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1. Introduction

Throughout this paper K will mean the field of real or complex numbers.
Given a normed space X over K , SX , BX , and X∗ will denote the unit
sphere, the closed unit ball, and the (topological) dual, respectively, of X,
and G := G(X) will stand for the group of all surjective linear isometries
from X to X. We say that an element u in a normed space X is a big
point of X if u ∈ SX and co(G(u)) = BX , where co means closed convex
hull. The space X is said to be convex-transitive if all elements in SX

are big points of X. The space X is said to be transitive (respectively,
almost transitive) if, for every (equivalently, some) element u in SX , we
have that G(u) = SX (respectively, the closure of G(u) in X is equal to SX).
The notions just defined provide us with a chain of implications

transitivity ⇒ almost transitivity ⇒ convex transitivity ,

none of which is reversible.
The literature dealing with transitivity conditions on normed spaces is

linked to the Banach-Mazur “rotation” problem [1] if every transitive sep-
arable Banach space is isometric to `2. The reader is referred to the book
of S. Rolewicz [21] and the survey papers of F. Cabello [9] and the authors
[6] for a comprehensive view of known results and fundamental questions in
relation to this matter.

In the present paper we deal with convex-transitive Banach spaces. The
interest of these spaces starts with the pioneering theorem of N. J. Kalton
and G. V. Wood [17] that convex-transitive complex Banach spaces having
a one-dimensional hermitian projection are Hilbert spaces (see also [3]), and
increases with the recent result that convex-transitive Banach spaces which
either are Asplund or fulfill the Radon-Nikodym property are almost tran-
sitive and superreflexive [2]. We note that superreflexive almost transitive
Banach spaces have been previously considered by C. Finet [15] (see also
[13, Corollary IV.5.7]) and F. Cabello [10]. The “leit motiv” of this paper is
the study of convex transitivity through the behaviour of the duality map-
ping of an arbitrary Banach space X at the big points of X. Either in their
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formulations or in their proofs, all main results in the paper involve the “leit
motiv” just mentioned. We pass to review the results.

Recall that a subset R of a topological space E is said to be rare in
E if the interior of the closure of R in E is empty. In the setting of our
previous investigation on convex-transitive Banach spaces, the apparently
weaker condition that the set of all big points of a given Banach space X
is non rare in SX often appear. If X is either Asplund or Radon-Nikodym,
then such a condition is actually equivalent to the convex transitivity of X,
and hence implies that X is almost transitive and superreflexive (see [2] and
[5]). However, the question if the convex transitivity of an arbitrary Banach
space X can be characterized by the non-rarity of the set of big points of X
in SX remained open. In Section 2 we answer affirmatively such a question
(Theorem 2.5).

In Section 3 we prove that, if X is a convex-transitive complex normed
space, then the complex multiples of the identity on X are the unique
bounded linear operators on X which commute with all elements of G
(Proposition 3.6). The same conclusion holds if X is a complex normed
space having a big point u such that the diameter of the value of the dual-
ity mapping of X at u is “small” (Theorem 3.2). The appropriate versions
for real spaces of the results just reviewed are also obtained, but they have
slightly more complicated formulations (see Proposition 3.6 and Theorem
3.3, respectively, for details).

2. A characterization of convex-transitive Banach spaces

As said in the introduction, in this section we characterize the convex
transitivity of a Banach space X by the existence of some non rare subset
of SX consisting only of big points of X. Our argument begins with the
following lemma.

Lemma 2.1. Let X be a normed space over K, and let |||.||| be a lower
semicontinuous norm on X such that G ⊆ G(X, |||.|||). Then |||.||| is constant
on the set of all big points of X.

Proof. We can assume that |||u||| = 1 for some big point u of X. Then B(X,|||.|||)
is a closed, convex, and G-invariant subset of X containing u, so that, by
the bigness of u, we have BX ⊆ B(X,|||.|||), or equivalently |||.||| ≤ ‖.‖.

