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Abstract

We prove that homomorphisms from complete normed complex algebras
into complete normed complex algebras with no nonzero two-sided topological
divisors of zero are automatically continuous.

0.- Introduction

Although we are dealing with automatic continuity of homomorphisms be-
tween nonassociative normed algebras, a reference to the theorem of B. E. John-
son [J] on continuity of homomorphisms onto semisimple (associative) Banach
algebras seems to be obliged. In fact, as is pointed out by A. M. Sinclair in
the introduction of [S], Johnson’s theorem germinally contains a nonassocia-
tive result, namely that Jordan-homomorphisms from Banach algebras onto
semisimple Banach algebras are continuous. Concerning the automatic continu-
ity of homomorphisms between nonassociative normed algebras, the pre-history
consists of the pioneering work of V. K. Balachandran and P. S. Rema [BaRe]
([R5; pp. 109-110]), which allowed us to show that dense range homomorphisms
from complete normed power-associative algebras into complete normed power-
associative strongly semisimple algebras are continuous [R2] ([R5; B.1]), and the
papers [PeR] and [PuY] ([R5; p. 111]). The history actually begins with the
work of B. Aupetit [A] ([R5; B.2]) showing the automatic continuity of homo-
morphisms onto semisimple complete normed Jordan algebras, and continues
with the paper of the author [R1] ([R5; pp. 119-120]), where the ultraweak
radical of an arbitrary nonassociative algebra is introduced, and the continu-
ity of homomorphisms onto complete normed nonassociative algebras with zero
ultraweak radical is proved. To close this short review, let us refer to the re-
cent papers of Berenger-Villena ([BeVil], [BeVi2]) and Aupetit-Mathieu [AM],
where the continuity of Lie-homomorphisms onto Banach algebras and other
related topics are deeply discussed. For other results on automatic continuity
of homomorphisms between normed nonassociative algebras the reader is re-
ferred to [R3; Theorem 4], [R6] ([R5; B.21 and E.18]), [PRiRVi; Corollary 3.1]



and [PRiR; Theorem 8] (jointly collected in [R5; B.12]), [MoR; Theorem 5.3],
[NRV], [Ce], [KRaR; Theorem 3.3], and [RV].

As in the associative case, the automatic continuity of nonsurjective ho-
momorphisms between complete normed nonassociative algebras can be suc-
cessfully attacked only when either the domain algebra or the range algebra
is extremely “ good ”. For instance, we can consider the “ goodness ” of the
range algebra consisting in the absence of topological divisors of zero, and ask
whether homomorphisms into such an algebra are continuous. Particular cases
of this problem have been affirmatively answered in [R3] and [KRaR]. In the
present paper we are more ambitious, and raise the problem in its most general
reasonable formulation. Precisely, we deal with the following

QUESTION 0.1.- Let A be a complete normed algebra over K, B a complete
normed algebra over K with no nonzero two-sided topological divisors of zero,
and ® : A — B an algebra homomorphism. Is ® continuous?

Here K denote the field of real or complex numbers, and the algebras A and
B are not assumed to be associative.

If the algebra B above is associative, then it is well known (see [Ka] and
[CR]) that A=Cif K=C, and A =R, C, or H (the algebra of Hamilton’s
quaternions) if K = R. Therefore in such a case the range of ® is a complete
normed simple algebra, and the question answers affirmatively by applying [R1;
Remark 3.4.(ii)].

From now on, let us dispense the requirement of associativeness for the
algebra B in Question 0.1. Then, even if B has no nonzero one-sided topological
divisors of zero, B need not be finite-dimensional ([UW], [U], [Cu], [R3], and
[KRaR]). Even more, B need not be simple [R4; pp. 33-34], and ® need not
have closed range [R4; p. 30]. If ® has closed range, then, either from [R1;
Remark 3.4.(ii)] and some techniques in this paper (see Corollary 2.7), or almost
directly from [R1; Theorem 3.3] (see Proposition 4.8), we obtain that the answer
to Question 0.1 is also affirmative.

Now Question 0.1 becomes actually interesting only in the case that B is not
associative and ® has not closed range. Our main result asserts that Question
0.1 has always an affirmative answer if K = C (Theorem 3.5). Most techniques
developed in proving this fact are also valid in the case K = R. In this line we
emphasize that Question 0.1 has an affirmative answer whenever ® has dense
range and there exists some element in the unital multiplication algebra of B
which is bounded below but non surjective (Proposition 2.3). As a consequence,
Question 0.1 answers affirmatively whenever ® has dense range and B is not
a quasi-division algebra (Corollary 2.4). In this way quasi-division algebras
naturally arise in our development. Actually, one of the key tools in the proof of
the main result is that complete normed quasi-division complex algebras have
dimension < 2 (Proposition 3.4). As far as we know, quasi-division algebras
have been not previously introduced in the literature. They are defined as those



algebras C' such that, for every nonzero element ¢ in C, either the operator of
left multiplication by ¢ or the operator of right multiplication by c is bijective.

