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AMS Subject Classification: 46B04, 46B10, 46B22

1.- Introduction

Throughout this paper X will denote a Banach space over the field K
of real or complex numbers, S = S(X) and B = B(X) will be the unit
sphere and the closed unit ball of X, respectively, and G = G(X) will stand
for the group of all surjective linear isometries on X. The Banach space
X is said to be almost transitive whenever, for every (equivalently, some)
element u in S, G(u) is dense in S. We denote by J the class of almost
transitive superreflexive Banach spaces. This class has been first considered
by C. Finet [7] (see also [6; Corollary IV.5.7]) and, very recently, has been
revisited by F. Cabello [4] and the authors [2].

According to [7], every member of J is uniformly smooth and uniformly
convex. By his part, F. Cabello shows that, for an almost transitive Banach
space, superreflexivity is equivalent to reflexivity (and even to either enjoy
the Radon-Nikodym property or be Asplund). He also proves, that, for a
superreflexive Banach space, the notion of almost transitivity is equivalent
to that (in general weaker) of convex transitivity. We recall that the Banach
space X is said to be convex transitive if, for every u in S, we have coG(u) =
B, where co means closed convex hull. In [2], we show that members of J
can be characterized as those convex transitive Banach spaces which either
have the Radon-Nikodym property or are Asplund.

Actually, the result just reviewed follows from a more general fact in-
volving the concept of a rough space. For u in S, we put

η(X, u) := lim sup ‖h‖→0

‖u + h‖+ ‖u− h‖ − 2
‖h‖

.

Given ε > 0, the Banach space X is said to be ε-rough if, for every u in
S, we have η(X, u) ≥ ε. We say that X is rough whenever it is ε-rough for
some ε > 0, and extremely rough whenever it is 2-rough. Since, for u in
S, the Fréchet differentiability of the norm of X at u can be characterized
by the equality η(X, u) = 0 [6; Lemma I.1.3], it follows that the roughness
of X can be seen as a uniform non Fréchet-differentiability of the norm,
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and hence becomes the extremely opposite situation to that of the uniform
smoothness. We proved in [2] that a Banach space X is a member of J if
(and only if) it is convex transitive and either X or X∗ is non rough.

As main result, we show in the present paper that the Banach space X
is a member of J if (and only if) it is convex transitive and either X or X∗

is not extremely rough. Through a technical lemma, namely Lemma 1, the
main tool in the proof is a theorem, essentially due to R. C. James, establish-
ing that uniformly non-square Banach spaces are superreflexive [5; Theorem
VII.4.4]. We also find another remarkable characterization of members of
J involving the notion of a big point. Let us say that an element u of X
is a big point of X if u belongs to S and coG(u) = B (so that X is convex
transitive precisely when all elements in S are big points of X). We prove
that X lies in J if (and only if) there exists a big point u in X such that
the norm of X is Fréchet differentiable at u.

2.- The results

The Banach space X is said to be uniformly non-square if there exists
0 < a < 1 such that ‖x−y‖ < 2a whenever x, y are in B with ‖x+y‖ ≥ 2a .

LEMMA 1.- Assume that there exists a big point u in X such that
η(X, u) < 2. Then X is uniformly non-square.

Proof.- Let us fix ε satisfying η(X, u) < ε < 2. Then there is 0 < δ < 1
such that

‖u + h‖+ ‖u− h‖ − 2
‖h‖

≤ ε

whenever h is in X\{0} and ‖h‖ ≤ δ. Now

{v ∈ X :
‖v + h‖+ ‖v − h‖ − 2

‖h‖
≤ ε whenever h is in X\{0} with ‖h‖ ≤ δ}

is a closed, convex, and G-invariant subset of X containing u. It follows
from the bigness of u that
‖v+h‖+‖v−h‖−2

‖h‖ ≤ ε whenever v is in B and h is in X\{0} with ‖h‖ ≤ δ. (*)

Take σ with ε < σ < 2, and a with

1
2

max{2− (σ − ε)δ, 2− (2− σ)δ} < a < 1 .

Let x, y be in B such that ‖x + y‖ ≥ 2a . Then we have
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‖x + y‖ ≥ 2− (σ − ε)δ ,

and hence

‖x + δy‖ ≥ 2− (σ − ε)δ − (1− δ) .

Since, on the other hand, the equality

‖x− δy‖ ≥ ‖x− y‖ − (1− δ)

holds, we obtain

‖x + δy‖ + ‖x− δy‖ ≥ ‖x− y‖ + (2− σ + ε)δ .

It follows from (*) that

‖x− y‖ + (2− σ + ε)δ ≤ 2 + εδ ,

and therefore

‖x− y‖ ≤ 2− (2− σ)δ < 2a .

We say that an element f of X∗ is a w∗-big point of X if f belongs to
S(X∗) and the convex hull of G(X∗)(f) is w∗-dense in B(X∗). By keeping in
mind that the norm of X∗ is lower w∗-semicontinuous, the proof of Lemma
2 below is similar to that of Lemma 1.

LEMMA 2.- Assume that there exists a w∗-big point f in X∗ such that
η(X∗, f) < 2. Then X∗ is uniformly non-square.

