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Abstract

We review the main results in the papers [17] and [18] where we discuss in
a nonassociative setting the Rota-Strang joint spectral radius of bounded subsets
of (associative) normed algebras [26], and the related notion of a topologically
nilpotent (associative) normed algebra [20, Pages 515-517).

Keywords: Joint spectral radius, nilpotency, topologically nilpotent algebras.

1 Imtroduction

In an early paper [26], G.-C. Rota and W. G. Strang prove the following.

Theorem 1.1. For each bounded and multiplicatively closed subset S of any asso-
ciative normed algebra A, there exists an equivalent algebra norm ||.{| on A such
that || s|| < 1 for every s € S.

Then, they define the “spectrai radius” »(S) of any bounded subset § of an
associative normed algebra A by the equality

r(S) := limsupsup{||s1 ... sn|* : $1,-..,52 € S}, (1.1)
n—r0Q

and apply Thecrem 1.1 to show that
r(S) = inf{sup{]|s| : s € S} : ||. || € En(A)}, (1.2)

where En(A) denotes the set of all equivalent algebra norms on A,

The Rota-Strang paper remained forgotten for many years. Nevertheless, the
idea of the spectral radius of a bounded subset of an associative normed alge-
bra underlines the definition of the so-called “topologically nilpotent” associative
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norred algebras. Indeed, such algebras can be introduced as those associative
normed algebras such that the spectral radius of their closed unit balls is equal to
zero. Following Palmer’s review in [20, 4.8.8], “These [algebras] were introduced
by J. K. Miziolek, T. Miildner and A. Rek [16] as a class of topological algebras.
Recently their study was revived by Peter G. Dixon [8] and continued by Dixon
and Vladimir Miiller [9], Dixon and George A. Willis [10].”

We refer to Palmer’s whole review of the papers just quoted [20, Pages 515-
517) for a comprehensive view of the theory of topologically nilpotent associative
normed algebras, noticing however that, in an excess of enthusiasm, an error creeps
in the formulation of [20, Theorem 4.8.8]. To clarify this, let us consider the
following conditions on an associative complex Banach algebra A:

1. A is topologically nilpotent.
2. There is some finite constant C satisfyving

_g.gm

sup{lla™||* : @ € 4, |l <1} < Cn ™=

for all n € N.

3. For every element ¢ € A, there is some fuite constant C' = C(a) satisfying

lla™||= < Cn=%" for all n € N.

Then conditions 2 and 3 are equivalent. Indeed, the implication 2 = 3 is clear,
whereas the converse implication is proved in {8, Theorem 2.1]. On the other
hand, by [8, Theorem 3.2}, 2 implies 1. However, contrarily to what asserted
in [20, Theorem 4.8.8], 1 does not imply 2. The following counter-example has
been communicated to us by V. Milller. Consider the associative complex Banach
algebra A of those formal power series 250:1 ojx! {with one generator z and
complex coefficients o) such that

I Zajxj” = Z \ajlj,l? < 0.
=1

j=1

Then A is topologically nilpotent (that is, it satisfies 1) but does not fulfil 2. The
details of the verification of this assertion can be seen in [18].

To conclude our review of topologically nilpotent associative normed algebras,
let us say that they have turned out useful to prove significant positive answers to
the question of splitting radical extensions of certain Banach algebras {see [3] for
details).

The Rota-Strang spectral radius is rediscovered in the papers of V. 8. Shul-
man [29] and Yu. V. Turovskii [32], where a special attention is payed to the
spectral radius of finite subsets, and to those associative normed algebras whose
finite subsets have zero spectral radius. For more information about the Rota-
Strang spectral radius of finite subsets, the reader is referred to the papers of A.
Soltysiak [31) and P. Rosenthal and A. Soltysiak [25].
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The last word concerning the Rota-Strang spectral radius in the associative
setting is provided by the impressive paper of V. 8. Shulman and Yu. V. Tur-
ovskii [30], where a systematic study of this notion is made, and the connections
between the invariant snbspace problem for operators semigroups, and the joint
spectral radius, is iuvestigated.