The paper is structured as follows. In Section 1, thecniques are developed
as far as possible without going out the setting of Banach spaces. Indeed, if
X, Y are Banach spaces over K, and if ® : X — Y is a dense range linear map-
ping, then ® canonically produces a certain subalgebra X of the Banach algebra
BL(X) of all bounded linear operators on X, as well as a homomorphism & from
X into BL(Y') (see Notation 1.4). Then we obtain some non trivial information
about the separating set S(®) for ® (Theorem 1.5), which implies that elements
of §(®) are either bijective or non bounded below (Corollary 1.6). Section 2
collects those applications of Theorem 1.5 to the study of Question 0.1 which
are valid for both real and complex algebras. That section includes Corollary
2.4, already reviewed in the preceding paragraph, as well as two interesting
variants of it (see Corollaries 2.5 and 2.6). With one of such variants in mind
we rediscover the result in [R3] that homomorphisms from complete normed
algebras into absolute-valued algebras are automatically continuous (Corollary
2.8). Section 3 collects the remaining tools needed to conclude the proof of the
main result. Among them we emphasize Proposition 3.4, already reviewed, and
Lemma 3.3, which is applied in the proof of that proposition, and asserts that,
whenever a1, as, by, by are elements of a complex Banach algebra with a unit, we
can find (A1, \2) € C?\{(0,0)} such that sp(A1a; + Aaaz) Nsp(A1by + Aabs) # 0.
Finally we devote Section 4 to discuss the results and techniques in the paper.
In that section the reader can find examples of two-dimensional quasi-division
complex algebras (Corollary 4.5) and other similar “ monsters ”. For instance,
there are complete normed algebras over K with no nonzero left topological divi-
sors of zero and such that all their elements are right topological divisors of zero
(Example 4.3). Also there exist infinite-dimensional complete normed algebras
over K with no nonzero two-sided topological divisors of zero but having both
nonzero left topological divisors of zero and nonzero right topological divisors
of zero (Example 4.6). Examples of such kinds were previously unknown in the
literature. Moreover, in most cases, our results apply successfully to them (see
again Examples 4.3 and 4.6).

1.- Working in Banach spaces

From now on, K will denote either the field R of real numbers or the field C
of complex numbers. Let X be a normed space over K. We denote by BL(X)
the normed algebra of all bounded linear operators on X. An element F' of
BL(X) is said to be bounded below if there exists a positive number k satisfying
k|l z ||<|| F(z) | for every x in X. We recall that, by the Banach isomorphism
theorem, if X is in fact a Banach space, then every bijective bounded linear
operator on X is bounded below. Our argument begins with the following
lemma.



LEMMA 1.1.- Let X be a Banach space over K, and P a connected subset
of BL(X) all elements of which are bounded below. Then either all elements of
P are bijective or all elements of P are non bijective.

Proof.- Assume that the assertion in the lemma is not true. Then
Q :={F € P: F is bijective}

is a non-empty proper subset of the connected set P, and therefore there must
exist some Fy in the boundary of @ relative to P. Since such a Fj lies in the
boundary of the set of all invertible elements of the Banach algebra BL(X), it
follows from [B; Lemma 56.3 and Theorem 57.4] that Fj is not bounded below.
This contradicts the assumption that all elements of P are bounded below. H

Let F be a bounded linear operator on a normed space X. We denote by
k(F) the largest non-negative number k satisfying & || = ||<|| F(x) || for every x
in X. In this way F' is bounded below if and only if k(F') > 0.

COROLLARY 1.2.- Let X be a Banach space over K. Then, for F,G in
BL(X) we have
k(F) —k(G)| <[| F-G| .
Moreover, if F' € BL(X) is bounded below and non bijective, then the open ball

in BL(X) with center F and radius k(F) consists only of elements which are
bounded below and non bijective.

Proof.- Let F,G be in BL(X). For all  in X we have
)= G=F D)z [I<[] F(z) [ = | (G = F)(2) [|[<]| G(=) ||

and hence
E(F)— |G- F|[<k(G),

which proves the first assertion in the corollary. From this first assertion it
follows that, if F' is bounded below, and if B denotes the open ball in BL(X)
with center F' and radius k(F'), then B consists only of elements which are
bounded below. Therefore, if in addition F' is non bijective, then, by Lemma
1.1, all elements of B are non bijective. B

For every set E, we denote by I the identity mapping on F.

PROPOSITION 1.3.- Let X and Y be Banach spaces over K, ® a (possibly
discontinuous) linear mapping from X into Y whose range is dense in'Y, and
F and G be in BL(X) and BL(Y), respectively, such that G is non bijective
and the equality ®F = G® holds. Then we have k(G) <|| F'||.



