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ABSTRACT

In this paper we survey in detail the applications of Zelmanov’s
prime theorems on Jordan structures to the study of normed Jor-
dan algebras and triples. Such a study includes primitive Jordan-
Banach algebras, simple normed Jordan algebras, nondegenerately ul-
traprime Jordan-Banach complex algebras, and prime JB∗-algebras,
JB-algebras, real JB∗-triples, complex JB∗-triples, real JBW ∗-triples,
and complex JBW ∗-triples.

INTRODUCTION

In a series of papers (see [74], [75], [76], [77], and [78]) E. I. Zelmanov
provided the mathematical community with his surprising classifica-
tion theorems for prime nondegenerate Jordan algebras and triples.
Zelmanov’s prime theorems, though received enthusiastically by al-
gebraists since its appearance, have taken a relatively long time to
be assimilated by analysts in order to obtain new structure theorems
for normed prime nondegenerate Jordan algebras and triples, results
that cannot be attacked by the familiar technique of the existence of
a nonzero socle or by duality methods in JBW ∗-theory. The reason
could be that the formulation of Zelmanov’s prime theorems, in order
to attains a nice simple form, perhaps conceals in their formulations
some crucial information that is needed in the applications. This means
for the analyst the necessity of finding out the deep and very difficult
proofs of Zelmanov’s theorems, a fact that takes time. Fortunately
this time has been already taken, and we are presenting in this paper
relevant examples of the application of Zelmanov’s techniques to the
structure of normed Jordan algebras and triples. In the case of JB∗-
algebras and JB∗-triples, the results obtained refine in a very nontrivial
way the classical theory.

The material we are reviewing has been partially surveyed in other
papers (see [19], [24], [29], [43], [54], [60], [61], [62], and [63]). In the
present paper we tray to offer a complete panoramic view of such a
material. In reviewing the results, we have not respected the chronol-
ogy of their appearance. In fact we have preferred to assemble the
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different results according to their nature. Thus, we collect in Sections
1 and 2, those structure theorems which are of algebraic-topological
type. This means that the description of the normed Jordan structures
considered in such theorems is made up to bicontinuous isomorphisms.
This is the case of primitive Jordan-Banach algebras (Theorem 1.8),
simple normed Jordan algebras (Theorem 2.1), and nondegenerately
ultraprime Jordan-Banach complex algebras (Theorem 2.2). Section
3 remains in the spirit of results of algebraic-topological nature, and
deals with the so-called “norm extension problem”, which in its roots is
crucially related to normed versions of Zelmanov’s prime theorems for
Jordan structures. Sections 4 and 5 are devoted to collect structure the-
orems of geometric type. In these cases the description of the normed
Jordan structures is achieved up to isometric isomorphisms. Actually,
results of such a geometric nature are known to date only in the setting
of JB- and JB∗-algebras, and JB∗-triples. The description of prime
JB∗-algebras, JB-algebras, real JB∗-triples, complex JB∗-triples, real
JBW ∗-triples, and complex JBW ∗-triples is given by Theorems 4.5,
4.6, 5.2, 5.1, 5.4 and 5.5, respectively. The concluding section of the
paper (Section 6) is devoted to notes and remarks.

1. Primitive Jordan-Banach algebras

Along this paper F will denote a field of characteristic different from
two. A Jordan algebra over F is a commutative algebra over F satisfying
the Jordan identity:

(x2.y).x = x2.(y.x) .

If A is an associative algebra with product denoted by yuxtaposition
ab, then its symmetrization A+, which has the same vector space and
the symmetric or Jordan product a.b := (ab + ba), is a Jordan algebra.
Subalgebras of A+ are called Jordan subalgebras of A. If the associative
algebra A has an involution ∗, then the set H(A, ∗) (of all ∗-invariant
elements in A) becomes a nice example of a Jordan subalgebra of A. We
remark that, unless stated otherwise, by an involution on an algebra
we mean a LINEAR ALGEBRA involution.

Jordan algebras which are isomorphic to Jordan subalgebras of as-
sociative algebras are called special. A Jordan algebra is said to be
exceptional whenever it is not special.

Symmetric bilinear forms on vector spaces produce, in a very trans-
parent way, relevant examples of Jordan algebras. Let X be a vector
space over F and f : X ×X → F be a symmetric bilinear form. Then
the vector space F1⊕X with the product defined by

(α1 + x).(β1 + y) := (αβ + f(x, y))1 + (αy + βx)
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is a Jordan algebra over F denoted by J(X, f) and called the Jordan
algebra of the (symmetric) bilinear form f (on the vector space X).
Although not obvious, such an algebra is special (it can be seen as a
Jordan subalgebra of the Clifford algebra of f , see [38, VII, §1]).

Let J be a Jordan algebra. For x, y in J we denote by Ux,y the linear
operator on J defined by Ux,y(z) := x.(y.z) + y.(x.z) − (x.y).z and
put Ux := Ux,x . An inner ideal of J is a subspace I of J such that
UI(J

1) ⊆ I, where J1 denote the unital hull of J . We say that an inner
ideal I in J is e-modular for some e ∈ J if

U1−e(J) ⊆ I, U1−e,I(J
1) ⊆ I, and e− e2 ∈ I.

We will say that an inner ideal M is e-maximal if it is maximal among
all proper e-modular inner ideals. We say that M is maximal-modular
if it is e-maximal for some e. A modular inner ideal is proper if and
only if it excludes its modulus [34, Proposition 2.10]. Therefore, via
Zorn’s Lemma, any proper e-modular inner ideal is contained in an
e-maximal inner ideal. Following [74] and [34], we say that the Jordan
algebra J is primitive if there exists a maximal-modular inner ideal of
J containing no non-zero ideals of J .

The structure of primitive Jordan algebras is given by the next vari-
ant of the Zelmanov prime theorem [75]. Such a variant has been
obtained independently by A. Anquela, F. Montaner, and T. Cortés [6]
and V. G. Skosyrsky [69].

Theorem 1.1. The primitive Jordan algebras over F are the following:

i) The finite-dimensional central simple exceptional Jordan alge-
bras over a field extension of F;

ii) Jordan algebras of a nondegenerate symmetric bilinear form on
a vector space X over a field Ω extension of F with dimΩ(X) ≥
2;

iii) Jordan subalgebras of the Martindale algebra of symmetric quo-
tients, Q(A), containing A as an ideal, where A is a primitive
associative algebra over F;

iv) Jordan subalgebras of Q(A) contained in H(Q(A), ∗) and con-
taining H(A, ∗) as an ideal, where A is a primitive associative
algebra over F with a linear algebra involution.

The structure of primitive Jordan-Banach algebras obtained in [19]
and [20], which will be reviewed in what follows, consists of a case-by-
case Banach treatment of the above theorem.

We begin by considering cases i), ii), and iii) in Theorem 1.1, whose
normed study does not need any Zelmanovian technique.

An algebra A is said to be alternative if for every x, y in A the
equalities

x2y = x(xy) and yx2 = (yx)x
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hold. Every finite-dimensional central simple alternative not associa-
tive algebra A over F is 8-dimensional over F and has a unit 1 and an
involution “ ” satisfying

x + x ∈ F1 and xx ∈ F1

[68, Theorem 3.17 and Chapter III, §4]. Such algebras are called octo-
nion algebras over F and the involution “ ” above is called the standard
involution. Over any field F, there exists a unique octonion algebra
(denoted by C(F)) having divisors of zero [68, Lemma 3.16]. As a
consequence, if F is algebraically closed, then C(F) is the unique oc-
tonion algebra over F. It is also well-known that there are only two
non-isomorphic octonion algebras over R, namely C(R) and the more
familiar one denoted by O, which of course is a division algebra.

Given an octonion algebra C over F and γ1, γ2, γ3 non-zero elements
in F, we denote by M3(C) the algebra of all 3x3 matrices with entries
in C (with the usual matrix product) and by Γ the diagonal matrix

Γ := diag{γ1, γ2, γ3} .

If we consider the involution ∗ on M3(C) given by X → X∗ := Γ−1X
t
Γ,

where X t := (xji) when X = (xij), then the subspace H3(C, Γ) :=
H(M3(C), ∗) of all ∗-invariant elements in M3(C), endowed with the
symmetrized product, becomes a 27-dimensional central simple excep-
tional Jordan algebra over F [68, Theorem 4.8]. When Γ is equal to
the identity mapping, we simply write H3(C) := H3(C, Γ).