The aim of the present note is to review in some detail the results of [17], as
well as to announce the main results obtained to now in [I8]. Both papers are
devoted to the nonassociative study of the material reviewed above,

In [17] we discuss the validity of Theorem 1.1 in the nonassociative setting.
Although Theorem 1.1 does not remain true in general if the associativity of the
algebra A is removed {Example 2.6), it remains valid depending on the goodness
of the bounded and nmultiplicatively closed subset § (Theorem 2.3) and/or the
goodness of the nonassociative normed algebra A, In its turn, the goodness of
the normed algebra A could depend on either the purely algebraic structure of A
(Theorem 2.5) or the behaviour of the norm (Proposition 2.8}

One of the key ideas in [18] is that, for a (possibly nonassociative) alge-
bra A, the failure or success of A in relation to Theorem 1.1 can be quantified
by means of a nonnegative extended real number 3(A} (Definition 3.1). The
situation #(A) = +o00 means that A becomes a complete disaster concerning The-
orem 1.1, whereas the inequality 3(A) < | can be interpreted as that Theorem 1.1
remains “approximately” true for A, On the other hand, we introduce in [18]
the appropriate formal changes in the equality (1.1) in order to be provided with
an understandable notion of spectral radius »(.5) of a bounded subset 5 of any
(possibly nonassociative) normed algebra A (Definition 3.3). Then we show that
the equality (1.2} is true for every bounded subset S of A if and only if 8{4) <1
(Corollary 3.5). Among the other results from [18] reviewed in the present note,
we emphasize the following ones:

1. A (possibly nonassociative) normed algebra A4 is topologically nilpotent (with
the same meaning as in the associative case} if and only if 5(A) = 0 (Theo-
rem 4.1).

2. An associative normed algebra A is topologically nilpotent if and only if
s0 is the normed Jordan algebra obtained by symmetrization of its product
(Theorem 4.2).

3. A hnite-dimensional nornied algebra 4 is topologically nilpotent if an only
if it is nilpotent {Proposition 4.3).

4. A finite-dimensional normed Lie algebra A is nilpotent if an only if
B(A) < +oc {a consequence of Theorem 4.4).

5. Every topologically nilpotent complete normed algebra coincides with itz
weak radical in the sense of [23] (Remark 4.6).
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2 The norm-one boundedness property

By an algebra norm on a (possibly nonassociative) real or complex algebra A
we mean a norm || -] on (the vector space of) A satisfying Jlabl| = |laf/||f] for all
i, b€ A DBy anormed algebra we mean a real or complex algebra endowed with an
afgebra norm. Let A be a normed algebra. We say that A satisties the norni-one
boundedness property (in short NBP) if, for each bounded and multiplicatively
closed subsget S of A, there exists an equivalent algebra norm 1.8 on A such that
sl <1 for every 5 € 5. Now, the Rota-Strany Theoramn 1.1, which can be scen
also in |7, Theorean 1.4.1], can be reformulated as follows.

Theorem 2.1. Let A be an associabive normed algebra. Then A solisfies the NBP.
As an immediate consequaence, we have the following,

Corollary 2.2, Lei A be an associelive normed algebra, and lef p be o nonzero
idempolent in A. Then there exists an equivalent alocbra aorm [ -3 on A such that
ol = 1.

[t is easily realized that neither Theorein 2.1 nor even Corollary 2.2 remain
true if the assumption of associativity is removed {see Example 2.6 below).

The inain goal in [17] is to discuss the validity of Theorem 2.1 and Corollary 2.2
in the nonassociative setting.

We recall that the nucleus of an algebra A is defined as the set of those elemients
of A which associate with any two elements of A, A reasonable nonassociative
generalization of Theovem 2.1 is the following.

Theorem 2.3. {17, Theorem 2.3] Let A be ¢ normed algebre, and fet' S be a
bounded and multiplicatively elosed subset of A conlained in the nucleus of A
Then there exists en equivalent algebra norm |- on A such that [s] < 1 for every

L]
s e 8.

It follows from Theovem 2.3 that, if p is a nonzero nuclear idempotent in a
normed algebra A, then there exists an equivalent algebra norm | - | on A such
that [p] = 1 (a nonassociative generalization of Corollary 2.2). In particular, we
have the following result, first proved by F. G. Ocafa {19].

Corollary 2.4. Let A be a nonzero normed algebra with o anit 1. Then there
caests an equivalent algebra norm || -] on A saetisfying (1] = 1.

