Compact and weakly
compact operators on
non-complete normed spaces

Juan Francisco Mena Jurado

Angel Rodriguez Palacios

Depertamento de Andlisis Matemdtico
[Tniversidad de Granada

Proceedings of Jordan Structures in Algebia and Analysis Meeling.
Tricute Yo Bl Armin Kaidi for his 60th birthday.
Almeria, 20, 21 y 22 de Mayo de 2009



Compact and weakly compact operators on
non-complete normed spaces

Juan Francisco Mena Jurado and Angel Rodriguez Palacios
Departamento de Andlisis Matemdlico
Urniversidad de Graaada

Abstract

We collect in this note the results in {6] where we show that weakly compact
operators on a non-reflexive normed space cannot be bijective but might be surjec-
tive, study the behaviour of surjective weakly compact operators on a non-reflexive
normed space when they are perturbed by small scalar multiples of the identity,
and derive the recent result of J. Spurny {8] that compact operators on an infinite-
dimensional normed space cannot be surjective. As a novelty, we prove here that
the linear hull of the identity and all compact or weakly compact operators on a
normed space is a normed Q-algebra.

Keywords: Compact operator, weakly conpact operator, norined (Q-algebra.

1 Introduction

As said in the abstract, the aim of this note i3 to review in some detail the re-
sults in {6] about campact and weakly compact operators on non-complete normed
spaces, as well as fo derive a new consequence, which has its own interest in the
theory of normed (Q-algebras.

The existence of snitable infinife-dimensional normed spaces X and Y such
that there are bijective compact operators from X to Y is well-known. 1t is also
known that, in this situation, the space Y cannot be complete. On the other
hand, the space X above can be chosen arbitrarily among the duals of infinite-
dimensional separable Banach spaces (see Proposition 2.3), and, in particalar,
among the infinite-dimensional reflexive separable spaces. NMore specifically, the
choice X' = 3 is allowed. In the opposite direction, the space X above can be
also chiosen non complete {see Proposition 2.4). This gives examples of normed
spaces X and Y such that there exists a bijective weakly compact operator from X
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to Y, and both X and Y are non reflexive. One of the main results in [6] asserts
that this last situation cannot happen iu the case that X = Y {Theorem 3.2). As
a consequence, if 7 is o weakly compact operator on a normed space over K (= B
or ), then the set of those A € K such that T — X is not bijective becomes a
compact subset of ¥ (Corollary 3.3).

Other relevant result in [6] is the one asserting that the requirenent of bijec-
tivity in Theorem 3.2, meutioned above, cannot be relaxed to that of surjectivity.
Indecd, we can find non-complete (hence uon-reflexive) nonmed spaces X, of arbi-
trary deusily claracter, such that there are surjective weakly commpact operators
from X to X (Proposition 4.1). Moreover, we show in [6] that, if T is a surjec-
tive weakly compact operator on a non-reflexive normed space over &, then there
exists ¢ = 0 such that T —~ A is surjective but not injective whenever A is in K
with 0 < JA] <0 8 {Theorem 4.3). Since this conclusion cannot be true if the oper-
ator T is in fact compact, we derive in (6] the recent result of J. Spurny (8] that
compact operators on an inhnite-dimensional normed space cannot be surjective
(Corollary 4.4). Actually, a detailed inspection of the arsuoent in [8] allows us
to realize that, if X is a normed space, and if T is a surjective weakly compact
operator from X to X, then X/ ker(7T) is retlexive {Theorem 4.5), being provided
in this way with an alternative proof of Theorem 3.2

We take the opportunity of publishing this note to prove a new result. Indeed,
we apply a part of the previously reviewed material to show in Corollary 3.7 that
the Hoear hull of the identity and all compact or weakly compact operators on a
normed space s a normed (-algebra {see Definition 3.5). This has its own interest
hecanse of the scarcity of natural examples of normed (Q-algebras.