If either F is algebraically closed or F = R, then the construction
above becomes specially relevant in view of the following theorem (see
[1, Theorems 4 and 10]).

Theorem 1.2. i) If F is algebraically closed, then H3(C(F)) is
the unique finite-dimensional exceptional simple Jordan algebra
over F.

ii) There are exactly three non-isomorphic finite-dimensional ex-
ceptional central simple Jordan algebras over R, namely H3(C(R)),
H3(O), and H3(O, diag{1,−1, 1}).

Now the normed treatment of case i) in Theorem 1.1 reduces to
putting together Theorem 1.2 and the next immediate consequence of
the Gelfand-Mazur theorem. From now on, K will denote either R or
C.

Proposition 1.3. Let J be a unital algebra over a field extension F of
K. If J is a normed algebra over K, then F = C if K = C, and F = R
or C if K = R.

Now we pass to deal with the normed treatment of Jordan algebras
of a bilinear form. If (X, ‖.‖) is a normed space over K and if f is



5

a continuous symmetric bilinear form on X with ‖f‖ ≤ 1, then the
Jordan algebra J(X, f) = K1⊕X with norm ‖.‖ defined by

‖α1 + x‖ := |α|+ ‖x‖
becomes a normed algebra called the normed Jordan algebra of the con-
tinuous symmetric bilinear form f on the normed vector space (X, ‖.‖).
Clearly, such a normed algebra is complete if and only if X is a Banach
space. The following result asserts that, up to a topological isomor-
phism, these algebras are the unique Jordan algebras of a symmetric
bilinear form which are normed algebras.

Proposition 1.4. Let (J, ‖.‖) be a normed Jordan algebra over K and
assume that J = J(X, f) for a symmetric bilinear form f on a vector
space X over a field F extension of K. Then F = C if K = C and F = R
or C if K = R. Moreover, there exists a norm ||| . ||| on X such that X
is a normed space over F, f is continuous with ||| f ||| ≤ 1, and the norm
‖.‖ in J is equivalent to the norm given by α1 + x → |α|+ |||x |||.

With more or less precision in the formulation and proof, the content
of the above proposition often arises in the literature, mainly in the case
K = C (see for example [10], [23], and [59]). The actual formulation of
Proposition 1.4 is taken from [19], where a complete proof is given.

The Banach treatment of case iii) in Theorem 1.1 was made in [17]
and [19] for F = C and F = R, respectively, given rise to the result
collected in the next proposition. For a normed space X, we denoted
by BL(X) the normed algebra of all bounded linear operators on X.

Proposition 1.5. Let (J, ‖.‖) a Jordan-Banach algebra over K and
assume that there exists a primitive associative algebra A over K such
that J is a Jordan subalgebra of Q(A) containing A as an ideal. Then
there exists a Banach space X over K and a one-to-one homomorphism
Φ from Q(A) into the Banach algebra BL(X) such that Φ(A) acts
irreducibly on X and the restriction of Φ to J is contiuous.

The remaining part of this section is devoted to the Banach treat-
ment of case iv) of Theorem 1.1, where the application of Zelmanovian
techniques become crucial.

From now on, X will stand for a countably infinite set of indetermi-
nates. We denote by A(X) the free associative algebra (over a prefixed
field F) on X, and by J (X) the free special Jordan algebra over F
on X, namely the Jordan subalgebra of A(X) generated by X. In-
tuitively, the elements of J (X), called Jordan polynomials, are those
elements in A(X) which can be obtained from that of X by a finite
process of taking sums, Jordan products, and products by elements
of F. If ∗ denotes the unique involution on A(X) fixing the elements
of X, we clearly have J (X) ⊆ H(A(X), ∗). For every element a in
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any algebra with involution ∗, put {a} := 1
2
(a + a∗) . Following [49],

we say that a Jordan polynomial p (involving m indeterminates, say
x1, ...,xm) is an imbedded pentad eater if there exist a natural num-
ber k and Jordan polynomials pi

j(1 ≤ i ≤ k, 1 ≤ j ≤ 3) involving
m + 4 indeterminates such that, for all natural numbers r and s and
all z1, . . . , zr,y1, . . . ,y4,w1, . . . ,ws in X, we have in A(X)

{z1 . . . zry1 . . .y4pw1 . . .ws} =
k∑

i=1

{z1 . . . zrp
i
1p

i
2p

i
3w1 . . .ws},

where to be brief in the second side of the equality we have written pi
j

instead of pi
j(y1, . . . ,y4,x1, . . . ,xm). The set of all imbedded pentad

eaters is a subspace of J (X), and, in fact, an ideal of J (X) [5, Theorem
2.7], which is denoted by I5. For any special Jordan algebra J , I5(J)
will mean the ideal of J of all valuations on J of the polynomials in I5.

Let J be a prime Jordan algebra. Then every non-zero element in
the centre Z of J is not a divisor of zero in J , and therefore, if Z 6= 0,
then we can consider the “álgebra of fractions” JZ−1, which is called
the central localization of J [80, pp. 185-186]. J is called an Albert ring
(respectively, a central order in the Jordan algebra of a bilinear form)
if Z 6= 0 and its central localization is a central simple 27-dimensional
exceptional Jordan algebra (respectively, a Jordan algebra of a bilinear
form on a vector space) over the field of fractions ZZ−1.

The celebrated Zelmanov’s prime theorem for Jordan algebras [75]
asserts that, if J is a nondegenerate (i.e., x ∈ J and Ux = 0 implies
x = 0) prime Jordan algebra, and if J is neither an Albert ring nor a
central order in a Jordan algebra of a bilinear form, then there exists a
∗-prime associative algebra (A, ∗) generated by H(A, ∗) such that J can
be seen as a Jordan subalgebra of Q(A) contained in H(Q(A), ∗) and
containing H(A, ∗) as an ideal. The proof of Zelmanov’s theorem shows
that the algebra A above can be chosen with the additional property
that I5(J) = H(A, ∗) (see [49] for details). Precisely thanks to the
above equality we were able to prove in [20] the following “germinal”
normed version of the Zelmanov prime theorem.

Theorem 1.6. Let (J, ‖.‖) be a prime nondegenerate normed Jordan
algebra over K, and assume that J is neither an Albert ring nor a
central order in the Jordan algebra of a bilinear form. Then there
exists a normed ∗-prime associative algebra (A, ∗, ||| . |||) over K, which is
generated in a purely algebraic sense by H(A, ∗), such that J can be seen
as a Jordan subalgebra of Q(A) contained in H(Q(A), ∗) and containing
H(A, ∗) as an ideal, and the following properties are satisfied:

i) ‖h‖ ≤ |||h ||| for all h in H(A, ∗),
ii) If a is in A, and satisfies aJ + Ja ⊆ A, then the mappings

x → ax and x → xa from (J, ‖.‖) into (A, ||| . |||) are continuous,
iii) ||| a∗ ||| = ||| a ||| for all a in A, and
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iv) If (Â, ∗) denotes the completion of (A, ∗) relative to the norm

||| . |||, then every nonzero ∗-ideal of Â meets H(Â, ∗).

If the norm ‖.‖ on the Jordan algebra J above is complete, then
a better result holds. Such a result is derived in [20] from Theorem
1.6 and a “very Zelmanovian” theorem on extensions of Jordan ho-
momorphisms due to K. McCrimmon [48, Theorem 2.2], and reads as
follows.

Theorem 1.7. Let (J, ‖.‖) be a prime nondegenerate Jordan-Banach
algebra over K, and assume that J is neither an Albert ring nor a
central order in the Jordan algebra of a bilinear form. Then there
exists a normed ∗-prime associative algebra (A, ∗, ||| . |||) over K, which is
generated in a purely algebraic sense by H(A, ∗), such that J can be seen
as a Jordan subalgebra of Q(A) contained in H(Q(A), ∗) and containing
H(A, ∗) as an ideal, and the following properties are satisfied:

i) If a is in A, and satisfies aJ + Ja ⊆ A, then the mappings
x → ax and x → xa from (J, ‖.‖) into (A, ||| . |||) are continuous,

ii) ||| a∗ ||| = ||| a ||| for all a in A;

iii) If (Â, ∗, ||| . |||) denotes the completion of (A, ∗, ||| . |||), then the in-
clusion A ⊆ Q(A) extends in a unique way to a one-to-one

∗-homomorphism Â ↪→ Q(A) mapping H(Â, ∗) into J and sat-

isfying ‖h‖ ≤ |||h ||| for all h in H(Â, ∗), and

iv) Every nonzero ∗-ideal of Â meets H(A, ∗).