Proof.- We may assume that G is bounded below (since otherwise we have
kE(G) = 0 and nothing is to prove). Let 0 < 6 < k(G). We have

[ (G =dIy) =G |[=0 < k(G) ,

so that, since G is bounded below and non bijective, it follows from Corollary
1.2 that G — §Iy is bounded below and non bijective. This implies that the
range of G — §1y is a proper closed subspace of Y. Then, since the equality

O(F — 6Ix) = (G — 61y)®

holds, and ® has dense range, we deduce that F' — 6Ix cannot be bijective.
Therefore we have § <|| F' ||, and the proof is concluded by letting § — k(G). B

NOTATION 1.4.- Let X and Y be Banach spaces over K, and ® a linear
mapping from X to Y, whose range is dense in Y. Then the set

X :={F € BL(X) : there is G € BL(Y) satisfying ®F = G}

is a (possibly non closed) subalgebra of BL(X), for F' in X there exists a unique
G in BL(Y) satisfying ®F = G®, and the mapping F' — G from X to BL(Y)
becomes an algebra homomorphism. Such a homomorphism will be denoted by
&, and the symbol Y will stand for the closure in BL(Y) of the range of ®. X
(respectively, Y) will be considered as a normed (respectively, Banach) algebra
under the restriction of the natural norm of BL(X) (respectively, BL(Y)).

Given normed spaces E and F over K, and a linear mapping 7' : £ — F,
we denote by S(T') the separating set for T, namely the set of those elements
f in F such that there exists a sequence {e,} in E satisfying lim{e,} = 0 and

lm{T(e,)} = f.

THEOREM 1.5.- Let X and Y be Banach spaces over K, and ® a linear
mapping from X to Y, whose range is dense in Y. Assume that there is some
element in' Y which is bounded below and non bijective. Then the separating set
for d consists only of elements which are not bounded below.

Proof.- We argue by contradiction, so that there exists some element G in
S(®) which is bounded below.

In a first step we assume that such a G is non bijective. Write G =
lim{®(F,)} for some sequence {F,} in X with lim{F,} = 0. Since the set
of those elements in BL(Y') which are bounded below and non bijective is open
(by Corollary 1.2), there is no restriction in assuming that @)(Fn) is non bijective
for all n. Then, by Proposition 1.3, for n in N we have

K(@(EF) < Full



and therefore, since the function k(.) is continuous on BL(Y') (by Corollary 1.2),
we obtain k(G) < 0, contradicting that G is bounded below.

To conclude the proof, remove now the assumption in the above paragraph
that G is bijective. By the hypothesis in the theorem, there exists an element
(say T) in Y which is bounded below and non bijective. Since G belongs to
S (‘i), and the separating set for an algebra homomorphism between normed
algebras is an ideal of the closure of the range, also TG lies in S(®). Then TG
is an element of S (<f>) which is bounded below and non bijective. But this is not
possible in view of the first step of the proof. B

The elemental inclusion S(®) C Y gives the following corollary (which in
fact is nothing but the first step in the proof of the theorem).

COROLLARY 1.6.- Let X and Y be Banach spaces over K, and ® a linear
mapping from X toY, whose range is dense in' Y. Then every element in S(P)
18 either bijective or mon bounded below.

2.- Some first applications to normed algebras

For a vector space E over K, we denote by L(F) the associative algebra of all
linear mappings from F to E. Let A be an algebra over K. For a in A we denote
by L2 (respectively, R2) the operator of left (respectively, right) multiplication
by a on A. The unital multiplication algebra of A is defined as the subalgebra
of L(A) generated by

{IAayU{Ly 12 € AYU{R] :y € A},

and is denoted by M(A). When A is in fact a normed algebra, the operators of
left and right multiplication on A by elements of A are continuous, and therefore
the inclusion M(A) C BL(A) holds.

Now, let A and B be complete normed algebras over K, and ® : A — B a
dense range (algebra) homomorphism. Since for a in A the equalities

LS = Ly y® and PR = RE,®
hold, with the convention of symbols in Notation 1.4 we have
L}eA RleA oL} =Ly, and ®(R))=RE, -

It follows from the denseness of the range of ® and the continuity of the map-
pings b — LP and b — RP from B to BL(B) that L and RP lie in B for all
b in B, and therefore M(B) is contained in B. Then the following corollary
follows straightforwardly from Theorem 1.5.



PROPOSITION 2.1.- Let B be a complete normed algebra over K such that
there is some element in M(B) which is bounded below and non bijective. Then,
for every complete normed algebra A over K and every dense range homomor-
phism ® from A to B, the separating set for ® consists only of elements which
are not bounded below.

Let A be a normed algebra over K. An element a of A is said to be a
left (respectively, right) topological divisor of zero in A whenever there exists a
sequence {ay,} of norm-one elements of A satisfying lim{aa, } = 0 (respectively,
lim{a,a} = 0) . In this way, left (respectively, right) topological divisors of
zero in A are nothing but those elements a of A such that the operator LA
(respectively RZ') is not bounded below. Elements of A which are either left
or right (respectively, both left and right) topological divisors of zero are called
one-sided topological divisors of zero (respectively, two-sided topological divisors
of zero) in A.