Different ¢lasses of nonassociative algebras which are “close” to the associative
onres have appeared in the literature. Among them, the one of seneralized stan-
dard algebras is specially relevant for our approach, Roushly speaking, this class
is the siallest one containing all altervative algebras and all (commutative} Jor-
dan aleebras. We note that assoclative algebras are alternative, that generalized
standard algebras arc noncownmutative Jordan, and that noncommntative Jordan
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algebras are power-associative. The reader is referred to 28] for the precise defini-
tion of generalized standard algebras, and to Schafer’s book [27] for the definition
of the remaining classes of algebras just quoted. Now, the following generalization
of Corollary 2.2 has its own interest,

Theorem 2.5, {17, Theorem 3.2] Let A be a normed generalized standard algebra,
and let p be o nonzero idempotent in A, Thea there erists an cquivalent algebra
norme | | on A such that pj, =1,

Let A be an algebra over X (= £ or T), and let A be in K. The A-mutation
ol A, denoted by AWM, is defined as the algebra whose vector space is that of
A, and whose product (say [J) is defined by aldb := lah + {1 — Aba. We note
that A-mutations of noncommutative Jordan algebras are noncomnutative Jordan
algebras.

Theoremn 2.5 does not remain true if the assumption that 4 is a generalized
standard algebra is relaxed to the one that 4 is a noncommutative Jordan algebra.
[ndeed, we have the following.

Example 2.6. |17, Example 3.2] Let A be a real number with A > 1. Then
there exists a bwo-dimensional normed noncommutative Jordan algebra A with an
idempotent p satisfying ||pll = X and |p] = X\ for every algebra norm |- on A,
Indeed, let p and ¢ be the elements of the associative algebra M, (X) (of all 2 x 2

matrices over X) given by p 1= and ¢ 1= , respectively, and

I 0 1
00 0 0
let. ¢ denote the linear hull of {p, ¢} in M3(K). Then € becomes a subalgebra of
My (K). Now take 4 equal to the A-mutation of C, so that 4 is a two-dimensional

noncomnmutative Jordan algebra, and the multiplication table of A is given hy

I » q
p‘ p Ag
g|{I1-Ag 0

Clearly p becomes an idempotent in A, In addition, define a norm on A by
lap+ gl := Ala| -+ {3, It is easily realized that || - | becomes an algebra norm on
A satisfying ||p| = A. Moreover, since pg = Ag in A, for every algebra norm ! - |
on A we have Algl = Ipg] < lpllgl, and hence A < fpl.

In relation to Theorem 2.5, the following problem remains open.

Problem 2.7. Does Theorem 2.1 rematns true if the assumption that A is asso-
ciative is relared to the one that A is generalized standard?

Unfortunately, we do not know even il alternative normed algebras have to
satisfy the NBP. Anyway, we realize in [17] that Theorem 2.1 is not. characteristic
of the associativity. Thus, for example, all nilpotent normed algebras satisfy the
NBP (17, Proposition 5.8], To be provided with more examples, we consider
those normed algebras A fulfilling the “norm square equality” (in short, NSE)
|| = [lali? for every a ¢ A. Examples of normed algebras satisfying the NSE
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are absolute-valued algebras, JB-algebras, and sincothi-nonued algebras. The
standard references tor these objects are (24|, {12], and (22, Section 3], respectively.
Normed algebras satisfying the NSE enjoy a strong form of the NBP. Indeed, we
have the following,

Proposition 2.8. [17, Proposition 5.11 Lel A b¢ a normed algebra satisfying the
NSE, und fet S be o bounded and multiplicatively closed subset of A. Then we have
that &l = L for cecry s € S,

Remark 2.9. Let X be a normed space (with closed unit ball By, unit sphere
Sy, and topological dual X=), and let v be in Sy, The clement u is said to be
a strongly exposcd point {of By) if there cxists g @ Sy- with the property that,
whenever (2,) is a sequence in By such that (g{r,.)) — 1, we have (z,) — u.
Wien the functional g must be emphasized, we say that o is strongly cxposed
by ¢g. Tt is well-known that o is stvongly exposed by g € Sy- if and only if
g{u) = 1 aud, for 0 < ¢ < 1, the diameter of the “slice”

S(X,0,0) = {x € By R(gle)) > | - &}

tends to 0 as & — 0. Therefore, it v i a strongly exposed point., then i is a denting
point (of By), which means that there are slices of acbitrarily small diameter which
contain . On the other hand, if ¢ is a denting point, then v is a strongly extreme
point (of By), which means that, whencver (i) and () are sequences in By
such that (Z=5%4) — » we have (x,) — ¢ and (1,,) — # (see (14, Page 169]).
Now, let A be ¢ normed alycbru, and et p be o nonzero idempofent in A.
We prove actually in (17, Corollary 3.4 and Proposition 4.2] that, if either A
is stondord generalized or p is nvelear (both requirements being automatically
fultilled whenever A is assoclative), then there erists on cgwivalent algebre norm
on A satisfying |pll = 1 und such thet p becomes o strongly exposed point of

Boagp-
Now, let A be a normed algebra with a unit 1 such thal ||1)) = 1. Then
there exists on equivelent olgebra norm [ - on A Tarbitrarily close” to | - ||,

satisfying |1 = 1, und such that 1 becomes a strongly exposed pount of By pp
17, Theorem 2.8].