Theorems 1.6 and 1.7 make no direct reference to primitive Jordan
algebras. However, as matter of fact, primitive Jordan algebras are
particular examples of prime nondegenerate Jordan algebras, and we
were able to obtain the structure of primitive Jordan-Banach algebras
(as we are presenting here) only by passing through the “germinal”
complete normed version of Zelmanov’s prime theorem provided by
Theorem 1.7. All the remaining material collected in this section is
also involved in the proof of the structure theorem of primitive Jordan-
Banach algebras. Such a theorem was proved in [20] and [19] for K = C
and K = R, respectively, and reads as follows.

Theorem 1.8. A Jordan-Banach algebra J over K is primitive (if and)
only if one of the following assertions holds:

i) J = H3(C(C)) if K = C, and J = H3(C(C)), J = H3(C(R)),
J = H3(O), or J = H3(O, diag{1,−1, 1}) if K = R.

ii) J is the Jordan-Banach algebra of a continuous nondegener-
ate symmetric bilinear form on a Banach space over F with
dimF(X) ≥ 2, where F = C if K = C, and F = R or C if
K = R.
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iii) There exist a Banach space X over K and an associative sub-
algebra A of BL(X) acting irreducibly on X such that J can
be seen as a Jordan subalgebra of BL(X) containing A as an
ideal, and the inclusion J ↪→ BL(X) is continuous.

iv) There exist a Banach space X over K and an associative sub-
algebra A of BL(X) acting irreducibly on X such that J can
be seen as a Jordan subalgebra of BL(X), the inclusion J ↪→
BL(X) is continuous, the identity mapping on J extends to an
involution ∗ on the subalgebra B of BL(X) generated by J , A
is a ∗-invariant subset of B, H(A, ∗) is an ideal of J , and A is
generated by H(A, ∗).

2. Strong-versus-light normed versions of the Zelmanov
prime theorem

The classification theorem for primitive Jordan-Banach algebras we
have just reviewed becomes an example of the so called “light” normed
versions of the Zelmanov prime theorem. This means that the topology
of the norm of the normed Jordan algebra J in cases iii) and iv) of the
theorem does not arise as the restriction to J of the topology of some
algebra norm on its natural associative envelope (in our present case,
the subalgebra of BL(X) generated by J). There are in the literature
examples of “strong” (i.e., free of the above pathology) versions of the
Zelmanov prime theorem, like the following.

Theorem 2.1 ([22]). Up to bicontinuous isomorphisms, the simple
(complete) normed Jordan algebras over K are the following:

i) H3(C(C)) if K = C, and H3(C(C)), H3(C(R)), H3(O), and
H3(O, diag{1,−1, 1}) if K = R.

ii) The Jordan algebras J(X, f) of a continuous nondegenerate
symmetric bilinear form f on a (complete) normed vector space
X over F with dimF(X) ≥ 2, where F = C if K = C, and F = R
or C if K = R.

iii) The Jordan algebras of the form A+, where A is a simple (com-
plete) normed associative algebra over K with a unit.

iv) The Jordan algebras of the form H(A, ∗), where A is a simple
(complete) normed associative algebra over K with a unit and
∗ is an isometric involution on A.

In fact Theorem 2.1 was proved in [22] only for the case K = C, but,
with the help of Proposition 1.3, Theorem 1.2, and Proposition 1.4, the
arguments in the proof remain valid for the case K = R.
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Another strong normed version of the Zelmanov prime theorem is the
one proved in [23] for nondegenerately ultraprime Jordan-Banach alge-
bras. A normed Jordan algebra J is said to be nondegenerately ultra-
prime if there exists a countably incomplete ultrafilter U on a suitable
set such that the corresponding normed ultrapower JU is prime and
nondegenerate. With the Beidar-Mikhalev-Slin’ko characterization of
prime nondegenerate Jordan algebras [9], it can be proved easily that
a normed Jordan algebra J is nondegenerately ultraprime if and only
if there exists k > 0 such that ‖Ux,y‖ ≥ k‖x‖‖y‖ for all x, y in J .
As a consequence, all normed ultrapowers of a nondegenerately ultra-
prime normed Jordan algebra are prime and nondegenerate. Following
ideas by M. Mathieu in [45] and [47], M. Cabrera and A. Rodŕıguez
introduced in [23] ultra-τ -prime normed associative algebras with con-
tinuous involution τ , which can be characterized without any reference
to ultrapowers as those normed associative algebras A with continuous
involution τ satisfying

max{‖Ma,b‖, ‖Maτ ,b‖} ≥ k‖a‖ ‖b‖

for some fixed k > 0 and all a, b in A, where Ma,b(c) := acb for every
c in A. For such an ultra-τ -prime normed associative algebra (A, τ), a
large τ -invariant subalgebra Qb(A) of its symmetric Martindale alge-
bra of quotients can be converted in an ultra-τ -prime normed algebra
in such a way that the natural embedding A ↪→ Qb(A) becomes a
topological embedding. Then Jordan subalgebras of Qb(A) contained
in H(Qb(A), τ) and containing H(A, τ) are examples of nondegerately
ultraprime normed Jordan algebras. Now, the main result in [23] reads
as follows.

Theorem 2.2. Up to bicontinous isomorphisms, the nondegenerately
ultraprime Jordan-Banach complex algebras are the following:

i) H3(C(C)).
ii) The Jordan-Banach algebras J(X, f) of a continuous nonde-

generate symmetric bilinear form f on a complex Banach space
X with dim(X) ≥ 2 and such that the natural embedding x →
f(., x) from X into its dual is topological.

iii) The closed Jordan subalgebras of Qb(A) contained in H(Qb(A), τ)
and containing H(A, τ) as an ideal, where A is an ultra-τ -prime
complex Banach algebra with continuous involution τ such that
H(A, τ) generates A as a Banach algebra.

The proof of the above theorem is very long and difficult. For a
summary of the main tools involved in such a proof the reader is referred
to [60, p. 167].

Despite the examples of strong normed versions of Zelmanov’s prime
theorem provided by Theorems 2.1 and 2.2 in some particular settings,
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a general strong normed version of Zelmanov’s theorem cannot be ex-
pected. Nor even for normed simple Jordan algebras without a unit
(see [18, Remark 4] for details). This is a consequence of the next
theorem. We denote by M∞(K) the simple associative algebra of all
countably infinite matrices over K with a finite number of non-zero
entries.

Theorem 2.3 ([18]). There exists an algebra norm ‖.‖ on M∞(K)+

which is not equivalent to any algebra norm on M∞(K). More pre-
cisely, there exists an involution ∗ on M∞(K) such that there is no
algebra norm ||| . ||| on M∞(K) such that the restrictions of ‖.‖ and ||| . |||
to H(M∞(K), ∗) are equivalent.

We showed in [18, Section 3] that, for a suitable choice of the patho-
logical norm ‖.‖ above, the completions of the normed Jordan algebras
(M∞(K)+, ‖.‖) and (H(M∞(K), ∗), ‖.‖) are primitive Jordan-Banach
algebras over K whose topologies cannot be obtained by restricting
to them the topology of any algebra norm in their natural associative
envelopes. In other words, a strong normed version of Theorem 1.8
cannot be expected.

Strong normed versions of the Zelmanov prime theorem depend heav-
ily on the so called “norm extension problem”, which will be consid-
ered in some detail in the next section. As a matter of fact, one of the
main results in [64] (see Theorem 3.1) essentially links the norm exten-
sion problem with the continuity of a typical non-Jordan polynomial
(namely, the “tetrad”). This invited us to apply the techniques in the
proof of Theorem 1.5 to obtain analytical characterizations of Jordan
polynomials, a question previously tried out in [8]. In this direction we
proved the following result.

Theorem 2.4 ([21]). An associative polynomial p over K is a Jordan
polynomial if and only if, for every algebra norm ‖.‖ on M∞(K)+, the
action of p on M∞(K) is ‖.‖-continuous.

