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Abstract. Let A be a C∗-algebra generated by a non self-adjoint idem-
potent e, and put K := sp(

√
e∗e)\{0}. It is known that K is a compact

subset of [1,∞[ whose maximum element is greater than 1, and that,
in general, no more can be said about K. We prove that, if 1 does not
belong to K, then A is ∗-isomorphic to the C∗-algebra C(K, M2(C)) of
all continuous functions from K to the C∗-algebra M2(C) (of all 2 × 2
complex matrices), and that, if 1 belongs to K, then A is ∗-isomorphic
to a distinguished proper C∗-subalgebra of C(K, M2(C)). By replacing
C∗-algebra with JB∗-algebra, sp(

√
e∗e) \ {0} with the triple spectrum

σ(e) of e, and M2(C) with the three-dimensional spin factor C3, similar
results are obtained.

1. Introduction

Let A be a C∗-algebra generated by a non self-adjoint idempotent e, and
put K := sp(

√
e∗e) \ {0}, where sp(·) means spectrum. We proved in [1]

that K is a compact subset of [1,∞[ whose maximum element is greater
than 1, and that, in general, no more can be said about K. Moreover
we got an “almost description” of A (collected in Proposition 2.4 of the
present paper) in terms of a Banach ∗-algebra A(K), which consists of all
2×2 matrices over C(K) with an unusual but natural multiplication. In the
present paper we obtain a complete description of A. We prove that, if 1 does
not belong to K, then A is ∗-isomorphic to the C∗-algebra C(K, M2(C)) of
all continuous functions from K to the C∗-algebra M2(C) of all 2×2 complex
matrices (Theorem 2.8). To study the case that 1 belongs to K, we need to
introduce a distinguished proper C∗-subalgebra of C(K, M2(C)), namely the
one (denoted by Cp(K, M2(C))) consisting of all elements α ∈ C(K, M2(C))
such that α(1) belongs to Cp, for a given self-adjoint idempotent p ∈ M2(C)
different from 0 and 1. It is easy to see that Cp(K, M2(C)) does not depend
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structurally on p. We prove that, if 1 belongs to K, then A is ∗-isomorphic
to Cp(K, M2(C)), for p as above (Theorem 3.3).

Among the consequences of the results reviewed in the preceding para-
graph, we emphasize the one asserting that a C∗-algebra contains a non cen-
tral self-adjoint idempotent if and only if it contains a copy of either M2(C)
or Cp([1, 2],M2(C)) for any self-adjoint idempotent p ∈ M2(C) different from
0 and 1 (Corollary 4.3 and Remark 4.4). It is also worth mentioning the
fact that, if a C∗-algebra A contains a non central idempotent e, then there
exists a continuous mapping r → er from [1,∞[ to the set of idempotents
of A satisfying e‖e‖ = e and ‖er‖ = r for every r ∈ [1,∞[ (Proposition 4.5).

The concluding sections of the paper (Sections 5 and 6) are devoted to
prove the appropriate variants, for JB∗-algebras, of the results previously
obtained for C∗-algebras. We show that, by replacing C∗-algebra with JB∗-
algebra, sp(

√
e∗e)\{0} with the triple spectrum σ(e) of e (for a given idem-

potent e), and M2(C) with the three-dimensional (complex) spin factor C3,
all results reviewed above remain true. As a consequence, a JB-algebra con-
tains a non central idempotent if and only if it contains a copy of either S3

or Cp([1, 2],S3) for any idempotent p ∈ S3 different from 0 and 1, where S3

stands for the three-dimensional real spin factor (Corollary 6.8).
Turning out to the world of C∗-algebras, let us review the fact, proved

in Corollary 4.7, that a C∗-algebra contains a non central self-adjoint idem-
potent if and only if it contains a non normal partial isometry. In the case
of JB∗-algebras, we have been able to prove the “only if” part of the appro-
priate variant of the fact just reviewed (see Corollary 6.6), but have been
unable to prove or disprove the “if” part. We note that, if such an “if” part
were proved, then, in particular, we would be provided with an affirmative
answer to the unsolved question whether every JB∗-algebra containing a
nonzero tripotent must contain a nonzero self-adjoint idempotent.

2. The case of C∗-algebras: the first theorem

Let A be an associative complex algebra. In the case that A has not
a unit, we denote by A1 the algebra obtained by adjoining a unit to A.
Otherwise, we put A1 := A. As usual, for a ∈ A, we define the spectrum of
a (relative to A) as the subset sp(A, a) of C given by

sp(A, a) := {λ ∈ C : a− λ is not invertible in A1},
and we recall that, if A is in fact a Banach algebra, then sp(A, a) is a
nonempty compact subset of C.

From now on, M2(C) will denote the C∗-algebra of all 2 × 2 matrices
with entries in C.