2 Somne basic facts about weakly compact operators

We recall that a linear operator T, from o normed space X to a normed
space Y, is called compact (respectively, weakly compact) if T(By) s a relatively
compact {respectively, weakly compact) subset of Y. Here By stands for the
closed unit ball of X. All results in this seetion are taken from [6], beiug aware
that some of them can be considered as fotklore.

Proposition 2.1, Let X and ¥ be normed spaces, and el T be a compact (respec-
tively, weakly compnet) ncor operator from X lo Y. IfY is infinite-dimensional
(respectively, non reflerive), thea T{X)Y is of the fivst category in Y.

It follows from Proposition 2.1 that, if Y is @ normed spoce of the second
culegory in iself, and if there erists o surjeetive compact {respectively, weakly
compuct) operator from some normed spece to Y, then Y s finite-dimensional
(respectively, reflerive ). As a consequence, we have the following.

Corollary 2.2, Let Y be u Banech spoce such thet there erists a surjective compact

(respectively, weakly compact} operator from soime norpeed spece to Y. Then'Y s
finite-dimensional (respectively, reflexive).
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The version of Corollary 2.2 for compact operators is well-known (see for exam-
ple [9, Theorem V.7.4]).

Both compact and weakly compact versions of Corollary 2.2 do not remain
true if the assumption that Y is a Banach space is relaxed to the one that Y is an
arbitrary normed space. Actually, suitable infinite-dimensional normed spaces X
and Y are built in [8] such that there exists a BIJECTIVE compact (so, weakly
compact) operator from X to Y. The space ¥ of [§] is of course non complete
(and hence, non reflexive), whereas, although strangely introduced, the space X
is (isometrically isomorphic to) £2. More examples of bijective compact operators
between infinite-dimensional normed spaces are given by Proposition 2.3 immedia-
tely below. Given a normed space X, we denote by X* the (topological) dual of X

Proposition 2.3. Let X be a separable Banach space, and let Y be an infinite-
dimensional Banach space. Then there exists a bijective compact operator from X*
to some subspace of Y.

Now, the existence of bijective compact operators starting from non-complete
normed spaces follows from the following.

Proposition 2.4. Let (X, |-} be a normed space, and let f be a ||-||-discontinuous
linear funcional on X. Then the norm {|-|| on X defined by ||z|| := ||lz|| + | f(z)| s
not complete. Moreover, compact (respectively, weakly compact) operators starting
from X remain compact (vespectively, weakly compact) when they are regarded as
operators starting from (X, | - .

Given a linear operator T on a vector space X, and any scalar A, we write
T — A instead of T — ALy, where Iy stands for the identity mapping on X. Given
normed spaces X and Y, and a bounded linear operator T : X — Y, we denote
by T* : Y* — X* the transpose of T. By noticing that a linear operator T on
a normed space X is weakly compact if and only if the inclusion T**(X**) C X
holds, the concluding result in this section is easily obtained.

Proposition 2.5, Let X be a normed space over K, let T be a weakly compact
operator on X, and let A be in K\ {O}. Then ker(T — X) is o reflexive Banach
space, and we have

ker(T — A) = ker(T™" — A).

Moreover, the following assertions are equivalent:
1. T — X is surjective.
2. T** — X i3 surjective.
3. T — X\ is open.

3 Bijective weakly compact operators

As a consequence of Corollary 2.2 and Propositions 2.3 and 2.4, we are provided
with examples of normed spaces X and Y such that there exists a bijective compact
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operator from X to Y, and both X and Y are non complete. In particular, we
are provided with examples of normed spaces X and Y such that there exists
a bijective weakly compact operator from X to Y, and both X and Y are non
reflexive. Now, the fact that this last situation cannot happen in the case that
X =Y becomes one of the main results in [6]. The key tool to prove this result is
TLemma 3.1 immediately below.

