar. To realize that Φ(f)g(

√
a∗a) = Φ(fg) and g(

√
aa∗)Φ(f) = Φ(gf),

take f of the form t → tP (t2) for a complex polynomial P , and g of the
form t → Q(t2), for a complex polynomial Q with Q(0) = 0.

Let K be a compact subset of [1,∞[. Let u stand for the element of
C(K) defined by u(t) := t for every t ∈ K. We denote by A(K) the com-
plex Banach ∗-algebra whose vector space is that of all 2× 2 matrices with
entries in C(K), whose (bilinear) product is determined by the equalities
(f [ij])(g[kl]) := (fg)[il] if j = k and (f [ij])(g[kl]) := (u−1fg)[il] if j 6= k,
whose norm is given by ‖(fij)‖ := ‖f11‖+ ‖f12‖+ ‖f21‖+ ‖f22‖, and whose
(conjugate-linear) involution ∗ is determined by (f [ij])∗ := f [ji]. Here, as
usual, for f ∈ C(K) and i, j ∈ {1, 2}, f [ij] means the matrix having f in
the (i, j)-position and 0’s elsewhere. For later computations, it is useful
to see A(K) as a C(K)-module in the natural manner, namely by defin-
ing the product of a function f ∈ C(K) and a matrix (fij) ∈ A(K) by
f(fij) := (ffij). In this regarding, we straightforwardly realize that A(K)
becomes in fact an algebra over C(K), i.e., the operators of left and right
multiplication by arbitrary elements of A(K) are C(K)-module homomor-
phisms. Moreover, the symbol f [ij] can now be read as the product of the
function f ∈ C(K) and the matrix [ij] ∈ A(K), where, for i, j ∈ {1, 2},
[ij] stands for the matrix having the constant function equal to one in the
(i, j)-position and 0’s elsewhere.

Lemma 2.5. Let K be a compact subset of [1,∞[, and let u stand for
the element of C(K) defined by u(t) := t for every t ∈ K. Then A(K) is
generated by u[21] as a Banach ∗-algebra.

Proof. Put p := u[21], and let C denote the closed ∗-invariant sub-
algebra of A(K) generated by p. We have u2[11] = p∗p ∈ C. Therefore,
since C(K) is bicontinuously algebra-isomorphic to C(K)[11] by means of
the mapping f → f [11], and C(K) is generated by u2 as a Banach algebra,
we obtain that C(K)[11] ⊆ C, and hence that

C(K)[21] = uC(K)[21] = (u[21])(C(K)[11]) = p(C(K)[11]) ⊆ C.

Starting with the fact u2[22] = pp∗ ∈ C, a similar argument shows that
C(K)[22] and C(K)[12] are contained in C. It follows that A(K) = C.

Now, we are ready to prove the main result in this section.
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Theorem 2.6. Let A be a C∗-algebra, and let e be a non self-adjoint
idempotent in A. Then K := sp(

√
e∗e) \ {0} is a compact subset of [1,∞[

whose maximum element (namely ‖e‖) is grater than 1, and there exists a
unique continuous ∗-homomorphism F : A(K) → A such that F (u[21]) = e,
where u stands for the function t → t from K to C. Moreover we have:

(1) The closure in A of the range of F coincides with the C∗-subalgebra
of A generated by e.

(2) F is injective if and only if either 1 does not belong to K or 1 is
an accumulation point of K.

(3) If 1 is an isolated point of K, then ker(F ) consists precisely of those
matrices (fij) ∈ A(K) which vanish at every t ∈ K\{1} and satisfy

f11(1) + f12(1) + f21(1) + f22(1) = 0.

Proof. By Corollary 2.3, we have that K := sp(
√

e∗e)\{0} is a compact
subset of [1,∞[ whose maximum element (namely ‖e‖) is grater than 1. As
a consequence, the C∗-algebras C0(sp(

√
e∗e)) and C(K) can and will be

identified in an obvious way. Let Φ : C(K) → A be the linear isometry
given by Lemma 2.4 when we take in such a lemma a := e. For i, j ∈ {1, 2},
consider the linear isometry Φij : C(K) → A defined, for f ∈ C(K), by

Φ11(f) := f(
√

e∗e), Φ22(f) := f(
√

ee∗), Φ21(f) := Φ(f), Φ12(f) := Φ(f)∗.