Actually a better result holds: There exists an algebra norm ‖.‖
on M∞(K)+ such that Jordan polynomial over K are those associative
polynomials which act ‖.‖-continuously on M∞(K) [50].

3. The norm extension problem

Throughout this section C will stand for a (possibly non associative)
algebra over K endowed with an involution ∗. As in the associative case,
we denote by H(C, ∗) the subspace of C consisting of all ∗-invariant
elements in C, and we will consider H(C, ∗) as an algebra over K under
the symmetrized product x ◦ y := 1

2
(xy + yx). Obviously, if ‖.‖ is an

algebra norm on C, then its restriction to H(C, ∗) is an algebra norm
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on H(C, ∗). The so called norm extension problem (in short, NEP) is
the following.

NEP. Given (C, ∗) as above, and an algebra norm ‖.‖ on H(C, ∗), is
there an algebra norm on C whose restriction to H(C, ∗) is equivalent
to ‖.‖?

It is easy to see that, when we are able to answer affirmatively the
above question, then actually we can choose the algebra norm on C
extending the topology of the norm ‖.‖ on H(C, ∗) in such a way that
∗ becomes continuous. It is also not difficult to realize that, in study-
ing the NEP, the additional assumption that the algebra C is a ∗-tight
envelope of H(C, ∗) (i.e., C is generated by H(C, ∗), and every nonzero
∗-invariant ideal of C has nonzero intersection with H(C, ∗)) is not too
restrictive. Indeed, in any case one can find an algebra with involu-
tion (D, τ) such that (D, τ) is a τ -tight envelope of H(D, τ), and the
algebras H(D, τ) and H(C, ∗) are isomorphic.

Since, as we commented in the previous section, strong normed ver-
sions of Zelmanov‘s prime theorem crucially depends on the norm ex-
tension problem, we are reviewing in detail in the present section the
main results about that problem.

Assume that the algebra C is associative and that the NEP has an
affirmative answer. Then, clearly, the tetrad mapping

xyzt → {xyzt} :=
1

2
(xyzt + tzyx)

from H(C, ∗)×H(C, ∗)×H(C, ∗)×H(C, ∗) to H(C, ∗) is ‖.‖-continuous.
The following partial converse of the fact just quoted was proved in [64,
Corollary 1].

Theorem 3.1. Assume that C is associative and a ∗-tight envelope of
H(C, ∗). Then the NEP has an affirmative answer if (and only if) the
tetrad mapping is ‖.‖-continuous.

The two following positive results on the norm extension problem
involve in their proof the general criterium given by the above theorem.

Theorem 3.2 ([64, Theorem 2]). Assume that C is associative and
a ∗-tight envelope of H(C, ∗), that H(C, ∗) is semiprime, and that the
norm ‖.‖ on H(C, ∗) is complete. Then the NEP has an affirmative
answer.

Theorem 3.3 ([18, Theorem 4]). Assume that C is associative and a
∗-tight envelope of H(C, ∗), and that H(C, ∗) is simple and has a unit.
Then the NEP has an affirmative answer.

The last theorem is an example of a global affirmative answer to the
NEP. This means that the NEP answers affirmatively without any con-
dition on the algebra norm ‖.‖ on H(C, ∗), and hence, under suitable
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algebraic assumptions (for instance, if C is associative and a ∗-tight en-
velope of H(C, ∗), and H(C, ∗) is simple and has a unit), every algebra
norm on H(C, ∗) can be extended to an algebra norm on C.

According to Theorem 2.3, for C = M∞(K) with a suitable involution
∗ there exists an algebra norm ‖.‖ on H(C, ∗) such that the NEP
has a negative answer. This shows that neither the assumption of
completeness of the norm ‖.‖ in Theorem 3.2 nor that the existence of
a unit for H(C, ∗) in Theorem 3.3 can be removed.

Although, in relation to the analytic treatment of Zelmanov’s prime
theorem, the norm extension problem is only interesting in the case that
the algebra C is associative, in some positive results on that problem
the associativity of C is not needed. This is the case of the paper [55].
Let B be an algebra with a unit and an involution ∗. If b1, ..., bn are
∗-invariant invertible elements in the nucleus of B (see [38, p. 18] for
the definition of the nucleus), and if we put d := diag{b1, ..., bn}, then
the operator ∗ on Mn(B) given by (bij)

∗ := d−1(b∗ji)d is an involution on
Mn(B). Involutions on Mn(B) defined in this way are called canonical
involutions. The standard involution on Mn(B) is nothing but the
canonical involution corresponding to the identity diagonal matrix. In
its easiest form, the main result of [55] reads as follows.

Theorem 3.4 ([55, Theorem 3.3]). The NEP has an affirmative an-
swer whenever C is of the form Mn(B), for some natural number n ≥ 3
and some (possibly non associative) algebra B over K with a unit and
an involution, and the involution ∗ on C is a canonical involution.
Moreover, for (C, ∗) as above, the following two assertions hold:

i) Two algebra norms on C are equivalent whenever they make ∗
continuous and their restriction to H(C, ∗) are equivalents (UNIQUE-
NESS OF THE EXTENDED NORM TOPOLOGY).

ii) If the algebra norm ‖.‖ on H(C, ∗) is complete, then the essen-
tially unique algebra norm on C making ∗ continuous and generat-
ing on H(C, ∗) the topology of ‖.‖ is complete too (COMPLETE-TO-
COMPLETE EXTENSION PROPERTY).

Let (A, ∗) be a finite dimensional ∗-simple associative complex alge-
bra, and let n denote the degree of H(A, ∗) (i.e., n is the smallest natural
number such that every single-generated subalgebra of H(A, ∗) has di-
mension less or equal to n). Then (A, ∗) is isomorphic to (Mn(D), ∗),
where D is a complex composition algebra and ∗ on Mn(D) denotes the
standard involution relative to the Cayley involution on D (see [38, pp.
208-209]). Now, let us consider in addition a complex algebra B with
a unit and a involution. Then we have

A⊗B = Mn(D)⊗B = Mn(C)⊗ D⊗B = Mn(D⊗B),

and the tensor involution on A⊗B is noting but the standard involution
on Mn(D⊗B) relative to the tensor involution on D⊗B. It follows from
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Theorem 3.4 (with D ⊗ B instead of B) that, if n ≥ 3, then the NEP
has a global affirmative answer whenever C is of the form A⊗B, for A
and B as above, and the involution on C is the tensor involution. With
some additional effort (see the proof of Theorem 3.5 in [55], for details),
the result we have just shown for the case K = C remains essentially
true when K = R. In this way we have the following abstract version of
Theorem 3.4 (note that, if (A, ∗) is a unital ∗-simple associative algebra
over K, then H(A, ∗) is a unital simple Jordan algebra and therefore
the centre of H(A, ∗) is a field).

Theorem 3.5 ([55, Theorem 3.5]). The NEP has an affirmative an-
swer whenever (C, ∗) is of the form (A, ∗) ⊗ (B, ∗), where (A, ∗) is a
finite dimensional ∗-simple associative algebra over K whose hermitian
part H(A, ∗) is of degree ≥ 3 over its centre, and (B, ∗) is a (possibly
non associative) algebra with involution and a unit over K. Moreover,
for (C, ∗) as above, we enjoy the uniqueness of the extended norm topol-
ogy and the complete-to-complete extension property.

We note that the affirmative answer to the NEP given by Theorems
3.4 and 3.5 is of global type.

The necessity of the assumptions in Theorems 3.4 and 3.5 are fully
discussed in [55]. Actually, concerning the hypothesis n ≥ 3 in Theorem
3.4 we have the next ”anti-theorem” (see [55, Theorem 4.3] or [54]).

Theorem 3.6. Let X be an arbitrary infinite-dimensional normed
space over K. Then there exists an associative algebra B over K with
a unit, and an involution ∗ on B, satisfying:

i) X = H(M2(B), ∗), as vector spaces.
ii) Up to multiplication by a suitable positive number if necessary,

the norm of X becomes an algebra norm on H(M2(B), ∗).
iii) There is no algebra norm on M2(B) whose restriction to

H(M2(B), ∗) is equivalent to the norm of X.
iv) M2(B) is a ∗-tight envelope of H(M2(B), ∗).

We note that the above “anti-theorem” shows in addition that the
assumption of semiprimeness of H(C, ∗) in Theorem 3.2 cannot be
removed.