Let u be in S. For x in X, the number limα→0+
‖u+αx‖−1

α (which always
exists because the mapping α → ‖u + αx‖ from R to R is convex) is usually
denoted by τ(u, x). We say that the norm of X is strongly subdifferentiable
at u if

limα→0+
‖u+αx‖−1

α = τ(u, x) uniformly for x in B.

The reader is referred to [1] and [8] for a comprehensive view of the usefulness
of the strong subdifferentiability of the norm in the theory of Banach spaces.

For u in S, we put

D(X, u) := {g ∈ X∗ : ‖g‖ = g(u) = 1} .
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LEMMA 3.- Let u be a big point of X such that the norm of X is strongly
subdifferentiable at u. Then the set

{T ∗(f) : f ∈ D(X, u), T ∈ G}

is norm-dense in S(X∗).

Proof.- Let ε be a positive number. Since the norm of X is strongly
subdifferentiable at u, we can apply [8; Theorem 1.2.(iv) ⇒ (i)] to find 0 < δ
such that d(g,D(X, u)) < ε whenever g belongs to B(X∗) and |g(u)−1| < δ.
Now, let h be in S(X∗). Since u is a big point of X, there exits T in
G satisfying |h(T (u)) − 1| < δ. Now T ∗(h) lies in B(X∗) and satisfies
|T ∗(h)(u)−1| < δ , and hence there is f in D(X, u) such that ‖T ∗(h)−f‖ < ε.
For such an f , we have ‖h− T ∗−1(f)‖ < ε .

The dual X∗ of the Banach space X is said to be convex w∗-transitive
if every element of S(X∗) is a w∗-big point of X∗. An easy and well-known
consequence of the Hahn-Banach theorem is that convex transitivity of X
implies convex w∗-transitivity of X∗. Recall that the symbol J stands for
the class of almost transitive superreflexive Banach spaces.

THEOREM 1.- The following assertions are equivalent:

1. X is a member of J .

2. There exists a big point u in X such that the norm of X is Fréchet
differentiable at u.

3. There exists a w∗-big point f in X∗ such that the norm of X∗ is Fréchet
differentiable at f.

4. X is convex transitive and the norm of X is not extremely rough.

5. X∗ is convex w∗-transitive and the norm of X∗ is not extremely rough.

Proof.- Certainly the implications 1 ⇒ 4 and 1 ⇒ 5 are true.
2 ⇒ 1.- Since the norm of X is Fréchet differentiable at u, we have

η(X, u) = 0 < 2, so that, since u is a big point of X, we can apply Lemma 1
and the already quoted James’ theorem [5; Theorem VII.4.4] to obtain that
X is superreflexive. On the other hand, the Fréchet differentiability of the
norm of X at u implies that the norm of X is strongly subdifferentiable at u
and that D(X, u) reduces to a singleton, so that, by Lemma 3, X∗ is almost
transitive. Now, surely, there exits in the unit sphere of the reflexive Banach
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space X∗ some point g such that the norm of X∗ is Fréchet differentiable at
g, and such a point is a big point of X∗ (because X∗ is almost transitive).
Repeating the argument with (X∗, g) instead of (X, u), we obtain that X is
almost transitive.

3 ⇒ 1.- With X∗ instead of X, and Lemma 2 instead of Lemma 1, we
can argue as in the proof of 2 ⇒ 1 above to obtain that X∗ (and hence also
X) is superreflexive, and that X is almost transitive.

4 ⇒ 2.- Since the norm of X is not extremely rough, there exists v in
S such that η(X, v) < 2. Since X is convex transitive, such an v is a big
point of X. By Lemma 1, X is reflexive, so that there is some u in S such
that the norm of X is Fréchet differentiable at u. Applying again that X is
convex transitive, we obtain that u is a big point of X.

5 ⇒ 3.- With X∗ instead of X and Lemma 2 instead of Lemma 1, the
proof is similar to that of 4 ⇒ 2 above.

It follows from Theorem 1 (or even from its forerunner [2; Theorem
3.2]) that anyone of the following two assertions is sufficient (and of course
necessary) to convert the Banach space X into a member of J :

i) X is convex transitive and either has the Radon-Nikodym property or
is Asplund.

ii) X∗ is convex w∗-transitive and either X has the Radon-Nikodym
property or X is Asplund.

Now, recall that a subset R of a topological space T is said to be nowhere
dense in T if the interior of the closure of R in T is empty. Actually, Theorem
3.2 in [2] contains enough information to derive other characterizations of
members X of J , like the following:

iii) There exists a non nowhere dense subset of S consisting of big points
of X, and X has the Radon-Nikodym property.

iv) There exists a non nowhere dense subset of S(X∗) consisting of w∗-big
points of X∗, and X is Asplund.

Now, we can complete the situation by proving the next corollary.

COROLLARY 1.- The following assertions are equivalent:

1. X lies in J .

2. There exists a non nowhere dense subset of S consisting of big points
of X, and X is Asplund.

3. There exists a non nowhere dense subset of S(X∗) consisting of w∗-big
points of X∗, and X has the Radon-Nikodym property.
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Proof.- By the Hahn-Banach theorem, an element u in S is a big point
of X if and only if, for every g in S(X∗), we have

sup{|g(T (u))| : T ∈ G} = 1 .