Now, let A and B be complete normed algebras over K, and & : A — B
a dense range homomorphism. We claim that the sets LE(@) and Rg(q,) are

contained in S@D) Indeed, if {a,} — 0 in A and {®(a,)} — b in B, then
{La} — 0in A and {®(L;)} = {Lg, ,} — L{ in BL(B). Keeping in mind
the claim just shown and Proposition 2.1 we obtain:

COROLLARY 2.2.- Let B be a complete normed algebra over K such that
there is some element in M(B) which is bounded below and non bijective. Then,
for every complete normed algebra A over K and every dense range homomor-
phism ® from A to B, the separating set for ® consists only of two-sided topo-
logical divisors of zero in B.

Now the next result follows from the closed graph theorem.

PROPOSITION 2.3.- Let B be a complete normed algebra over K. Assume
that there is some element in M(B) which is bounded below and non bijective,
and that B has mo nonzero two-sided topological divisors of zero. Then every
dense range homomorphism from a complete normed algebra over K into B is
continuous.

Let A be a nonzero algebra over K. An element a in A is said to be left
(respectively, right) invertible in A if the operator L7 (respectively, RZ) is
bijective. A is said to be a left (respectively, right) division algebra if every
nonzero element in A is left (respectively, right) invertible. If A is both a left
and right (respectively, either a left or right) division algebra, then we say that
A is a two-sided division algebra (respectively, one-sided division algebra). The
algebra A is said to be a quasi-division algebra if every nonzero element in A
is either left or right invertible. In the case that the algebra A is complete



normed, the implications in the following diagram hold. In that diagram the
abbreviation t.d.z. stands for topological divisors of zero.

Diagram I

A is a two-sided Aisa { 1.eft } A is a quasi-

s = right = L
division algebra . division algebra
division algebra
\ U \

A has no nonzero N A halseézo JIONAero N A has no nonzero

one-sided t.d.z. { . } t.d.z. two-sided t.d.z.
right

When the complete normed algebra A above is associative, the weakest con-
dition in the diagram implies the strongest one (see [Ka] and [CR]), so that
anyone of the conditions in the diagram gives A =C if K=C, and A =R, C,
or H if K = R. However, in the general nonassociative setting we are dealing
with, a similar situation is far from being true. Actually, as we will discuss in
Section 4, when K = R no implication in the diagram is reversible. Note also
that, if A is finite-dimensional, then the six conditions in the diagram reduce
to two. Indeed, in such a setting all vertical implications in the diagram are
reversible, and one-sided division implies two-sided division. On the other hand,
if K = C, then the implication on the left of the first line of the diagram is also
reversible (see Corollary 3.2 below). In any case, the following three corollaries
are direct consequences of Proposition 2.3.

COROLLARY 2.4.- Let B be a complete normed algebra over K. Assume
that B is not a quasi-division algebra and has no nonzero two-sided topologi-
cal divisors of zero. Then every dense range homomorphism from a complete
normed algebra over K into B is continuous.

COROLLARY 2.5.- Let B be a complete normed algebra over K. Assume
that B is not a left (respectively, right) division algebra and has no nonzero
left (respectively, right) topological divisors of zero. Then every dense range
homomorphism from a complete normed algebra over K into B is continuous.

COROLLARY 2.6.- Let B be a complete normed algebra over K. Assume
that B s not a two-sided division algebra and has no nonzero one-sided topolog-
ical divisors of zero. Then every dense range homomorphism from a complete
normed algebra over K into B is continuous.



An algebra is said to be simple if it has nonzero product and has no nonzero
proper two-sided ideals. Since quasi-division algebras are simple, and homomor-
phisms from complete normed algebras onto complete normed simple algebras
are continuous [R1; Remark 3.4.(ii)], the next result follows from Corollary 2.4.

COROLLARY 2.7.- Let B be a complete normed algebra over K with no
nonzero two-sided topological divisors of zero. Then every homomorphism from
a complete normed algebra over K onto B is continuous.

An absolute value on an algebra A over K is a norm || . || on the vector
space of A satisfying || zy ||=|| = ||| v || for all z,y in A. An absolute-valued
algebra over K is a nonzero algebra over K endowed with an absolute value.
Absolute-valued algebras become the nicest examples of normed algebras with
no non-zero one-sided topological divisors of zero.

COROLLARY 2.8 [R3; Theorem 4].- Let B be an absolute-valued algebra
over K. Then every homomorphism from a complete normed algebra over K
to B is continuous.

Proof.- Let A be a complete normed algebra over K, and ® : A — B a
homomorphism. Replacing B by the completion of the range of ®, we may
assume that B is complete and that ® has dense range. If B is not a division
algebra, then the continuity of ® follows from Corollary 2.6. Otherwise, by [W],
B is finite-dimensional, so ® is surjective, and so the continuity of ® follows
from Corollary 2.7. B

In [R3; Theorem 4] it is proved that homomorphisms from complete normed
algebras into absolute-valued algebras are in fact contractive. But, for such
homomorphisms, contractiveness is an easy consequence of continuity (see for
instance [CuR; Lemma 2.1}).