A relevant part of Theorem 3.5 remains true if we relax the assump-
tion of finite dimensionality for the associative ∗-simple algebra A to
the mere existence of a unit for A, but we assume that the algebra
B is associative. This is proved in [55, Theorem 5.5], by applying
Zelmanovian techniques, and precisely reads as follows.

Theorem 3.7. The NEP has a global affirmative answer whenever
(C, ∗) is of the form (A, ∗) ⊗ (B, ∗), where (A, ∗) is a unital ∗-simple
associative algebra over K whose degree over its centre is ≥ 3 , and
(B, ∗) is a unital associative algebra with involution over K.
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In obtaining the above theorem, the following purely algebraic fact
becomes crucial. If (A, ∗) is a ∗-simple associative algebra whose her-
mitian part is of degree ≥ 2 over its centroid, and if (B, ∗) is a unital
involutive algebra, then the involutive algebra (A, ∗) ⊗ (B, ∗) is a ∗
-tight envelope of its hermitian part [55, Proposition 5.1].

To conclude this section, let us consider the NEP in the case that
H(C, ∗) is finite dimensional. If C is associative, and if H(C, ∗) gener-
ates C, then it is well know that the equality C = H(C, ∗)+H(C, ∗)2 +
H(C, ∗)3 holds. Therefore, if in addition dim H(C, ∗) < ∞, then
dim C < ∞, and hence the NEP has an obvious and global affirmative
answer. If C is not associative, a similar result cannot be expected.
This is a consequence of the following “anti-theorem”.

Theorem 3.8 ([53, Theorem 3]). Let X be an arbitrary vector space
over K with dim X ≥ 2. Then there exists an algebra C over K with
involution ∗ satisfying the following conditions:

i) X = H(C, ∗) as vector spaces.
ii) C is a ∗-tight envelope of H(C, ∗).
iii) The product of H(C, ∗) is zero (and hence every norm on X is

an algebra norm on H(C, ∗)) .
iv) There is no algebra norm on C.

4. Prime JB∗-algebras

A JB∗-algebra is a complete normed complex Jordan algebra J with
a conjugate-linear algebra involution ∗ satisfying ‖Ux(x

∗)‖ = ‖x‖3 for
every x in J .

Given a C∗-algebra A, the Jordan algebra A+ becomes naturally a
JB∗-algebra under the same norm and involution as those of A. If A
is a C∗-algebra and τ is a ∗-involution on A (i.e., a C-linear algebra in-
volution commuting with ∗), then H(A, τ) is a norm-closed ∗-invariant
Jordan subalgebra of A and hence a JB∗-algebra.

Applying [59, Theorems 3.2 and 3.3] with suitable simplification due
to the commutativity, all JB∗-algebras which are Jordan algebras of
a bilinear form arise by taking an arbitrary complex Hilbert space H,
choosing a conjugation σ on H (which always exists and is essentially
unique [33, Lemma 7.5.6]), and then by considering J = C ⊕ H with
Jordan product

(λ + h).(µ + k) := [λµ + (h|σ(k))] + [λk + µh]

involution

(λ + h)∗ := λ + σ(h)

and norm given for x = λ + h by

‖x‖2 := |||x |||+
√
|||x |||4 − |(x|x#)|2
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where x# := λ − σ(h), (.|.) denotes the natural inner product on J

regarded a `2-sum of C and H, and |||x ||| :=
√

(x|x). We note that
the algebras J just described are simple (and hence prime) whenever
dim J 6= 2. Moreover, since prime JB∗-algebras are central [67], when
dim J 6= 2 such algebras are the unique prime JB∗-algebras which are
central orders in Jordan algebras of bilinear forms.

To complete the list of JB∗-algebras of classical type, let us say that
the complex Jordan algebra H3(C(C)) can be structured as a JB∗-
algebra [72], and this structure is essentially unique [58, Corollary 2.10
and Proposition 2.1]. The fact already quoted that prime JB∗-algebras
are central, together with Theorem 1.2, implies that the JB∗-algebra
H3(C(C)) is the unique prime JB∗-algebra which is an Albert ring.

According to the above comments, to get a classification of all prime
JB∗-algebras it is enough to describe those prime JB∗-algebras which
are neither an Albert ring nor a central order in the Jordan algebra of
a bilinear form. To this end it was necessary to delve (lightly in this
case) into the proof of Zelmanov’s prime theorem [75], extracting some
arguments that can be summarized in the following proposition (see
also [49]).

Proposition 4.1. Let B be an associative algebra with an involution τ ,
J a prime nondegenerate Jordan subalgebra of B contained in H(B, τ),
and assume that J is not a central order in a Jordan algebra of a
bilinear form. Then there exists a τ -invariant subalgebra A of B such
that H(A, τ) is a nonzero ideal of J.

Now, if the prime JB∗-algebra J is neither an Albert ring nor a
central order in the Jordan algebra of a bilinear form, we may appeal
to the classical theory of JB∗-algebras in order to select a specially
well-behaved associative envelope B for J , to which Proposition 4.1
will be applied. The contribution of the classical JB∗-theory is the
following (at this time folklore) Proposition.

Proposition 4.2 ([30, Proposition 1.2]). For every special JB∗-algebra
J , there exists a C∗-algebra B with ∗-involution τ such that J is a closed
∗-invariant Jordan subalgebra of B contained in H(B, τ).

The arguments we are reviewing are nothing but the first observa-
tions in the paper by A. Fernández, E. Garćıa, and A. Rodŕıguez [30],
where a fine JB∗-version of the Zelmanov prime theorem was provided.
In the search for this result they were inspired by a recent one of P.
Ara. He showed in [7] that, for a prime C∗-algebra A, the symmetric
Martindale algebra of quotients Q(A) coincides with the “symmetric
algebra of bounded quotients” Qb(A). Since Qb(A) is a pre-C∗-algebra,
its completion Qb(A)ˆ became affectively an ideal candidate to play
in the JB∗-case the role played by Q(A) in the original Zelmanov’s
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prime theorem. In fact, Fernández, Garćıa, and Rodŕıguez were able
to replace Qb(A)ˆ by the smaller and more familiar C∗-algebra M(A)
of multipliers on A. Recall that, for a semiprime associative algebra
A, the symmetric Martindale algebra of quotients Q(A) contains the
subalgebra of multipliers M(A), which in its turn contains A as an es-
sential ideal. Recall also that, in the case that A is a C∗-algebra, M(A)
is in a natural way a C∗-algebra containing A as a C∗-subalgebra. For
the proof of Zelmanov’s prime theorem for JB∗-algebras some advances
in the classical JB∗-theory were made in [30] concerning JB∗-algebras
which contain closed essential ideals of classical type. We state these
results in the following two propositions.

Proposition 4.3 ([30, Proposition 1.3]). Let J be a JB∗-algebra con-
taining a closed essential ideal that, regarded as a JB∗-algebra, is of the
form A+ for a suitable C∗-algebra A. Then J can be viewed as a closed
∗-invariant Jordan subalgebra of the C∗-algebra M(A) containing A.

Proposition 4.4 ([30, Proposition 1.4]). Let J be a JB∗-algebra con-
taining a closed essential ideal of the form H(A, τ) for a suitable C∗-
algebra A with ∗-involution τ , and assume A is generated as a C∗-
algebra by H(A, τ). Then J can be regarded as a closed ∗-invariant
Jordan subalgebra of M(A) contained in H(M(A), τ) and containing
H(A, τ).

When all the above results are put together, the following theorem
follows easily.

Theorem 4.5 ([30, Theorem 2.3]). The prime JB∗-algebras are the
following:

i) The JB∗-algebra H3(C(C)).
ii) The JB∗-algebras which are Jordan algebras of bilinear forms

and have dimension different from 2.
iii) The closed ∗-invariant Jordan subalgebras of M(A) containing

A, where A is a prime C∗-algebra.
iv) The closed ∗-invariant Jordan subalgebras of M(A) contained

in H(M(A), τ) and containing H(A, τ), where A is a prime
C∗-algebra with ∗-involution τ .

JB-algebras are defined as those complete normed Jordan real al-
gebras B satisfying ‖x‖2 ≤ ‖x2 + y2‖ for all x, y in B. They were
introduced by E. M. Alfsen, F. W. Shultz, and E. Stormer [2], and
their basic theory is today nicely collected in [33]. According to the
main results in [72] and [73], JB∗-algebras are in a bijective categorical
correspondence with JB-algebras. The correspondence is obtained by
passing from each JB∗-algebra to its selfadjoint part.
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An easy consequence of the Theorem 4.5 is the next corollary (see
the proof of [30, Corollary 2.4] for details).