Analogously, an element f in S(X∗) is a w∗-big point of X∗ if and only if,
for every x in S, we have

sup{|F (f)(x)| : F ∈ G(X∗)} = 1 .

Therefore the set of all big points of X is closed in S, and the set of all w∗-big
points of X∗ is norm-closed in S(X∗). Assume that Assertion 2 holds. Then,
by the first requirement, there is a non-empty open subset of S consisting
of big points of X. By the second requirement, there must exist a point u
in such an open set such that the norm of X is Fréchet differentiable at u.
By the implication 2 ⇒ 1 in Theorem 1, X is a member of J . Now, assume
that Assertion 3 holds. Then there is a non-empty open subset (say A) of
S(X∗) consisting of w∗-big points of X∗. Since X has the Radon-Nikodym
property, we can apply [3; Theorem 5.7.4] to find some f in A such that the
norm of X∗ is Fréchet differentiable at f . Then X lies in J by 3 ⇒ 1 in
Theorem 1.

Given 1 ≤ p ≤ ∞ , a subspace M of the Banach space X is said to be
an Lp-summand of X if there is a linear projection π from X onto M such
that, for every x in X, we have

‖x‖p = ‖π(x)‖p + ‖x− π(x)‖p (1 ≤ p < ∞) ,

‖x‖ = max{‖π(x)‖, ‖x− π(x)‖} (p = ∞) .

If M is an Lp-summand of X, then the projection π above is uniquely
determined by M , and is called the Lp-projection from X onto M .

COROLLARY 2.- Assume that there exists a big point u in X such that
Ku is an Lp-summand of X for some 1 < p ≤ ∞. Then X is a Hilbert
space. If in addition p 6= 2, then X is one-dimensional.

Proof.- First of all, note that a Hilbert space of dimension ≥ 2 cannot
have one-dimensional Lp-summands for p 6= 2, so that it is enough to show
that X is a Hilbert space. Since 1 < p ≤ ∞, and Ku is an Lp-summand of
X, the norm of X is Fréchet differentiable at u. It follows from the bigness
of u and the implication 2 ⇒ 1 in Theorem 1 that X is almost transitive.
Assume that K = C. Then, since Lp-projections on complex Banach spaces
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are hermitian operators, the result follows from [10; Theorem 6.4]. Now
assume that K = R. Then, denoting by π the Lp-projection from X onto
Ku, 1−2π becomes an isometric reflexion on X. It follows from [11; Theorem
2.a)] that X is a Hilbert space.

Corollary 2 above does not remain true for p = 1. Indeed, for X equal
to either `1 or `n

1 (n ∈ N), every element u in the natural basis of X is
a big point of X such that Ku is an L1-summand of X. In any case, if
X is convex transitive and has a one-dimensional L1-summand, then X is
one-dimensional [2; Corollary 3.5].

We conclude this paper with two remarks related to the matter we have
developed.

REMARK 1.- Concerning Lemma 1, it is worth mentioning that, if the
Banach space X is uniformly non-square, then we have η(X, u) < 2 for
every u in S. To verify this assertion, assume that there exists some u
in S satisfying η(X, u) = 2. By the proof of [6; Proposition I.1.11], for
every n in N, there are fn, gn in B(X∗) satisfying Re(fn(u)) > 1 − 1

n ,
Re(gn(u)) > 1 − 1

n , and ‖fn− gn‖ ≥ 2 − 1
n . Now, assume additionally

that X is uniformly non-square. Then so is X∗ [5; p. 173], and hence
there is 0 < a < 1 such that ‖f + g‖ < 2a whenever f, g are in B(X∗) with
‖f−g‖ ≥ 2a . Taking n big enough to have ‖fn−gn‖ ≥ 2a , Re(fn(u)) > a ,
and Re(gn(u)) > a , it follows

2a < Re(fn(u) + gn(u)) ≤ ‖fn + gn‖ < 2a ,

a contradiction.

REMARK 2.- We say that the Banach space X has the Mazur’s inter-
section property whenever every bounded closed convex subset of X can be
represented as an intersection of closed balls in X. Analogously, we say
that X∗ has the Mazur’s w∗-intersection property whenever every bounded
w∗-closed convex subset of X∗ can be expressed as an intersection of closed
balls in X∗. We proved in [2; Theorem 3.4] that X lies in J if and only if
there exists a big point in X, and the set of all denting point of B is dense
in S. Applying [9; Theorem 3.1], we have:

i) X is a member of J if and only if X∗ has the Mazur’s w∗-intersection
property and there is a big point in X.

We also proved in [2; Theorem 3.4] that X lies in J if and only if there
exists a w∗-big point in X∗, and the set of all w∗-denting points of B(X∗) is
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norm-dense in S(X∗). With [9; Theorem 2.1] in the mind, this result reads
as follows:

ii) X is a member of J if and only if X has the Mazur’s intersection
property and there is a w∗-big point in X∗.
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