3.- The main result

As usual, by a Banach algebra we mean a complete normed associative alge-
bra. For an element x in a complex Banach algebra B with a unit 1, we denote
by sp(z) the spectrum of z relative to B, namely the set of those complex num-
bers A such that there is no y in B satisfying y(z — A1) = (z — A1)y = 1. When
F is a bounded linear operator on a complex Banach space X, sp(F') will stand
for the spectrum of F' relative to the complex Banach algebra BL(X), so that
0 € sp(F) means that F is not bijective. The fact that elements of complex
Banach algebras with a unit have nonempty spectra can be reformulated as
follows.



LEMMA 3.1.- If by, by are elements of a complex Banach algebra B with a
unit, then there exists (A1, A2) in C*\{(0,0)} such that 0 € sp(A1b1 + A2b2).

Proof.- If 0 € sp(by), then the result holds with (A1, A2) = (1,0). Otherwise,
we can choose y in 8p(b1_1b2), and consider the equality by —pub; = by (bl_le —pul),
to obtain that the result is true with (A1, A\2) = (—p,1). B

The following corollary is folklore (see for instance [KRaR; Remark 2.8]).

COROLLARY 3.2.- Every complete normed one-sided division complez al-
gebra is isomorphic to C.

Proof.- Let A be a complete normed left-division complex algebra. According
to the previous lemma, whenever x; and xs are in A we can find (A1, A2) in
C2\{(0,0)} such that

0¢ Sp(/\lLfl + )‘QLfg) = Sp(L§1I1+)\2fE2)7

so we have A\1x1 + Agxe = 0, and so the system {x1, 22} is linearly dependent.
|

If x,y are elements of a complex Banach algebra B, then the inclusion
sp(LE — Rf) C sp(z) — sp(y) holds. This fact was proved first by M. Rosen-
blum (see [Ro; Corollary 3.3], where, because of a misprint, the oposite inclusion
arises). An alternative proof is the following. Since LZ and Rf are commuting
elements of the complex Banach algebra BL(B), we can apply Gelfand’s theory
to obtain sp(LY — R[}) C sp(LY) — sp(RY) (see for instance [Ru; Theorem
11.23]), and the result follows by keeping in mind that the mapping z — L5
(respectively, z — RZ) from B to BL(B) is an algebra homomorphism (re-
spectively, antihomomorphism), and consequently the inclusion sp(LZ) C sp(z)
(respectively, sp(R}) C sp(y)) holds.

LEMMA 3.3.- Let B be a complex Banach algebra with a unit, and ay, az, by, ba
be elements in B. Then there exists a couple (A1, A2) in C?\{(0,0)} such that

sp(A1a1 + A2az) N sp(A1by + Aab2) # 0.

Proof.- By Lemma 3.1, there is a couple (A1, A2) in C?\{(0,0)} such that
0 sp( (L3, — By}) + ha(La, — Bi)).
But, by the result of Rosenblum quoted above, we have
sp (L, = Ri) + Mo (Lg, — BiY))

_ B B
= SP(L,\lalJrAQaQ - R)qbl-i-/\zbg)
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C sp(/\1a1 + )\2&2) — Sp(/\1b1 + /\ng).
It follows that, for such a couple (A1, A2) € C*\{(0,0)}, we have

sp()qal + )\2&2) n sp(/\1b1 =+ /\2b2) 75 0.

In Section 4 we will exhibit a quasi-division complex algebra of dimension
2. Now, with the help of the above proposition, we can prove that no greater
dimension is allowed for complete normed quasi-division complex algebras.

PROPOSITION 3.4.- Every complete normed quasi-division complex algebra
has dimension < 2.

Proof.- Assume that there is a complete normed quasi-division complex al-
gebra A with 3 < dim(A). Denote by €; (respectively, 23) the set of all left
(respectively, right) invertible elements of A. By Corollary 3.2, Q; and Qs are
proper subsets of A\ {0}. Since A\ {0} = Q; U Qy, and O, are open, and
A\ {0} is connected, there must exist some z in 3 NQy. Take x1, 22 in A such
that the system {x1,z2, 2} is linearly independent. Applying Lemma 3.3 to the
complex Banach algebra B := BL(A), we find (A1, \2) in C?\{(0,0)} and X in
C such that

A€ sp(MLA (L) + ML (LYY Nsp(MRE (R + MR (R ™).

Then, putting y := Ajx1+ A2xe — Az, y becomes a nonzero element of A which is
neither left nor right invertible, contradicting that A is a quasi-division algebra.
|

Now we are ready to formulate and prove the main result of the paper

THEOREM 3.5.- Let B be a complete normed complex algebra with no
nonzero two-sided topological divisors of zero. Then every homomorphism from
a complete normed complez algebra into B is continuous.