We claim that, for f, g ∈ C(K) and i, j, k, l ∈ {1, 2}, we have

Φij(f)Φkl(g) = Φil(fg) if j = k, and Φij(f)Φkl(g) = Φil(u−1fg) if j 6= k.

Indeed, the equality Φij(f)Φkl(g) = Φil(fg) for j = k follows from Lemma 2.4.
To realize that Φij(f)Φkl(g) = Φil(u−1fg) if j 6= k, keep in mind that e is an
idempotent, and take f (respectively g) of the form t → P (t2) for a complex
polynomial P with P (0) = 0, if i = j (respectively, k = l), and of the form
t → tP (t2) for some complex polynomial P , otherwise. Now that the claim
is proved, it is clear that the mapping F : A(K) → A defined by

F ((fij)) := Φ11(f11) + Φ12(f12) + Φ21(f21) + Φ22(f22)

becomes a continuous ∗-homomorphism satisfying F (u[21]) = e. Moreover,
both the uniqueness of F under the above conditions, and that the closure
in A of the range of F coincides with the C∗-subalgebra of A generated by e,
follow from Lemma 2.5.

Let (fij) be in A(K). Then we have:

[11](fij)[11] = (f11 + u−1f12 + u−1f21 + u−2f22)[11],

[12](fij)[12] = (u−1f11 + u−2f12 + f21 + u−1f22)[12],

[21](fij)[21] = (u−1f11 + f12 + u−2f21 + u−1f22)[21],

[22](fij)[22] = (u−2f11 + u−1f12 + u−1f21 + f22)[22].
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Assume that (fij) is in ker(F ). Then, since ker(F ) is an ideal of A(K),
and, for all i, j ∈ {1, 2}, the restriction of F to C(K)[ij] is an isometry, we
deduce:

f11 + u−1f12 + u−1f21 + u−2f22 = 0,

u−1f11 + u−2f12 + f21 + u−1f22 = 0,

u−1f11 + f12 + u−2f21 + u−1f22 = 0,

u−2f11 + u−1f12 + u−1f21 + f22 = 0.

Therefore, for every t ∈ K we have:

t2f11(t) + tf12(t) + tf21(t) + f22(t) = 0,

tf11(t) + f12(t) + t2f21(t) + tf22(t) = 0,

tf11(t) + t2f12(t) + f21(t) + tf22(t) = 0,

f11(t) + tf12(t) + tf21(t) + t2f22(t) = 0.

As a first consequence, if 1 belongs to K, then

f11(1) + f12(1) + f21(1) + f22(1) = 0.

On the other hand, keeping in mind that, for t ∈ K \ {1}, we have∣∣∣∣∣∣∣∣
t2 t t 1
t 1 t2 t
t t2 1 t
1 t t t2

∣∣∣∣∣∣∣∣ = −(t2 − 1)4 6= 0,

for such a t we deduce

f11(t) = f12(t) = f21(t) = f22(t) = 0.

Therefore, if either 1 does not belong to K or 1 is an accumulation point of
K, then

f11 = f12 = f21 = f22 = 0.

Thus F is injective when either 1 does not belong to K or 1 is an accumu-
lation point of K.

Assume that 1 is an isolated point of K. Then the function χ : K → C,
defined by χ(1) := 1 and χ(t) := 0 for t ∈ K \ {1}, is continuous. Put
p := F (χ[11]), q := F (χ[22]), and r := F (χ[12]). Since, for i, j, k, l ∈ {1, 2}
the equalities (χ[ij])∗ = χ[ji] and (χ[ij])(χ[kl]) = χ[il] hold, we have that
p and q are self-adjoint idempotents of A satisfying pqp = p (equivalently,
p ≤ q) and qpq = q (equivalently, q ≤ p), and that pq = r. It follows

p = q = r = r∗.

Let (fij) be in A(K) vanishing at every t ∈ K \ {1} and such that
f11(1) + f12(1) + f21(1) + f22(1) = 0. Then we have

(fij) = f11(1)(χ[11]) + f12(1)(χ[12]) + f21(1)(χ[21]) + f22(1)(χ[22]),

and hence

F ((fij)) = (f11(1) + f12(1) + f21(1) + f22(1))p = 0.
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Corollary 2.7. Let A be a C∗-algebra. Then the following assertions
are equivalent:

(1) For every s ∈ [1,∞[ there exists an idempotent e ∈ A such that
‖e‖ = s.