Avuin, let A be a normed algebra with a unit 1 such that |1} = 1. Then 1
is a strongly extreme point of B,. This result is well-known in the associative
case [6, Theorem 4.5], and its casily generalized to the nonassociative case (see
[17, Remark 2.9] for details). However, even if A is associative, 1 need not be a
denting point. (nueh less a strongly exposcd point) of B,. Indeed, the Banach
algebra L{H} of all bounded linear operators on any infinite-ditnensional Hilbert
space H has no denting poiut [L1]. Actually, all slices {and, more generally, all
nonempty relatively weakly open subscts) of the closed unit ball of £(H) have
diameter equal 1o 2 {see [5] and [4]). The reader is referred to [13] for quantitative
versions of the lact that the units of norm-unital normed atgebras are strongly
exireme points, and to [6, 21, 22, 15, 2] for other interesting geometrical properties
of the units of norrm-unital nonmed algebras.
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3 The joint spectral radius

For a more precise nonassociative discussion of Theorem 2.1, we introduce
in [18] the following.

Definition 3.1. Let 4 be a normed algebra, Given a positive number &, we
say that A satisfies the norm-£ boundedness property if, for each bounded and
multiplicatively closed subset S of A, there exists an equivalent algcbra norm |,
on A such that sf| < k for every s ¢ §. We put

B{A) ;= inf{k € BT : A satisfies the norm-k boundedness property}

with the convention that inf % = 4+o00.
In [18] we prove the following.

Theorem 3.2. For every normed algebra A, we have J{A) € {0} U [1, 400l
Moreover, for each A € {0} U [1, +oo), there erists a normed two-dimensional
noncommutative Jordan algebra A such that 3(A) = M.

Let A be a normed algebra and let S be a bounded subset of A, When we do
not know that A is associative, the definition of +(5) in the equality (1.1} needs
some formal changes. To be precise, consider the following.

Definition 3.3. Let A be an algebra, and let § be a subset of A. The words
on S are dehined inductively, according to their “degree”. Indeed, the words on §
of degree 1 are precisely the elements of S, and, for 1 < n € N, the words on S of
degree n are those elements of A which can be written as xy where 2 and y are
words on S of degree 2 € N and j € N, respectively, with ¢ + 7 = n. Now assume
that A is normed, and that S s bounded. Tor n in N, let AL, (S) stand for the
least upper bound of the values ol the norm at all words on 5 of degree n. Note
that M, (S) < [sup{||s|l : s € S}]?, and define the spectral radius, r(.S), of § by

() 1= limsup [Mn{S)]* < sup{|ls|| : s € S}.

£ Badus]

It is easily realized that cquivalent algebra norms on A give the same spectral
radius for 8, and hence that

r{S) <inf{sup{ s :s€S}:, - &En(A)}
Tu [18], we show the following,

Proposition 3.4. Let A be a normed algebra. Then the following conditions are
equivalent:

1. 8(4) < +oo.

2. There erists v nonnegalive real number k such that, for every bounded subset
S of A, we have

inf{sup{ s :s€S}:, | € En(A)} < kr(S).
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Moreover, when these conditions hold, the mindmum nonnegotive real rumber k in
condidion 2 is equol to [3(A).

As a consequence, we derive the following,

Corollary 3.5. Let A be a normed algebra. Then the jollowing conditions orc
cquivalent:

poAlAY <01 [(that is, the conclusion in Theorem 2.1 s sulisfied “upproxi-
mutely™ ).

2. For every bounded subsel 5 of A, we have

r(8) = inf{sup{ s l:5€ 8}:, - € En(A)}.

In relation to the above corollary, the following problem remains open,

Problem 3.6. s lhere u (necessariy nonassocietive) normed algebra A fuding to
crjoy the NBP bul salisfying 3{A) =17

4 Topologically nilpotent algebras

Let A be a normed algebra, and let S be a bounded subset of A, We say
that 5 is quasi-nilpotent if #(5) = 0. Clearly, bounded uniipotent subsets of A are
quasi-nilpotent. The normed algebra A is said to be topologically nilpotent if its
closed unit ball is quasi-nilpotent.