Now let v be an arbitrary big point of X. From the above inequality, we
obtain |||v||| ≤ 1. On the other hand, |.| := |||v|||−1|||.||| is a lower semicontinuous
norm on X satisfying G ⊆ G(X, |.|) and |v| = 1. It follows from the preceding
paragraph that |.| ≤ ‖.‖, or equivalently |||.||| ≤ |||v|||‖.‖. As a consequence,
1 = |||u||| ≤ |||v|||‖u‖ = |||v|||. Therefore |||v||| = 1.
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Let X be a normed space over K , and u an element in SX . We consider
the set D(X, u) of all states of X relative to u, that is

D(X, u) := {f ∈ BX∗ : f(u) = 1}.

In some mathematical formulations of quantum mechanics, a “system of
observables” is identified with the Banach space (say Y) of all self-adjoint
operators on a suitable Hilbert space H and, denoting by v the identity
mapping on H, the different “states of a given observable y” are the numbers
of the form g(y) when g runs over D(Y, v); thus D(Y, v) is the set of “states”
of the system. We note that, for arbitrary (X, u), D(X, u) is a non-empty,
convex, and w∗-compact subset of X∗. The set-valued function v → D(X, v)
on SX is called the duality mapping of X. For x in X, the numerical
range of x relative to (X, u), denoted by V (X, u, x), is given by the equality

V (X, u, x) := {f(x) : f ∈ D(X, u)}.

Lemma 2.2. Let X be a normed space over K, u an element of SX , and f
a linear functional on X. Then f belongs to D(X, u) if (and only if) f(x)
lies in V (X, u, x) for every x in X.

Proof. Assume that f(x) is in V (X, u, x) for every x in X. Since V (X, u, u) =
{1}, we have f(u) = 1. On the other hand, for x in X there exist g in
D(X, u) such that f(x) = g(x), and hence |f(x)| = |g(x)| ≤ ‖x‖. Therefore
f is continuous with ‖f‖ ≤ 1.

Let X be a normed space, u a norm-one element of X, and x an arbitrary
element in X. Then the mapping α → ‖u+αx‖ from R to R is convex, and
hence there exists limα→0+

‖u+αx‖−1
α . It is well-known that the above limit

coincides with max{<e(λ) : λ ∈ V (X, u, x)} (see for instance [14, Theorem
V.9.5]).

Lemma 2.3. Let X be a normed space over K, let |||.||| be a norm on X
which coincides with ‖.‖ on an open subset Ω of SX , and let u be in Ω.
Then we have D(X, u) = D((X, |||.|||), u).

Proof. Let x be in X. Take r > 0 such that u + αx 6= 0 and u+αx
‖u+αx‖ ∈ Ω

whenever α is in R with 0 < α ≤ r. Then, for 0 < α ≤ r, we have
||| u+αx
‖u+αx‖ ||| = 1, and hence

max{<e(λ) : λ ∈ V (X, u, x)} = lim
α→0+

‖u + αx‖ − 1
α

= lim
α→0+

|||u + αx||| − 1
α

= max{<e(λ) : λ ∈ V ((X, |||.|||), u, x)}.

After replacing x with µx when µ runs over SK, we obtain

V (X, u, x) = V ((X, |||.|||), u, x).

Now, since x is arbitrary in X, the result follows from Lemma 2.2
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The next lemma is taken from [6]. For the sake of completeness, we
include here a proof.

Lemma 2.4. Let X be a Banach space over K, u a big point of X, and δ a
positive number. Then the set
∆δ(u) := {T ∗(f) : T ∈ G, f ∈ X∗ such that∃x ∈ SX with ‖x−u‖ ≤ δ and f ∈ D(X, x)}

is dense in SX∗.

Proof. Let g be in SX∗ , and 0 < ε < 1. Since u is a big point of X, the
convex hull of g(G(u)) is dense in BK, and therefore there exists T in G such
that |g(T−1(u)) − 1| < ε′2

4 , where ε′ := min{ε, δ}. By the Bishop-Phelps-
Bollobás theorem [8, Theorem 16.1], there are x in SX and f in D(X, x)
satisfying ‖u− x‖ < ε′ ≤ δ and ‖g ◦ T−1 − f‖ < ε′ ≤ ε. Since

‖g ◦ T−1 − f‖ = ‖(T ∗)−1(g)− f‖ = ‖g − T ∗(f)‖,
this shows that g ∈ ∆δ(u).