(2) There exists a non self-adjoint idempotent in A.
(3) There exists a non central self-adjoint idempotent in A.

Proof. The implication (1) ⇒ (2) is clear.
(2) ⇒ (3).- Let e be the non self-adjoint idempotent of A whose existence

is assumed. Let K and F : A(K) → A be the compact set and the ∗-
homomorphism, respectively, given by Theorem 2.6. Put p := [11] ∈ A(K)
and q := [12] ∈ A(K). Then p is a self-adjoint idempotent, and we have
pq− qp = [12]−u−1[11], where u stands for the function t → t from K to C.
Noticing that, by Theorem 2.6, pq− qp does not belong to ker(F ), it follows
that F (p) is a non central self-adjoint idempotent of A.

(3) ⇒ (1).- Let e be the non central self-adjoint idempotent of A whose
existence is assumed. Take a ∈ A with ea − ae 6= 0. Then the mapping
D : A → A defined by D(b) := ba−ab for every b ∈ A becomes a continuous
derivation such that D(e) 6= 0. Since, for z ∈ C, exp(zD) is a continuous
automorphism of A, it follows that the mapping f : z → exp(zD)(e) from
C to A is an entire function with f ′(0) = D(e) 6= 0, and whose range
consists only of nonzero idempotents of A. Now, since ‖f(0)‖ = 1, Liouville’s
theorem implies that {‖f(z)‖ : z ∈ C} = [1,∞[.

3. The case of JB∗-algebras

We recall that a JB∗-triple is a complex Banach space X with a continu-
ous triple product {·, ·, ·} : X×X×X → X which is linear and symmetric in
the outer variables, and conjugate-linear in the middle variable, and satisfies:

(1) For all x in X, the mapping y → {x,x,y} from X to X is a hermitian
operator on X and has nonnegative spectrum.

(2) The main identity

{a, b, {x, y, z}} = {{a, b, x}, y, z} − {x, {b, a, y, }, z}+ {x, y, {a, b, z}}
holds for all a, b, x, y, z in X.

(3) ‖{x, x, x}‖ = ‖x‖3 for every x in X.
Concerning Condition (1) above, we also recall that a bounded linear opera-
tor T on a complex Banach space X is said to be hermitian if ‖ exp(irT )‖ = 1
for every r in R.

Examples of JB∗-triples are all C∗-algebras under the triple product
{·, ·, ·} determined by {a, b, a} := ab∗a.

Let X be a JB∗-triple, and let x be in X. It is well-known that there is
a unique couple (K, φ), where K is a compact subset of [0,∞[ with 0 ∈ K,
and φ is an isometric triple homomorphism from C0(K) to X, such that
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the range of φ coincides with the JB∗-subtriple of X generated by x, and
φ(u) = x, where u stands for the mapping t → t from K to C (see [8, 4.8],
[9, 1.15], and [2]). The locally compact subset K \{0} of ]0,∞[ is called the
triple spectrum of x, and will be denoted by σ(x). We note that σ(x) does
not change when we replace X with any JB∗-subtriple of X containing x.

Lemma 3.1. Let A be a C∗-algebra, and let a be in A such that
0 ∈ sp(a∗a). Then we have σ(a) = sp(

√
a∗a) \ {0}.

Proof. Let Φ : C0(sp(
√

a∗a)) → A be the linear isometry given by
Lemma 2.4. It is enough to show that Φ is a triple homomorphism, and that
the range of Φ coincides with the JB∗-subtriple of A generated by a. In its
turn, to verify the first fact, it is enough to prove that
Φ(fgf) = Φ(f)Φ(g)∗Φ(f) for those f, g ∈ C0(sp(

√
a∗a)) which are of the

form t → tP (t2) and t → tQ(t2), for suitable complex polynomials P and
Q, respectively. But, for such f, g we have

Φ(f)Φ(g)∗Φ(f) = aP (a∗a)Q(a∗a)a∗aP (a∗a) = Φ(fgf).