Proof.- Let A be a complete normed complex algebra, and ® : A — B a
homomorphism. Since the absence of non-zero two-sided topological divisors of
zero is inherited by every subalgebra of B, we may replace B by the closure of
the range of ®, and assume without loss of generality that ® has dense range. If
B is not a quasi-division algebra, then the continuity of ® follows from Corollary
2.4. Otherwise, by Proposition 3.4, B is finite-dimensional, so ® is surjective,
and so the continuity of ® follows from Corollary 2.7. B

4.- Discussion of results and methods

11



This concluding section of the paper is devoted to discuss the field of ap-
plicability of our results on automatic continuity, namely Theorem 3.5, and
Corollaries 2.4, 2.5, 2.6, and 2.7. We note that, after Theorem 3.5, those corol-
laries only have interest in the case of real algebras. We include also in this
section a remark on the techniques developed to obtain Corollary 2.7.

We already introduced real or complex absolute-valued algebras as examples
of normed algebras with no nonzero one-sided topological divisors of zero, and
applied Corollaries 2.6 and 2.7 to rediscover the result in [R3] that homomor-
phisms from complete normed algebras to absolute-valued algebras are auto-
matically continuous. The remaining tools in the proof were that, for absolute-
valued algebras, completeness is not a relevant assumption in relation to our
results (because the completion of an absolute-valued algebra is an absolute-
valued algebra too), and the theorem in [W] that absolute-valued two-sided
division algebras are finite-dimensional. For examples of infinite-dimensional
absolute-valued algebras the reader is referred to [UW], [U], [Cu], and [R3].

Our horizon admits a first enlargement by considering the so-called nearly
absolute-valued algebras [KRaR]. Nearly absolute-valued algebras over K are
defined as those normed algebras A over K such that there exists a positive
number p = p(A) satisfying || zy ||> p || z ||| v || for all z,y in A. The class of
nearly absolute-valued algebras contains that of equivalent algebra renormings
of absolute-valued algebras, but is much larger than this last class. Indeed, there
exist infinite-dimensional nearly absolute-valued commutative algebras over K
[KRaR; Example 1.1], whereas every absolute-valued commutative algebra over
K is finite-dimensional [UW]. As in the case of absolute-valued algebras, nearly
absolute-valued algebras have no nonzero one-sided topological divisors of zero,
and, for them, completeness is not a relevant assumption in relation to our re-
sults. Therefore, by Theorem 4.4, homomorphisms from complete normed com-
plex algebras into nearly absolute-valued complex algebras are automatically
continuous (a result implicitly contained in [KRaR]). The continuity of homo-
morphisms into nearly absolute-valued real algebras is not so well understood.
This is so because we do not know if nearly absolute-valued two-sided division
real algebras are finite-dimensional. Actually we only know the existence of a
universal constant 0 < K < 1 such that every nearly absolute-valued two-sided
division real algebra A with p(A) > K is finite-dimensional [KRaR; Corollary
3.2]. Then, arguing as in the proof of Corollary 2.8 we rediscover the result
in [KRaR; Theorem 3.3] asserting the automatic continuity of homomorphisms
from complete normed real algebras into nearly absolute-valued real algebras A
with p(A) > K.

A first tool to obtain previously unknown applications of the main results
in this paper is the following claim, whose proof is straightforward.

CLAIM 4.1.- Let A be a normed algebra over K with no nonzero left topolog-

ical divisors of zero, and F a norm-one bounded linear operator on A which
18 injective but not bounded below. Denote by [0 the product of A, and by
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B = B(A, F) the algebra whose vector space is that of A and whose product
is defined by xy := F(x)Qy. Then B (with the same norm as A) is a normed
algebra over K with no nonzero left topological divisors of zero, but every element
i B is a right topological divisor of zero in B.

The above claim not only will produce new examples of applicability of
Theorem 3.5, but also will provide us with an interesting discussion about the
limitations of Corollaries 2.4, 2.5, and 2.6. For such a discussion we need the
following straightforward consequence of Lemma 1.1.

LEMMA 4.2 [KRaR; Lemma 2.2].- Let B be a complete normed algebra over
K. Assume that there is some left (respectively, right) invertible element in B,
and that B has no non-zero left (respectively, right) topological divisors of zero.
Then B is a left (respectively, right) division algebra.