It is well-known and easy to realize that, if T is a linear operator on vec-
tor space X satisfying T2(X) = T(X) and ker(T?) = ker(7"), then we have
X =ker(T} @ T(X}. On the other hand, it is also known that, if T is a bounded
linear operator on a Banach space X, and if T(X) is algebraically complemented
in X by a closed subspace of X, then T(X) is closed in X (a consequence of [9,
Theorem IV.5.10]). By putting together the two facts just reviewed, we obtain the
following,.

Lemma 3.1. Lef X be a Banach space, and let T be a bounded linear operator on
X satisfying T2(X) = T(X) and ker(T?) = ker(T). Then T(X) is closed in X.

When Lemma 3.1 applies with (X**, T**) nstead of (X, T, where now X is a
normed space, and T is a bijective weakly compact operator on X, we obtain the
following.

Theorem 3.2. Let X be a normed space such that there exists a bijective weokly
compact operator from X to X. Then X is a reflexive Banach space.

Let T be a linear operator on a vector space X over a field F. The spectrum
of T is defined as the subset o(T} of F given by

oT):={reF:T — XA is not bijective}.

As a consequence of [4, Proposition VL1.9], if X is in fact a Banach space, and if
the linear operator T is bounded, then we have o(T") = o (™). Keeping in mind
the fact just quoted, and invoking Proposition 2.5 and Theorem 3.2, we get in [6]
the following,

Corollary 3.3. Let X be a normed space over K, and let T be a weakly compact
operator on X. Then we have o(T) = o(T*). As a consequence, o{T') is a compact
subset of K, and is nonempty whenever K = C.

A subalgebra B of an associative algebra A with a unit 1 is said to be full
in Aif 1 les in B, and Inv(B) = B N Inv(A), where Inv(-) stands for the set of
all invertible elements of the algebra under consideration. Now, denote by K(X)
(respectively, W(X)) the algebra of all compact (respectively, weakly compact)
operators on a given normed space X. Involving Proposition 2.5, Theorem 3.2,
and the compact version of Corollary 2.2, we derive in [6] the following.

Corollary 3.4. Let X be a normed space over K. Then both K(X) + KIx and
W(X) + KIx are full subalgebras of the algebra of all (possibly discontinuous)
linear operators on X.
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Now, we consider the following.

Definition 3.5. A normed algebra A is said to be a Q-algebra if it has a unit,
and the set of all invertible elements of A is open in A.

Normed @-algebras compose a well-understood class of (possibly non-comple-
te) normed algebras which, concerning spectral theory, behave like Banach alge-
bras (see for example [7, Pages 208-260}). According to [7, Page 213], normed
(J-algebras were introduced by I. Kaplansky [5]. Of course, every Banach alge-
bra with a unit is & normed -algebra. More generally, any full subalgebra of a
Banach algebra with a unit becomes a normed @-algebra. A. Wilansky’s ques-
tion [10], asking if the converse of the last assertion is true, was famous for some
years. Curiously enough, as pointed out in [2], this question had been answered
affirmatively ten years before in [1, Theorem 2|, by proving that every normed
(-algebra is a full subalgebra in its completion.

The next proposition allows us to find normed @-algebras of bounded linear
operators on a normed space.

Proposition 3.6. Let X be a normed space, and let B be an algebra of bounded
linear operators on X such that:

1. The identity mapping I'x lies in B.

2. If F belongs to B and is bijective, then F~1 belongs to B.

3. An operator F € B is bijective if and only if so is F*.
Then B is a normed Q-algebra.

Proof. For F' in B, we have that F is invertible in B if and only if ¥ is bijective
(by the assumption 2), if and only if F* is invertible in the Banach algebra L(X™)
of all bounded linear operators on X* (by the assumption 3 and the Banach
isomorphism theorem). Now, let us consider the mapping A from B into L(X*)
defined by h(F) = F*. Tt follows that

Inv{B) = h™* (Inv(L{X*)).

Since h is continuous, and Inv(L{X™)) is open in L{X*), we conclude that Inu(B)
is open in B. O

As a matter of fact, there are not many natural examples of non-complete
normed Q-algebras. Fortunately, Proposition 3.6 above, together with some of
our previous results, provides us with two of them. Indeed, we have the following,.