Let X denote the JB∗-subtriple generated by a. Since Φ(u) = a, where u
denotes the mapping t → t from sp(

√
a∗a) to C, and Φ is an isometric triple

homomorphism, we have that X is contained in the range of Φ. On the
other hand, since a(a∗a)n+1 = {a, a(a∗a)n, a} for every n ∈ N, an induction
argument shows that a(a∗a)n belongs to X for every n ∈ N, and hence
that Φ(f) lies in X whenever f ∈ C0(sp(

√
a∗a)) is of the form t → tP (t2)

for a suitable complex polynomial P . Since the set of such f ’s is dense in
C0(sp(

√
a∗a)), the range of Φ is contained in X.

Over fields of characteristic different from two, Jordan algebras are de-
fined as those (possibly non associative) commutative algebras satisfying the
identity (x · y) · x2 = x · (y · x2). For a and b in a Jordan algebra, we put
Ua(b) := 2a · (a ·b)−a2 ·b. Let A be an associative algebra. Then A becomes
a Jordan algebra under the Jordan product defined by

a · b :=
1
2
(ab + ba).

Moreover, for all a, b ∈ A we have

Ua(b) := 2a · (a · b)− a2 · b = aba.

Jordan subalgebras of A are, by definition, those subspaces J of A satisfying
J · J ⊆ J .

Lemma 3.2. Let A be an associative algebra, let a and b be in A, and
let n be in N. Then both a(ba)n and (ab)n + (ba)n belong to the Jordan
subalgebra of A generated by {a, b}.

Proof. Let C denote the Jordan subalgebra of A generated by {a, b}.
We argue by induction on n. The lemma is true for n = 1 because
aba = Ua(b) and ab + ba = 2(a · b). Assume that the lemma is true for
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some value of n (say m). Then we have a(ba)m+1 = Ua[b(ab)m] ∈ C and
(ab)m+1 + (ba)m+1 = ab(ab)m + b(ab)ma = 2a · [b(ab)m] ∈ C.

Let K be a compact subset of [1,∞[. Then the linear mapping
Ψ : A(K) → A(K), determined by

Ψ(f [ij]) := f [ij] if i 6= j, Ψ(f [11]) := f [22], Ψ(f [22]) := f [11]

for every f ∈ C(K), becomes an isometric involutive ∗-antiautomorphism
of A(K). Therefore, the set of fixed elements for Ψ is a closed ∗-invariant
Jordan subalgebra of A(K), and hence a Banach-Jordan ∗-algebra. Such
a Banach-Jordan ∗-algebra will be denoted by J (K). Note that elements
of J (K) are precisely those matrices (fij) ∈ A(K) satisfying f11 = f22, or
equivalently, those elements of A(K) of the form f([11]+[22])+g[12]+h[21]
with f, g, h ∈ C(K).

Lemma 3.3. Let K be a compact subset of [1,∞[, and let u stand for
the element of C(K) defined by u(t) := t for every t ∈ K. Then J (K) is
generated by u[21] as a Jordan-Banach ∗-algebra.

Proof. Put p := u[21] ∈ J (K), and let J denote the closed ∗-invariant
subalgebra of J (K) generated by p. We have u2[11] = p∗p and u2[22] = pp∗,
which, in view of Lemma 3.2, implies for n ∈ N that u2n+1[21] = p(p∗p)n ∈ J ,
u2n+1[12] = p∗(pp∗)n ∈ J , and

u2n([11] + [22]) = (p∗p)n + (pp∗)n ∈ J.

Therefore, for every complex polynomial P , uP (u2)[21] and uP (u2)[12] lie
in J , and, if P (0) = 0, then also P (u2)([11] + [22]) lies in J . It follows
C(K)[21] ⊆ J , C(K)[21] ⊆ J , and C(K)([11] + [22]) ⊆ J . This implies
J (K) = J .

JB∗-algebras are defined as those Banach-Jordan ∗-algebras J satisfying
‖Ua(a∗)‖ = ‖a‖3 for every a ∈ J . C∗-algebras are JB∗-algebras under
their Jordan products. As in the particular case of C∗-algebras, already
commented, JB∗-algebras are JB∗-triples under the triple product {·, ·, ·}
determined by {a, b, a} := Ua(b∗) (see [1] and [12]).