In fact the above lemma characterizes big points of Banach spaces. In-
deed, if X is a (possibly non complete) normed space, if u is in SX , and if
∆δ(u) (defined as in the lemma) is dense in SX∗ for every positive number
δ, then u is a big point of X (see the proof of [6, Lemma 5.7] for details).

Theorem 2.5. Let X be a Banach space over K. Assume that there exists
some non rare subset of SX consisting only of big points of X. Then X is
convex-transitive.

Proof. Let us denote by U the set of all big points of X. Since U is closed in
X (a consequence of [4, Lemma 3.7]), the assumption on X actually implies
that the interior of U (say Ω) relative to SX is non-empty. On the other
hand, by [12, Theorem 5], to prove that X is convex-transitive it is enough
to show that every equivalent norm |||.||| on X such that G ⊆ G(X, |||.|||) is
a positive multiple of the natural norm ‖.‖ of X. Let |||.||| be an equivalent
norm on X satisfying G ⊆ G(X, |||.|||). By Lemma 2.1, we can assume that |||.|||
coincides with ‖.‖ on Ω. By Lemma 2.3, we have D(X, v) = D((X, |||.|||), v)
for every v in Ω. Therefore we obtain |||f ||| = 1 whenever f ∈ D(X, v) and
v ∈ Ω. Now we fix u in Ω, and take δ > 0 such that x belongs to Ω whenever
x is in SX and ‖x− u‖ ≤ δ. Since T ∗ is an isometry on (X∗, |||.|||) whenever
T is in G, it follows from Lemma 2.4 that |||.||| is equal to 1 on a dense subset
of SX∗ . Therefore |||.||| coincides with ‖.‖ on X, as desired.

3. The commutant of the group of isometries

Let X be a normed space over K . We denote by Com(G) the set of those
bounded linear operators on X which commute with all elements of G. If
there exists some big point in X, then G must have “many” elements, so that
one could expect Com(G) to be “very small”. As we show in the following
example, this is not always the case.



Convex-transitive spaces. 5

Example 3.1. Let A and B be unital C∗-algebras without nonzero proper
direct summands. Assume that A and B are not Jordan-*-isomorphic. De-
note by X the complex Banach space underlying the C∗-algebra A⊕∞B. By
the Russo-Dye theorem [8, Theorem 30.2], the unit of A⊕∞B is a big point
of X. We claim that Com(G) contains an isometric copy of the complex
space `2

∞. To see this, it is enough to show that A and B are G-invariant
subsets of X. Let T be in G. By [16, Theorem 7], there exists a unitary
element v in A⊕∞B and a Jordan-∗-automorphism Φ of A⊕∞B satisfying
T (x) = vΦ(x) for every x in X. It follows from [11, Theorem 5.3] that T (A)
and T (B) are ideals of A⊕∞B. Since A⊕∞B = T (A)⊕T (B), and A⊕∞B
has no nonzero proper direct summands other than A and B, we deduce that
either A and B are T -invariant or T (A) = B. But, if the equality T (A) = B
happened, then we would have Φ(A) = v∗T (A) = v∗B = B, which is not
possible because A and B are not Jordan-∗-isomorphic.

The complex Banach space X above can be chosen either finite-dimensional
(by taking A = C and B = M2(C)) or a C(K)-space for a suitable Hausdorff
compact topological space K (by taking A = C and B = C([0, 1])).

By an easy final touch of the construction above, for an arbitrary set Γ
one can built a complex Banach space X having big points and such that
Com(G) contains an isometric copy of the complex space `∞(Γ).

Let X be a normed space over K , and u a norm-one element in X. We
denote by δ(X, u) the diameter of D(X, u), and we put

n(X, u) := inf{sup{|λ| : λ ∈ V (X, u, x)} : x ∈ SX}.