Corollary 3.7. Let X be a normed space over K. Then both K(X) + KIx and
W(X) + Klx are normed (Q-algebras.

Proof. Let B stand for either K(X) + KlIx or W(X) + KIx, so that the assump-
tion 1 in Proposition 3.6 is fulfilled by B. On the other hand, by Corollary 3.4
(respectively, Corollary 3.3), the assumption 2 (respectively, the assumption 3) in
Proposition 3.6 is also fulfilled by B. O
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4 Surjective weakly compact operators

The following proposition, proved in [6], shows that Theorem 3.2 does not
remain true when surjectivity replaces bijectivity.

Proposition 4.1. Let X be a reflerive Banach space containing closed subspaces
Y and Z such that Y has o Schauder basis, Z is isomorphicto X, and X =Y @& 7.
Then there ezists a couple (M, T), where M is a dense proper subspace of X, and
T is a surfective weokly compact operator from M to M.

We note that all requirements on the space X in the above proposition are ful-
filled in the case that X = £,(J), where I is any infinite set, and 1 < p < o0. There-
fore we are provided with surjective weakly compact operators on non-complete
normed spaces of arbitrary density character. In what follows, we are going to
realize that such operators have a rather pathological behaviour, which prohibits
them to be compact. The key tool to prove this is Lemma 4.2 immediately below.

Let T be a linear operator on a vector space X. The descent d(T") of T is
defined by the equality

d(T) = min{n € NU {0} : T°(X) = T"(X)},

with the convention that min@ = oo. The following result is stated in [3, Propo-
sition 1.1] for complex spaces, but its proof works verbatim in the real case.

Lemma 4.2, Let X be o Banach space over K, and let T be o bounded linear
operator on X with finite descent d := d{T"). Then there exists § > 0 such thai,
Jor every A € K with 0 < |A| < 6, we have:

1. T — X is surjective.
2. dim{ker(T — X)) = dim(ker{T) N T¢(X)).

Roughly speaking, the following theorem is proved in [6] by keeping in mind
Corollary 2.2, Theorem 3.2, and Proposition 2.5, and arguing as in the proof of
Theorem 3.2 with Lemma 4.2 instead of Lemma 3.1.

Theorem 4.3. Let X be a non-reflexive normed space over K, and let T be a
surjective weakly compact operator on X. Then X is non complete, and T' is
non injective. Moreover, there exists § > 0 such that T — X\ is open (and hence
surjective) but non injective whenever A is in K with 0 < |A] < 4.

It is well-known that, if T is a compact operator on a normed space X over [§,
and if A is a nonzero element in K, then T — X is injective if and only if it is
surjective (see for example the first comment after [9, Theorem V.7.9]). Therefore,
the last conclusion in Theorem 4.3 cannot be true if the surjective weakly compact
operator T' in that theorem is actually compact. Thus, invoking the compact
version of Corollary 2.2, we derive the main result in [8], namely the following.

Corollary 4.4. Let X be a normed space such that there exists a surjective com-
pact operator from X to X. Then X is finite-dimensional.
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The original proof in (8] of Corollary 4.4 is much simpler than the one sketched
above. Actually, as done in [6], Spurny’s argument in [8] can be adapted to the
case of surjective weakly compact operators, giving rise to the following.

Theorem 4.5. Let X be a normed space, and let T' be o surjective weakly compact
operator from X to X. Then X/ker{T') is a reflexive Banach space.

As pointed out in [6], Theorem 4.5 contains Theorem 3.2 in a straightforward
way, ahd has the following consequence.

Corollary 4.6. Let X be a normed space. Then the following assertions are
equivalent:

1. There exists o surjective weakly compact operator from X to X.

2. There exists a closed subspace M of X such that X/M is reflexive, and a
bijective bounded linear operotor from X/M to X.

3. There exists a closed subspace M of X such that X/M is reflexive, ond a
surjective bounded linear operator from X/M to X.
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