EXAMPLE 4.3.- Let I be an infinite set, and 1 < p < co. Then certainly
we may find a norm-one bounded linear operator F', on the classical Banach
space (1) over K, which is injective but not bounded below. Moreover we
can choose a product on the Banach space £,(I) converting it into an absolute-
valued algebra [R3; Remark 3.(1)]. We denote by A the absolute-valued algebra
just appeared, and consider the complete normed algebra B = B(A, F) given by
Claim 1, so that B has no nonzero left topological divisors of zero but is far from
being a nearly absolute-valued algebra. If F = C, then homomorphisms from
complete normed complex algebras into B are continuous (by Theorem 3.5). If
K = R and p # 2, then A is not a left division algebra (since norms of left
division absolute-valued algebras derive from inner products [R3; Proposition 4
and Remark 4.(1)]), so B also fails to be a left division algebra (by the definition
of the product of B and Lemma 4.2), and so dense range homomorphisms from
complete normed real algebras into B are continuous (by Corollary 2.5). Let us
finally assume that K = R and p = 2. Then the product on ¢, (I), which converts
it into the absolute-valued algebra A, can be chosen in such a way that A is not
a left division algebra. For instance, this is the case if we apply the constructions
in either [R3; Remark 3.(1)] or [U]. With such a choice, things behave as above.
But we also can choose the product on ¢,(I), converting it into the absolute-
valued algebra A, in such a way that A becomes a left division algebra (see [Cu]
and [R3; Theorem 3]). If we do so, then B is a complete normed left division real
algebra all elements of which are right topological divisors of zero, and therefore
none of Corollaries 2.4, 2.5 and 2.6 can be applied to B. Actually we do not
know if dense range homomorphisms from complete normed real algebras to
such a monster B are continuous. In any case, homomorphisms from complete
normed real algebras onto such a normed algebra B are continuous (by Corollary
2.7).

Now that we are provided with abundant examples of complete normed
algebras with no nonzero left (respectively, right) topological divisors of zero
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but having nonzero right (respectively, left) topological divisors of zero, we
attack the more complicated question of finding complete normed algebras with
no nonzero two-sided topological divisors of zero but having some nonzero left
topological divisor of zero as well as some nonzero right topological divisor of
zero. An appropriate tool to win in this line is the following claim. An element
x in an algebra A is said to be a left (respectively, right) divisor of zero in A if
there exists y € A\{0} such that xy = 0 (respectively, yz = 0). For an algebra
A, the existence of nonzero left divisors of zero in A is equivalent to the existence
of nonzero right divisors of zero in A. When this is the case, we simply say that
A has nonzero divisors of zero.

CLAIM 4.4.- Let A be a nonzero algebra over K, and let B = B(A) denote
the algebra over K whose vector space is A X A and whose product is defined by

(w1, 22)(y1,Y2) := (T1y2, T1Y1 + T2y2) -
Then B has nonzero divisors of zero. Moreover we have:
1. B is a quasi-division algebra if and only if A is a two-sided division algebra.

2. If A is in fact a normed algebra, and if we consider B as a normed algebra
under the norm || (x1,x2) ||:=| =1 || + || 22 ||, then B has no nonzero two-
sided topological divisors of zero if and only if A has no nonzero one-sided
topological divisors of zero.

Proof.- Since for x4 and y; in A the equality (0,22)(y1,0) = 0 holds, the
existence in B of nonzero divisors of zero is not in doubt.

Assume that B is a quasi-division algebra. Let a be in A\{0}. Since (0, a)
is not left invertible in B, it must be right invertible in B. This means that
the mapping (z1,22) — (x1a,22a) from B to B is bijective. Equivalently,
the mapping b — ba from A to A is invertible, i.e. a is right inversible in
A. Analogously, the fact that (a,0) is not right invertible in B allows us to
obtain that a is left invertible in A. Since a is arbitrary in A\{0}, A is a two-
sided division algebra. Now assume that A is a two-sided division algebra. Let
x = (z1,72) be in B\{0}. If x; # 0, then the operator L2 is bijective with
inverse mapping given by

(W1y2) — ((L5) " (y2 — Lay o (L) (1))« (L3) 7 () ) -
If 21 = 0 then the operator RZ is bijective with inverse mapping given by
(y1.92) — ((R,)'w), (R) " (w2) ) -

Since z is arbitray in B\{0}, B is a quasi-division algebra.
In this last paragraph of the proof we suppose that A is actually a normed
algebra, and consider B as a normed algebra under the norm

| (@1, 2) =] 21 [ + | 22 | -
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Assume that B has no nonzero two-sided topological divisors of zero. Then, for
each nonzero element a in A we have that (0, a) (respectively, (a,0)) is not a right
(respectively, left) topological divisor of zero in B. This implies that such an a
is not a one-sided topological divisor of zero in A. Therefore A has no nonzero
one-sided topological divisors of zero. Now assume that A has no nonzero one-
sided topological divisors of zero. Let x = (z1,22) be in B\{0}. First suppose
that 1 # 0. If {y,} = {(y}, %)} is a sequence in B with {zy,} — 0, then we
have in A
[ows} — 0 and {o1y? +22yi} — 0,

so {y5} — 0 and {y}'} — O (since z; is not a left topological divisor of zero in
A), and so {y,} — 0. Therefore = is not a left topological divisor of zero in B.
Now suppose that 1 = 0 (so that xo # 0). Then, for every y = (y1,y2) in B we
have yx = (y122,y222), and we easily realize that x is not a right topological
divisor of zero in B (since 9 is not a right topological divisor of zero in A). B

Because of its relevance in relation to Proposition 3.4, we emphasize here
the following consequence of the claim just proved.

COROLLARY 4.5.- Let B denote the complex algebra whose vector space is
C? and whose product is defined by

(A1s A2) (1, pr2) == (Arpiz, Adpn + Agpz) -

Then B is a quasidivision algebra.