We note that, if Y is a subspace of X containing u, then the inequality
δ(Y, u) ≤ δ(X, u) holds. We also note that, if K = C and if the dimension
of X is ≥ 2, then we have

√
3 n(X, u) ≤ δ(X, u) [20, Lemma 5.14].

Theorem 3.2. Let X be a complex normed space such that there exists a
big point u of X satisfying δ(X, u) <

√
3

e . Then Com(G) is equal to CIX ,
where IX denotes the identity mapping on X.

Proof. If F is in Com(G), then the set {x ∈ X : ‖F (x)‖ ≤ ‖F (u)‖} is closed,
convex, and G-invariant, so that the bigness of u gives ‖F‖ = ‖F (u)‖. Now
the mapping F → F (u) from Com(G) to X is a linear isometry sending IX

into u. On the other hand, since Com(G) is a norm-unital complex normed
algebra, the Bohnenblust-Karlin theorem applies (see [7, Theorem 4.1]) to
get n(Com(G), IX) ≥ 1

e . It follows that, if Com(G) does not reduce to CIX ,
then we have

√
3

e
> δ(X, u) ≥ δ(Com(G)(u), u) = δ(Com(G), IX)

≥
√

3 n(Com(G), IX) ≥
√

3
e

,

a contradiction.



6 J. Becerra Guerrero and A. Rodŕıguez Palacios.

The real variant of Theorem 3.2, we are immediately proving, has a more
complicated formulation.

Theorem 3.3. There exists a universal constant k > 0 such that, for every
real normed space X having a big point u with δ(X, u) < k, the real normed
algebra Com(G) is algebraically isomorphic to either R, C, or H (the algebra
of Hamilton’s quaternions).

Proof. According to a theorem of G. Lumer [18], there exists a universal
constant k > 0 such that every real normed algebra A having a norm-one
unit 1 with δ(A,1) < k is algebraically isomorphic to either R, C, or H. Now
let X be a real normed space X having a big point u with δ(X, u) < k. We
know that the mapping F → F (u) from Com(G) to X is a linear isometry
sending IX into u. Therefore we have

δ(Com(G), IX) = δ(Com(G)(u), u) ≤ δ(X, u) < k,

and Lumer’s theorem applies.

Unfortunately, we do not know any estimate on the constant k in Theorem
3.3. We do not know in addition if the value k = 2 works in that theorem.
In any case, the conclusion in Theorem 3.3 can attain a more illuminating
form in some special settings. We recall that the norm of a normed space
X is said to be maximal if, for every equivalent norm |||.||| on X such that
G ⊆ G(X, |||.|||), we actually have G = G(X, |||.|||). As a consequence of Lemma
2.1, we rediscover the well-known fact that convex-transitivity implies max-
imality of the norm. However the converse implication is not true. Indeed,
the real or complex Banach space `1 has big points and maximal norm, but
is not convex-transitive.

Lemma 3.4. Let X be a normed space over K whose norm is maximal,
and let S be a bounded subgroup of the group of all invertible elements of
Com(G). Then S is contained in G.

Proof. Put R := SG. Then R is a bounded subgroup of the group of all
automorphisms of X, so that the norm |||.||| on X defined by

|||x||| := sup{‖R(x)‖ : R ∈ R}
is equivalent to the natural norm of X and satisfies G ⊆ R ⊆ G(X, |||.|||).
Since the norm of X is maximal, and S is contained in R, the result follows.

Proposition 3.5. Let X be a real normed space having a big point u. As-
sume that either X is smooth at u (i.e., δ(X, u) = 0), or X has maximal
norm and δ(X, u) < k (where k is the universal constant given by Theorem
3.3). Then either Com(G) reduces to RIX , or there exists a complex normed
space Y such that X is the real normed space underlying Y and the equality
Com(G) = CIY holds. In the last case we have G = G(Y ), and hence u
becomes a big point of Y .