Corollary 4.6. The prime JB-algebras are the following:

i) The JB-algebra H3(O).
ii) The selfadjoint parts of those JB∗-algebras which are Jordan

algebras of bilinear forms and have dimension different from 2.
iii) The closed Jordan subalgebras of M(R) contained in the self-

adjoint part of M(R) and containing the self-adjoint part of R,
where R is a prime REAL C∗-algebra.

Another not difficult consequence of Theorem 4.5 is the following.

Corollary 4.7 ([30, Corollary 3.1]). The topologically simple JB∗-al-
gebras are the following:

i) The JB∗-algebra H3(C(C)).
ii) The JB∗-algebras which are Jordan algebras of bilinear forms

and have dimension different from 2.
iii) The JB∗-algebras of the form A+, where A is a topologically

simple C∗-algebra.
iv) The JB∗-algebras of the form H(A, τ), where A is a topologi-

cally simple C∗-algebra with ∗-involution τ .

When Theorem 4.5 is regarded under the light of the tools developed
in [6] for the proof of Theorem 1.1, the next result, first formulated in
[60, Theorem F.9], is obtained.

Theorem 4.8. The primitive JB∗-algebras are the following:

i) The JB∗-algebra H3(C(C)).
ii) The JB∗-algebras which are Jordan algebras of bilinear forms

and have dimension different from 2.
iii) The closed ∗-invariant Jordan subalgebras of M(A) containing

A, where A is a primitive C∗-algebra.
iv) The closed ∗-invariant Jordan subalgebras of M(A) contained

in H(M(A), τ) and containing H(A, τ), where A is a primitive
C∗-algebra with ∗-involution τ .

With the well-known result of Dixmier that separable prime C∗-
algebras are primitive, the above theorem implies easily that separable
prime JB∗-algebras are primitive.

5. Prime JB∗-triples

A complex JB*-triple is a complex Banach space A with a continuous
triple product {· · · } : A×A×A −→ A which is linear and symmetric
in the outer variables, and conjugate linear in the middle variable, and
satisfies



18

i) for all x ∈ A, the mapping a 7→ {xxa} from A to A is a hermit-
ian element (in the sense of [11, Definition §10.12]) of the com-
plex Banach algebra BL(A), and has nonnegative spectrum;

ii) {ab{xyz}} = {{abx}yz} − {x{bay}z} + {xy{abz}} (the main
identity);

iii) ‖{aaa}‖ = ‖a‖3.

Complex JB∗-triples were introduced by W. Kaup in order to pro-
vide an algebraic setting for the study of bounded symmetric domains
in complex Banach spaces. The open unit ball of every complex JB∗-
triple is a bounded symmetric domain [40], and every bounded symmet-
ric domain in any complex Banach space is bi-holomorphically equiva-
lent to the open unit ball of a suitable complex JB∗-triple [41].

Fundamental examples of complex JB∗-triples are provided by JB∗-
algebras, with triple product defined by

{xyz} := x.(y∗.z) + z.(y∗.x)− (x.z).y∗.

As a consequence, complex C∗-algebras are JB∗-triples under the triple
product

(1) {xyz} :=
1

2
(xy∗z + zy∗x).

A larger class of complex JB∗-triples consists of the so-called ternary
rings of operators [79], which are nothing but norm-closed subspaces
of complex C∗-algebras, closed under the associative triple product
xy∗z. Ternary rings of operators are seen as complex JB∗-triples by
symmetrizing their associative triple products in the outer variables.
A still larger class is that of complex JC∗-triples, i.e. JB∗-subtriples
of complex C∗-algebras. The classical structure theory for complex
JB∗-triples consists of a precise classification of certain prime com-
plex JB∗-triples (the so-called “complex Cartan factors”) and the fact
that every complex JB∗-triple has a faithful family of Cartan factor
representations. Complex Cartan factors come in six different types.
Those of type I are prime ternary rings of operators, whereas the ones
of type II and III are the hermitian parts of certain prime ternary
rings of operators relative to suitable complex-linear triple involutions.
Complex Cartan factors of type IV (called complex spin factors) are
nothing but the JB∗-algebras which are Jordan algebras of a bilinear
form and have dimension greater than 2, when they are regarded as
complex JB∗-triples. Complex spin factors are JC∗-triples, but in gen-
eral they are neither ternary rings of operators nor hermitian parts of
ternary rings of operators. Complex Cartan factors of types V and VI
are exceptional (i.e., they are not JC∗-triples). Exceptional complex
Cartan factors are very scarce: exactly, there is a single member in
each type. In fact, the type VI complex Cartan factor is nothing but
the JB∗-algebra H3(C(C)), regarded as a complex JB∗-triple, and the
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type V complex Cartan factor is a distinguished subtriple of the type
VI one.

Applying the techniques of E. Zelmanov in [76], [77], and [78] (see
also [3] and [4]), we proved in [56] a classification theorem for gen-
eral prime complex JB∗-triples, which, roughly speaking, asserts that
prime complex JB∗-triples, which are neither spin factors nor excep-
tional Cartan factors, are “essentially” either prime ternary rings of
operators or hermitian parts of prime ternary rings of operators. More
precisely, our theorem establishes that, if J is a prime complex JB∗-
triple, and if J is neither a spin factor nor an exceptional Cartan factor,
then J contains a non-zero closed triple ideal which is either a prime
ternary ring of operators or the hermitian part of a prime ternary ring
of operators relative to a linear triple involution. By noticing that
the multiplier complex JB∗-triple M(R) (in the sense of [14]) of any
ternary ring of operators R is also a ternary ring of operators, to which
every linear triple involution on R extends uniquely, it follows that, for
J as above, we have one of the following possibilities:

i) R ⊆ J ⊆ M(R)
ii) H(R, τ) ⊆ J ⊆ H(M(R), τ),

where in both cases R is a prime ternary ring of operators, in the
second case τ is a linear triple involution on R and H(R, τ) stands for
the hermitian part of R relative to τ , the right inclusions much be read
as “J is a JB∗-subtriple of ...”, and consequently the left inclusions
read as “... is a closed triple ideal of J”.

The result just reviewed arises in [56, Theorem 8.2] in a lightly
different formulation involving “matricially decomposed” complex C∗-
algebras instead of ternary rings of operators. We preferred such a
reformulation because of the scarcity of a well-developed theory for
ternary rings of operators. We note that, if A =

∑
i,j∈{1,2} Aij is a ma-

tricially decomposed complex C∗-algebra, then A12 is a ternary ring of
operators, and that, conversely, it follows from [79] that every ternary
ring of operators is of the form A12 for some matricially decomposed
complex C∗-algebra A. Later, in [57, Proposition 1.3] we proved that
matricial decomposition of a given C∗-algebra A are in one-to-one cor-
respondence with projections (i.e., ∗-invariant idempotents) in the mul-
tiplier C∗-algebra M(A) of A. Moreover, we showed in [57, Proposition
1.1 and 1.2] that no non-prime JB∗-triples are included among those
listed in [56, Theorem 8.2]. In this way the definitive classification
theorem for prime JB∗-triples reads as follows.

Theorem 5.1. A complex JB∗-triple J is prime if and only if one of
the following assertions hold for J :

i) J is either the type V or the type VI complex Cartan factor.
ii) J is a complex spin factor.
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iii) There exist a prime complex C∗-algebra A and a projection e
in M(A) such that J can be regarded as a JB∗-subtriple of the
complex C∗-algebra M(A) contained in eM(A)(1− e) and con-
taining eA(1− e) .

iv) There exist a prime complex C∗-algebra A, a projection e in
M(A), and a ∗-involution τ on A with e + eτ = 1 such that
J can be regarded as a JB∗-subtriple of the complex C∗-algebra
M(A) contained in H(eM(A)eτ , τ) and containing H(eAeτ , τ) .