Theorem 3.4. Let J be a JB∗-algebra, and let e be a non self-adjoint
idempotent in J . Then K := σ(e) is a compact subset of [1,∞[ whose
maximum element (namely ‖e‖) is grater than 1, and there exists a unique
continuous ∗-homomorphism G : J (K) → J such that G(u[21]) = e, where
u stand for the function t → t from K to C. Moreover we have:

(1) The closure in J of the range of G coincides with the JB∗-subalgebra
of J generated by e.

(2) G is injective if and only if 1 is not an isolated point of K.
(3) If 1 is an isolated point of K, then ker(G) consists precisely of those

matrices (fij) ∈ J (K) which vanish at every t ∈ K\{1} and satisfy

f11(1) + f12(1) + f21(1) + f22(1) = 0.
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Proof. Let Je denote the JB∗-subalgebra of J generated by e. By [12]
and [11], there exists a C∗-algebra A containing Je as a JB∗-subalgebra.
Therefore, by Lemma 3.1 and Theorem 2.6, K := σ(e) is a compact sub-
set of [1,∞[ whose maximum element (namely ‖e‖) is grater than 1, and
there exists a unique continuous ∗-homomorphism F : A(K) → A such that
F (u[21]) = e. Let G stands for the restriction of F to J (K). Then, clearly,
G is a continuous ∗-homomorphism from J (K) to the JB∗-algebra underly-
ing A, which satisfies G(u[21]) = e. Noticing that the JB∗-subalgebras of A
and J generated by e coincide, it follows from Lemma 3.3 that G is unique
under the above conditions, and that the closure of the range of G is Je.
This last fact allows us to see G as a continuous ∗-homomorphisms from
J (K) to J . Finally, Properties (2) and (3) for G in the present theorem
follow from the corresponding ones for F in Theorem 2.6.

Let J be a Jordan algebra. For a, b, c ∈ J , we put

[a, b, c] := (a · b) · c− a · (b · c).
The centre of J is defined as the set of those elements a ∈ J such that
[a, J, J ] = 0. It is well-known and easy to see that central elements a of J
satisfy [J, J, a] = [J, a, J ] = 0.

Corollary 3.5. Let J be a JB∗-algebra. Then the following assertions
are equivalent:

(1) For every s ∈ [1,∞[ there exists an idempotent e ∈ J such that
‖e‖ = s.

(2) There exists a non self-adjoint idempotent in J .
(3) There exists a non central self-adjoint idempotent in J .

Proof. The implication (1) ⇒ (2) is clear.
(2) ⇒ (3).- Let e be the non self-adjoint idempotent of J whose exis-

tence is assumed. Let K and G : J (K) → A be the compact set and the
∗-homomorphism, respectively, given by Theorem 3.4. Put

p :=
1
2
u(1 + u)−1([11] + [12] + [21] + [22]) ∈ J (K),

where u stands for the function t → t from K to C, and q := [12] ∈ J (K).
Then p is a self-adjoint idempotent, and we have

[p, q, q] =
1
8
(2[12]− u−1([11] + [22])).

Noticing that, by Theorem 3.4, [p, q, q] does not belong to ker(G), it follows
that G(p) is a non central self-adjoint idempotent of J .

(3) ⇒ (1).- Let e be the non central self-adjoint idempotent of J whose
existence is assumed. By Lemma 2.5.5 of [4], there exists a ∈ J such that
Ue(a) 6= e · a or, equivalently, [e, e, a] 6= 0. Then, by [7, page 34], the
mapping D : J → J defined by D(b) := [e, b, a] for every b ∈ J becomes a
continuous derivation of J , which clearly satisfies D(e) 6= 0. Now, arguing
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as in the proof of the implication (3) ⇒ (1) in Corollary 2.7, we realize that
Assertion (1) in the present corollary holds.

Let J be a JB∗-algebra containing a non self-adjoint idempotent e. Then
the non central self-adjoint idempotent p ∈ J provided by the above proof
can be explicitly given as follows. Denote by Je the JB∗-subalgebra of J
generated by e, and take a C∗-algebra A containing Je as a JB∗-subalgebra.
Then in A we have

p =
1
2
[(e +

√
e∗e)(1 +

√
e∗e)−1 + (e∗ +

√
ee∗)(1 +

√
ee∗)−1].
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