Convex-transitive spaces. 7

Proof. Assume that X is smooth at u. Then Com(G)(u) is also smooth at
u, and hence, since the mapping F → F (u) from Com(G) to X is a linear
isometry, Com(G) becomes a “smooth normed” real algebra (i.e. a norm-
unital real normed algebra which is smooth at its unit). By [22], Com(G) is
algebraically and isometrically isomorphic to either R, C, or H . Therefore
the unit sphere of Com(G) is contained in G, so the algebra Com(G) is
commutative, and so the possibility Com(G) ∼= H cannot really happen.
Suppose that Com(G) does not reduce to RIX . Then we are provided with
an isometric algebra-isomorphism φ : C → Com(G), and hence X becomes
a complex normed space (say Y ) under its given norm and the product
of complex numbers λ by elements x of X defined by λx := (φ(λ))(x).
Now, clearly, X is the real normed space underlying Y , and the equality
Com(G) = CIY holds. This equality implies that elements of G commute
with all multiplications on Y by complex numbers, and hence are complex-
linear operators on Y . Thus we have the inclusion G ⊆ G(Y ), and the reverse
inclusion is trivially true.

Now assume that the norm of X is maximal and that δ(X, u) < k. By
Theorem 3.3, we are provided with an algebra-isomorphism

φ : A → Com(G) ,

where A stands for either R, C, or H . In any case, φ(SA) is a bounded
subgroup of the group of all invertible elements of Com(G), so that Lemma
3.4 applies giving that the φ is an isometry. Now Com(G) is algebraically
and isometrically isomorphic to R, C, or H , and the proof is concluded as
in the preceding paragraph.

In relation to Proposition 3.5 above, the following facts are worth men-
tioning. Let Y be a complex normed space, and let X denote the real
normed space underlying X. Then, for u in SX we have δ(X, u) = δ(Y, u).
Moreover, if the norm of X is maximal, and if the equality G = G(Y ) holds,
then the norm of Y is maximal.

We conclude this section by describing the commutant of the group of all
surjective linear isometries on a convex-transitive normed space.

Proposition 3.6. Let X be a convex-transitive normed space over K . If
K = C, then Com(G) = CIX . If K = R, then either Com(G) = RIX , or
there exists a complex normed space Y such that X is the real normed space
underlying Y and the equality Com(G) = CIY holds. In this last case we
have G = G(Y ), and hence the complex normed space Y is convex-transitive.

Proof. We know that ‖F (u)‖ = ‖F‖ whenever F belongs to Com(G) and
u is a big point of X. Therefore, since X is convex transitive, we have
in fact ‖F (x)‖ = ‖F‖‖x‖ for all F ∈ Com(G) and x ∈ X. If follows
‖FG‖ = ‖F‖‖G‖ for all F,G ∈ Com(G), i.e., Com(G) is an “absolute-
valued” algebra. But unital absolute-valued algebras are smooth normed
algebras (see for instance the implication (b) ⇒ (a) in [19, Corollary 29]).
Then the proof of the present proposition in the case K = R is concluded
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as in the first paragraph of the proof of Proposition 3.5. For the case
K = C, note that, as a biproduct of the Bohnenblust-Karlin theorem, smooth
normed complex algebras are one-dimensional.

Let Y be a convex-transitive complex normed space, and let X stand
for the real normed space underlying Y . Then X is convex-transitive, and
we have Com(G) ⊆ Com(G(Y )) = CIY . For most choices of Y , there ex-
ist surjective real-linear isometries on Y which are not complex-linear, and
hence we have in fact Com(G) = RIX . For instance, this is the case if Y
is any complex pre-Hilbert space, or a convex-transitive complex C(K)- or
Lp(µ)-space. The possibility Com(G) = CIY , theoretically allowed by Theo-
rem 3.6, becomes more problematic. Actually, due to the relative scarcity of
examples of convex-transitive normed spaces, we are unable to provide the
reader with a choice of Y in such a way that the equality Com(G) = CIY

holds. In other words, we do not know if there exists a convex-transitive
complex normed space without surjective real-linear isometries other than
the complex-linear ones.
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