In [18] we obtain the following characterization of topological nilpotency.

Theorem 4.1. Let A be normed algebra. Then the following ussertions are equiv-
alent:

1o Adis lopologically wilpofent.

2. Por every € = 0, there exisls un equivelent algchra norme ' on A such fhat

B
3 HA) = 0.

It A is a normed algebra, then the algebra AY will be considered without
notice as a normed algebra under the norm oy . where oy i= [A] + 11 — Al
We prove in [18] the following.

Theorem 4.2. Let A be o normed algebre over ¥, Then we fuve
o For A an A {;} A is topologically nilpotent if ond only if so is AL

2.0 A s topologically nilpotent, then so s AL,
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3. There are choices of A such that AU is topologically nitpotent, but A is not
topologically nilpotent,

4. When A is associative, A is topologically nilpotent if and only if so is the
1
Jordan normed algebra A%,

A normed algebra is said to be finitely quasi-nilpotent if all its finite sub-
sets are quasi-nilpotent. Clearly, every topologically nilpotent normed algebra is
finitely quasi-nilpotent, but the converse assertion is not true, even if the normed
algebra is associative, commutative, complex, and complete. Anyway, in the finite-
dimensional case, we get the following result [18].

Proposition 4.3. Let A be a finite-dimensional normed algebra. Then the fol-
lowing conditions are equivalent:

1. A is nilpotent.
2. A is tapologically rilpotent.
3. A is finitely quasi-nilpotent.

An algebra A is said to be algebraic if, for every a € A, the operators I,
and R, (of left and right, respectively, multiplication by a on A) are algebraic.
This notion of algebraicity does ot coincide with that of A. A, Albert [1] that
every element of A generates a finite-dimensional subalgebra. Indeed, Albert’s
notion of algebraicity trivializes in the class of anti-cammutative algebras, as is
indeed uscless in that class.

We prove in [18] that, if an anti-commutative complete normed algebraic al-
gebra A satisfies that 3{A) < +oo, then there exists n € M such that L7 = 0 for
every a € A. By invoking the implication 1 = 3 in Theorem 4.1, and a celebrated
theorem of E. I. Zel'manov [33] on the so-called Engel-Lie algebras, we derive the
following,

Theorem 4.4. Lel A be a complete normed elgebrewe Lie algebra. Then the fol-
lowing assertions are equivalent:

L

. A is topologically nilpotent.

[

. A salisfies the NBP.
3. 8(A) < 1.

-

. B(A) < +oo.

N

A s milpotent.

Let A be an algebra. A subalgehra B of A is called a tull subalgebra of A if,
whenever bisin B,agisin A, anda+b—ab=5b+a —ba = 0, we have a € B.
Since the intersection of full subalgebras of A is another full subalgebra of A, it
follows that, for any nonempty subset S of 4, there is a smallest full subalgebra of 4
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whiclt contains 5. This subalgebra will be called the full subalgebra of A generated
bv 5. Now. let L(A) stand for the associative algebra of all linear operators on A.
Following (23], we define the full multiplication algebra of A as the full subalgebra
of L{A) gencrated by all operators of left and right multiplication by elements of A
oit A, and denote it by FAM{A),

In {18] we obtain the following,

Theorem 4.5. Lef A be o fopoloyicully nilpotent complete normed wlgebra, Then
FMIA) 15 a rudical elgebia,

Remark 4.6. Let. A be any algebra over K. The full multiplication algebra of A
ix introduced in [23] as an intermediate notion to define the so-called weak radical
of A (deuoted by w-Rad(A)), and to prove that, if w-Rad{A) = 0, then A has
at most one complete algebra norm topology. The weak radical of A is actually
defined as the largest FM(A-mmvariant subspace of 4 contained in the subspace

{ue A {La, Ba} C Rad(FM(AN},

where Rad() ineans Jacobson radical. It is easily realized that FA{A) is a radieal
algebra if and only if A = w-Rad{A). Therclore, Theorem 4.5 can be reformulated
by saying that, f A is a topologically milpotent complete normed olgchia, then A
13 equad to s week rodienl. 1t is worth meutioning that the weak radical is “very
small” (see [23, Proposition 2.3]), so that topologically nilpotent complete norined
algebras are equal to their “radicals” for most familiar radicals.
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