EXAMPLE 4.6.- Taking in Claim 4.4 A equal to any complete absolute-
valued infinite-dimensional algebra over K, we obtain an infinite-dimensional
complete normed algebra B = B(A) over K which, by Assertion 2 in the claim,
has no nonzero two-sided topological divisors of zero but has nonzero divisors of
zero. If K = C, then the continuity of homomorphisms from complete normed
algebras into B follows from Theorem 3.5. Assume that K = R. Then A is not a
two-sided division algebra (since A is an infinite-dimensional absolute-valued al-
gebra, and the already quoted result in [W] applies), so B is not a quasi-division
algebra (by Assertion 1 in the claim), and so dense range homomorphims from
complete normed real algebras to B are continuous (by Corollary 2.4).

With the information given until now, the reader can find examples showing
that, in the setting of complete normed real algebras A, none of the implications
in Diagram I is reversible. The same can be said in the setting of complete
normed complex algebras, with the unique exception that, in such a setting,
division and one-sided division are equivalent notions (by Corollary 3.2). Trying
to conclude the discussion of our main results, we note the following consequence
of Lemma 4.2.
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COROLLARY 4.7.- Let B be a complete normed algebra over K. Assume
that B is a quasi-division algebra and that either B has no nonzero left topolog-
ical divisors of zero or B has no nonzero right topological divisors of zero. Then
B is a one-sided division algebra.

Proof.- Assume that B is a quasi-division algebra and has no nonzero left
topological divisors of zero. If B is a left division algebra, then there is nothing
to prove. Otherwise, by the assumptions and Lemma 4.2, B is a right division
algebra. W

It follows from the above corollary that, if B is a complete normed algebra
over K which has no nonzero left (respectively, right) topological divisors of
zero but is not a left (respectively, right) division algebra, then either B is a
quasi-division algebra or has no nonzero one-sided topological divisors of zero.
This means that, whenever Corollary 2.5 is applicable to B, we can be sure that
either Corollary 2.4 or Corollary 2.6 also applies. With Examples 4.3 and 4.6 in
mind, the reader can realize that, in the actually interesting case that K = R,
no more dependences between Corollaries 2.4, 2.5, and 2.6 can be found.

We conclude the paper by commenting on the techniques applied in the
proof of Corollary 2.7. By the sake of convenience, we obtained Corollary 2.7
by combining Corollary 2.4 with the result in [R1] that homomorphisms from
complete normed algebras onto complete normed simple algebras are continuous.
In fact, the result in [R1] just quoted consists of a general theorem establishing
the automatic continuity of homomrphisms from complete normed algebras onto
complete normed algebras with zero ¢ ultra-weak radical ” [R1; Theorem 3.3],
and the remark that simple algebras have zero ultra-weak radical [R1; Remark
3.4.(ii)]. It is worth mentioning that the automatic continuity of homomorphism
from complete normed algebras onto complete normed algebras with no nonzero
two-sided topological divisors of zero, assured by Corollary 2.7, is in fact a
particular case of [R1; Theorem 3.3]. This follows from the next proposition. In
the proof, uw — Rad(A) will mean the ultraweak radical of an algebra A, and,
when A is associative, Rad(A) will stand for the Jacobson radical of A.

PROPOSITION 4.8.- Every complete normed algebra over K with no nonzero
two-sided topological divisors of zero has zero ultra-weak radical.

Proof.- We begin by noting that, if B is an associative normed algebra over
K, and if b is an element of B, then we have:

1. 7(b) :=lim{|| b" ||*/"} = 0 whenever b belongs to Rad(B).
2. b is a two-sided topological divisor of zero in B whenever r(b) = 0.

Indeed, i) is proved in [BD; Proposition 25.1] under the unnecessary assumption
that B is complete. On the other hand, ii) is clearly true whenever b is in fact
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nilpotent. Otherwise we put z,, := HSZH’ so that we have || z,, ||= 1 and

liminf {|| bxy ||} = liminf {|| znb ||}
ot |

y<um {] 6" [V = (),

and therefore b is a two-sided topological divisor of zero in B whenever r(b) = 0.
Now let A be a complete normed algebra over K. By the definition of the

ultraweak radical of A [R1; Definition 3.2 and Remark 1.8], we have

uw — Rad(A) = ZAi ,
il

where {4;}icr is a family of subspaces of A satisfying the following property:
for every i € I there exists a subalgebra B; of BL(A) such that L7 and RZ
belong to Rad(B;) whenever z; is in A;. It follows from the first paragraph in
the proof that, for ¢ in I and z; in A;, L;“i and R;ﬁ‘i are two-sided topological
divisors of zero in B; (hence also in BL(A)), and therefore, by [B; Theorem
57.4], x; is a two-sided topological divisor of zero in A. In this way we have
proved that uw — Rad(A) consists only of finite sums of two-sided topological
divisors of zero. B
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