After some forerunners ([15], [25], [27], [28] and [70]), real JB∗-
triples have recently attracted the attention of several authors. Real
JB∗-triples are defined as norm-closed real subtriples of complex JB∗-
triples (or, equivalently, as real forms of complex JB∗-triples). They
have been introduced and studied in the paper of J.M. Isidro, W. Kaup
and A. Rodŕıguez [37], where, as main result, it is proved that surjective
linear mappings between real JB∗-triples are isometric if and only if
they preserve the cube mapping x 7→ {xxx}.

As in the complex case, real C∗-algebras are real JB∗-triples under
the triple product formally defined as in (1). It is also important for
our approach the fact that, if A is a real C∗-algebra, then the self-
adjoint part of A is a JB∗-subtriple of A, and hence a real JB∗-triple.
Other relevant examples of real JB∗-triples are obtained from real C∗-
algebras A with a ∗-involution τ , by considering the set S(A, τ) of all
skew elements of A relative to τ .

In [56] we also applied Zelmanovian techniques to obtain the corre-
sponding classification theorem for prime real JB∗-triples. Let us say
that a real JB∗-triple is a generalized real Cartan factor if it is either
a complex Cartan factor (regarded as a real JB∗-triple) or a real form
of a complex Cartan factor (compare [42, Lemma 4.5]). With these
conventions and the help [77, Lemma 4], the classification theorem for
prime real JB∗-triples, proved in [56, Theorem 8.4], reads as follows.
As usual, given a C∗-algebra A, Asa will denote the self-adjoint part of
A.

Theorem 5.2. A real JB∗-triple J is prime if and only if one of the
following assertions hold for J :

i) J is an exceptional generalized real Cartan factor.
ii) J is a generalized real spin factor.
iii) There exists a prime real C∗-algebra A such that J can be re-

garded as a JB∗-subtriple of the real C∗-algebra M(A) contained
in M(A)sa and containing Asa .

iv) There exists a prime real C∗-algebra A with ∗-involution τ such
that J can be regarded as a JB∗-subtriple of the real C∗-algebra
M(A) contained in S(M(A), τ)∩M(A)sa and containing S(A, τ)∩
Asa .
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Now, let us comment on the techniques applied in the proof of The-
orems 5.1 and 5.2. In Zelmanov’s work, Jordan triples over a field F
of characteristic different from 2 and 3 are defined as vector spaces
over F endowed with a triple product which is F-linear in each of its
variables, is symmetric in the outer variables, and satisfies the same
main identity required for JB∗-triples. The Zelmanov classification of
non-degenerate prime Jordan triples relies on an apparently ingenuous
alternative by considering three mutually excluding cases, namely, non
i-special, Clifford, and hermitian. A Jordan triple T is said to be spe-
cial if it can be seen as a subtriple of an associative algebra A endowed
with the triple product

(2) {abc} :=
1

2
(abc + cba),

and i-special if it is the homomorphic image of a special Jordan triple.
An i-special Jordan triple T over F is said to be Clifford or hermitian
depending on whether or not all the identities collected in a certain
ideal of the free special Jordan triple over F vanish on T . We recall that
the free special Jordan triple over F is the Jordan subtriple generated
by X in the free associative algebra A(X) over F on X, where X is
a countably infinite set of indeterminates, and A(X) is regarded as a
Jordan triple under the triple product given by (2).

Roughly speaking, a part of Zelmanov’s prime theorem for Jordan
triples establishes the scarcity, up to suitable scalar extensions, of
non-degenerate prime Jordan triples which are not of hermitian type.
The remaining part of Zelmanov’s theorem shows that non-degenerate
prime Jordan triples of hermitian type over F are “essentially” of the
form H(A, ∗)∩S(A, τ) for some associative algebra A over F with two
commuting involutions ∗ and τ . Here H(A, ∗) ∩ S(A, τ) is regarded as
a subtriple of A with triple product defined by (2).

The conjugate-linear behaviour of the triple product of a complex
JB∗-triple in its middle variable becomes a first handicap in applying
Zelmanovian notions and techniques in our setting. Concerning no-
tions, there are no problems: we see complex JB∗-triples as Jordan
triples over R, and consider separately the non i-special, hermitian,
and Clifford cases. However, a verbatim application of Zelmanovian
techniques to prime complex JB∗-triples would provide in the best of
cases only a determination of the real structure of such JB∗-triples
(see for instance [56, Theorem 5.3]). To overcome this difficulty, we de-
signed in [56] different strategies, which are explained in what follows.
Our determination of non i-special complex prime JB∗-triples (the first
part of [56, Theorem 2.4]) actually avoids Zelmanov’s prime theorem
for Jordan triples, and only uses Zelmanov’s prime theorem for Jordan
algebras through its version for JB∗-algebras (Theorem 4.5). Concern-
ing prime complex JB∗-triples of Clifford type, we start with a rather
artisanal determination of complex Cartan factors of Clifford type [56,
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Proposition 6.1]. Such a determination leads us to realize that Banach
ultraproducts of arbitrary families of complex Cartan factors of Clifford
type are Hilbert spaces up to equivalent renormings [56, Corollary 6.2].
Then we replace algebraic ultraproducts with Banach ultraproducts in
an argument in [78, pp. 63-64] (see also [4]) to obtain that every prime
complex JB∗-triple of Clifford type is in fact a complex Cartan factor
[56, Proposition 7.3]. The determination of Clifford and non i-special
prime real JB∗-triples (second parts of Theorems 7.4 and 2.4, respec-
tively, of [56]) follows easily from that of complex ones, by applying
classical theory.

In studying real or complex JB∗-triples of hermitian type, a new
handicap arises. Indeed, in the Zelmanovian theory, the associative
envelopes for special Jordan triples are associative algebras regarded
as Jordan triples under the triple product (2), whereas the natural
associative envelopes for real (respectively, complex) JC∗-triples are
real (respectively, complex) C∗-algebras regarded as JB∗-triples under
the triple product (1). Concerning prime real JB∗-triples of hermitian
type [56, Theorem 4.5], things are not too difficult because, if A is a
real C∗-algebra, then the two triple products of A given by (1) and
(2) coincide on the self-adjoint part Asa of A, and moreover every real
JC∗-triple can be represented into a real JB∗-triple of the form Asa

for some real C∗-algebra A [37, Corollary 2.4]. Then Zelmanovian
techniques apply almost verbatim. The proof of the structure theorem
for prime complex JB∗-triples of hermitian type [56, Theorem 5.9] is
much difficult. Following an idea of O. Loos in [44, 2.9], when a complex
JB∗-triple J is regarded as a real Jordan pair, such a real Jordan pair is
in fact the realification of a Jordan pair (say V ) over C. In the case that
J is prime and hermitian, the polarization of V (say T ) is a Jordan
triple over C of hermitian type, which can be represented into the
secondary diagonal of a matricially decomposed complex C∗-algebra
regarded as Jordan triple under the product (2). Then Zelmanovian
techniques successfully apply to T , providing enough information for
J . Such an information is collected in [56, Proposition 5.6], which,
together with [57, Proposition 1.3 and Remark 1.4], reads as follows.

Proposition 5.3. Let J be a complex JC∗-triple of hermitian type.
Then J contains a non-zero closed triple ideal of the form

H(A, τ) ∩ eA(1− e),

where A is a C∗-algebra, e is a projection in M(A), τ is a ∗-involution
on A satisfying eτ = 1 − e, and A is generated as C∗-algebra by
H(A, τ) ∩ eA(1− e).

Finally, applying the theory of multipliers of complex JB∗-triples
developed in [14], suitable variants for complex JB∗-triples of Proposi-
tions 4.3 and 4.4 are obtained (see [56, Proposition 5.8]). These results,
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together with Proposition 5.3 above,, lead to the description of prime
complex JB∗-triples of hermitian type (see [56, Theorem 5.9] and [57,
Theorem 2.12] for details).

(Real or complex) JBW ∗-triples are defined as those JB∗-triples
which are Banach dual spaces. From a given JBW ∗-triple J we can
obtain new JBW ∗-triples by considering the so-called JBW ∗-subtriples
of J , namely the w∗-closed JB∗-subtriples of J . Prime JBW ∗-triples
are called JBW ∗-factors. The complex Cartan factors already quoted
are nothing but those complex JBW ∗-factor such that the closed unit
balls of their preduals have extreme points (see [35] and [32]).

The Zelmanovian classification of real and complex JBW ∗-factors
was also attacked in [57], by slightly modifying the techniques applied
in the determination of general prime real and complex JB∗-triples.
The results obtained in this line are given by Theorems 5.4 and 5.5
which follow.

Theorem 5.4 ([57, Theorem 3.4]). A real JBW ∗-triple J is a JBW ∗-
factor if and only if one of the following assertions hold for J :

i) J is an exceptional generalized real Cartan factor.
ii) J is a generalized real spin factor.
iii) There exists a real W ∗-factor A such that J = Asa.
iv) There exists a real W ∗-factor A with ∗-involution τ such that

J = S(A, τ) ∩ Asa.

Theorem 5.5 ([57, Theorem 3.8]). A complex JBW ∗-triple J is a
JBW ∗-factor if and only if one of the following assertions hold for J :

i) J is either the type V or the type VI complex Cartan factor.
ii) J is a complex spin factor.
iii) There exist a complex W ∗-factor A and a projection e in M(A)

such that J = eA(1− e).
iv) There exist a complex W ∗-factor A, a projection e in M(A), and

a ∗-involution τ on A with e+eτ = 1 such that J = H(eAeτ , τ).

An apparently different classification of complex JBW ∗-factors can
be derived from the general structure theory of complex JBW ∗-triples
developed by G. Horn and E. Neher (see [35] and [36]). According to
that theory, every complex JBW ∗-factor J which is neither an excep-
tional Cartan factor nor a spin factor must satisfy one of the following
three assertions:

(a) There exist a complex W ∗-factor B and a projection p in B
such that J = pB.

(b) There exists a complex W ∗-factor B with ∗-involution π such
that J = H(B, π).

(c) There exists a complex W ∗-factor B with ∗-involution π such
that J = S(B, π).
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The concluding part of [57] is devoted to show how the classification
of complex JBW ∗-factors just quoted can be derived from Theorem
5.5 (see [57, Claim 3.9 and Corollary 3.16]).

6. Notes and remarks

6.1. Theorem 1.8 has been applied by A. R. Villena in [71] to extend
to the setting of Jordan-Banach algebras the celebrated Johson-Sinclair
theorem [39] about the automatic continuity of derivations on semisim-
ple (associative) Banach algebras. Villena’s result has been generalized
recently by N. Boudi, A. Fernández, H. Marhnine, and C. Zarhouti in
the setting of Jordan-Banach triples and pairs (see [31] and [12]).

6.2. In relation to the germinal normed versions of Zelmanov’s prime
theorem for Jordan algebras given by Theorems 1.6 and 1.7, it would
be interesting to tray a description of those (complete) normed prime
Jordan algebras which are either Albert rings or central orders in Jor-
dan algebras of bilinear forms. The tensor product D ⊗ H3(C(C)),
where D denotes the disk algebra, becomes an example of an algebra
in such a (complete) situation.

6.3. Concerning Theorem 2.2, it would be interesting to know if the
algebras arising in case iii) of that theorem fall in one of the following
two cases:

(1) The closed Jordan subalgebras of Qb(A) containing A as an
ideal, where A is an ultraprime complex Banach algebra. Here
Qb(A) denotes the Mathieu’s symmetric algebra of bounded
quotients of such an algebra A [47].

(2) The closed Jordan subalgebras of Qb(A) contained in H(Qb(A), τ)
and containing H(A, τ) as an ideal, where A is an ultraprime
complex Banach algebra with continuous involution τ .

This problem seems to be an essentially associative problem, namely
if every ultra−τ -prime prime complex Banach algebra A, with contin-
uous involution τ , is ultraprime. Even a very particular case of this
question is also open, namely, if every ultra-τ -prime simple complex
Banach algebra, with continuous involution τ , is ultraprime.

6.4. The “uniqueness of the extended norm topology” and the
“complete-to-complete extension property”, first discovered in the set-
ting of Theorem 3.4, have been later systematically considered in [65]
and [66].

Assume that the algebra with involution (C, ∗) is associative and a
∗-tight envelope of H(C, ∗), that H(C, ∗) is simple with a unit, and
that the algebra norm ‖.‖ on H(C, ∗) is complete. Then, according to
either Theorem 3.2 or Theorem 3.3, the NEP has an affirmative answer.
As main result, it is shown in [65] that, under the above assumptions,
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the topologies of all algebra norms on C making ∗ continuous and
extending the topology of ‖.‖ on H(C, ∗) coincide, and are complete.
This result is applied in [65, Section 3] to simplify the original proof of
the complete case of Theorem 2.1.

Now assume that (C, ∗) is of the form (A, ∗)⊗(B, ∗), where (A, ∗) is a
finite dimensional ∗-simple associative algebra over K whose hermitian
part H(A, ∗) is of degree ≥ 2 over its centre, and (B, ∗) is a (possibly
non associative) algebra with involution and a unit over K. Then,
according to Theorem 3.6, the NEP need not have a global affirmative
answer. However, if for some particular algebra norm ‖.‖ on H(C, ∗)
the NEP has an affirmative answer, then, as in Theorem 3.5, we enjoy
the uniqueness of the extended norm topology and the complete-to-
complete extension property [66].

The uniqueness of the extended norm topology is applied in [65] and
[66] (see also [55, Theorem 5.3]) to derive the continuity of homomor-
phisms and derivations from certain normed ∗-algebras into arbitrary
normed algebras and modules, respectively, from the continuity of such
isomorphisms and derivations on the hermitian part.

6.5. Theorem 4.5 has been applied in [30], together with results by
M. Mathieu in [46], to show that prime JB∗-algebras are nondegener-
ately ultraprime. Non-Zelmanovian proofs and generalizations of the
fact just quoted can be found in [16] and [26].

6.6. Let A be an associative algebra with two commuting involu-
tions τ and π, and consider the Jordan triple T := H(A, τ) ∩ S(A, π)
under the triple product {xyz} := 1

2
(xyz + zyx). As we commented in

Section 5, Jordan triples as the one T above play an important role in
Zelmanov’s prime theorem for Jordan triples. In fact they play a role
similar to that played by the Jordan algebra H(A, ∗) in Zelmanov’s
prime theorem for Jordan algebras. Thus, a “triple-norm extension
problem” merits consideration in relation to eventual future normed
versions of Zelmanov’s prime theorem for Jordan triples .

Let A and T be as above. If ‖.‖ is an algebra norm on A, then,
clearly, the restriction of ‖.‖ to T is a triple-norm on T (i.e., a norm
on the vector space T making the triple product of T continuous).
The converse question, called the triple-norm extension problem, is the
following: given a triple-norm ||| . ||| on T , is there an algebra norm on
A whose restriction to T is equivalent to ||| . |||?

Assume from now on that A is a “τ -π-tight envelope” of T . Then
the triple-norm extension problem has an affirmative answer if (and
only if) the pentad mapping {...}5 is ||| . |||-continuous, where {.....}5 is
the function from T × T × T × T × T to T defined by

{t1t2t3t4t5}5 :=
1

2
(t1t2t3t4t5 + t5t4t3t2t1)
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[51, Theorem 1.2] (compare Theorem 3.1). Moreover, if T is nondegen-
erate (i.e.,the conditions x ∈ T and {xTx} = 0 imply x = 0), and if
the triple norm ||| . ||| on T is complete then the triple-norm extension
problem has an affirmative answer [52, Theorem 2] (compare Theorem
3.2).

6.7. Jordan-∗-triples are defined as complex vector spaces endowed
with a triple product which is symmetric and linear in the outer vari-
ables an conjugate-linear in de middle variable, and satisfies the same
main identity required for JB∗-triples. With the help of Zelmanov’s
prime theorem for Jordan triples [78] (see also [3]), K. Bouhya and A.
Fernández classified in [13] prime Banach Jordan-∗-triples with nonzero
socle and without nilpotent elements. As a consequence, the authors of
[13] rediscovered the Bunce-Chu structure theorem for compact JB∗-
triples [14].
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(ed.), Kluwer Academic Publishers, Dordrecht, 1994, pp. 54-59.

[18] M. Cabrera, A. Moreno and A. Rodŕıguez, On the behaviour of Jordan
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[55] A. Moreno and A. Rodŕıguez, Algebra norms on tensor products of alge-
bras and the norm extension problem, Linear Algebra Appl., 269 (1998),
257-305.
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[57] A. Moreno and A. Rodŕıguez, On the Zelmanovian classification of prime
JB∗- and JBW ∗-triples, to appear.
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