Lemma 2.1. Let e be an idempotent in M2(C) different from 0 and 1, and
put e11 := ‖e‖−2e∗e, e12 := ‖e‖−1e∗, e21 := ‖e‖−1e, and e22 := ‖e‖−2ee∗.
Then, for i, j, k, l ∈ {1, 2}, we have e∗ij = eji, eijekl = eil if j = k, and
eijekl = ‖e‖−1eil if j 6= k.
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Proof. The equality e∗ij = eji is clear. On the other hand, we have
sp(M2(C), e∗e) = {0, ‖e‖2}, and hence (e∗e − ‖e‖2)e∗e = 0, which reads as
e2
11 = e11. Analogously, e2

22 = e22. Now we have

(ee∗e− ‖e‖2e)∗(ee∗e− ‖e‖2e) = (e∗ee∗ − ‖e‖2e∗)(ee∗e− ‖e‖2e)

= (e∗e)3 − 2‖e‖2(e∗e)2 + ‖e‖4e∗e = 0,

and hence ee∗e − ‖e‖2e = 0, which reads as both e21e11 = e21 and
e22e21 = e21. By taking adjoints, we deduce e11e12 = e12 and e12e22 = e12.
The remaining assertions in the lemma are either obvious or easily deducible
from the above computations.

The mapping η : [1,∞[→ M2(C), which is introduced in Lemma 2.2
immediately below, will play a crucial role through the paper.

Lemma 2.2. Let t be in [1,∞[, and let η(t) denote the element of M2(C)
defined by

η(t) :=
1
2

(
1 t +

√
t2 − 1

t−
√

t2 − 1 1

)
.

Then η(t) is an idempotent satisfying ‖η(t)‖ = t. As a consequence, putting
η11(t) := t−2η(t)∗η(t), η12(t) := t−1η(t)∗, η21(t) := t−1η(t), and
η22(t) := t−2η(t)η(t)∗, we have ηij(t)∗ = ηji(t), ηij(t)ηkl(t) = ηil(t) if j = k,
and ηij(t)ηkl(t) = t−1ηil(t) if j 6= k.

Proof. That η(t) is an idempotent in M2(C) is straightforward. More-
over, computing its norm accordingly to the formula in the introduction
of [4], we have ‖η(t)‖ = t. The consequence follows from Lemma 2.1.

Let K be a subset of [1,∞[. We denote by ηK the restriction to K of the
continuous mapping t → η(t) from [1,∞[ to M2(C), given by Lemma 2.2.
Moreover, for i, j ∈ {1, 2}, we denote by ηK

ij the restriction to K of the
continuous mapping t → ηij(t) from [1,∞[ to M2(C), given by that lemma.

Now, let K be a compact subset of [1,∞[. Let u stand for the element
of C(K) defined by u(t) := t for every t ∈ K. We denote by A(K) the
complex Banach ∗-algebra whose vector space is that of all 2 × 2 matrices
with entries in C(K), whose (bilinear) product is determined by the equal-
ities (f [ij])(g[kl]) := (fg)[il] if j = k and (f [ij])(g[kl]) := (u−1fg)[il] if
j 6= k, whose norm is given by ‖(fij)‖ := ‖f11‖ + ‖f12‖ + ‖f21‖ + ‖f22‖,
and whose (conjugate-linear) involution ∗ is determined by (f [ij])∗ := f [ji].
Here, as usual, for f ∈ C(K) and i, j ∈ {1, 2}, f [ij] means the matrix hav-
ing f in the (i, j)-position and 0’s elsewhere. It is useful to see A(K) as a
C(K)-module in the natural manner, namely by defining the product of a
function f ∈ C(K) and a matrix (fij) ∈ A(K) by f(fij) := (ffij). In
this regarding, we straightforwardly realize that A(K) becomes in fact an
algebra over C(K), i.e., the operators of left and right multiplication by
arbitrary elements of A(K) are C(K)-module homomorphisms. Moreover,
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the symbol f [ij] can now be read as the product of the function f ∈ C(K)
and the matrix [ij] ∈ A(K), where, for i, j ∈ {1, 2}, [ij] stands for the ma-
trix having the constant function equal to one in the (i, j)-position and 0’s
elsewhere.

For K as a above, we denote by C(K, M2(C)) the C∗-algebra of all
continuous functions from K to M2(C). We will see C(K, M2(C)) as a
C(K)-module in the natural manner. From now on, u will always stand for
the element of C(K) defined by u(t) := t for every t ∈ K

Proposition 2.3. Let K be a compact subset of [1,∞[ whose maxi-
mum element is greater than 1. Then ηK is a non self-adjoint idempotent
in C(K, M2(C)) satisfying sp(C(K, M2(C)),

√
η∗KηK) \ {0}) = K, and the

mapping F from A(K) to C(K, M2(C)), defined by

F((fij)) :=
∑

i,j∈{1,2}

fijη
K
ij ,

becomes a continuous ∗-homomorphism satisfying F(u[21]) = ηK .

Proof. By the first part of Lemma 2.2, for t ∈ K, η(t) is an idempotent
in M2(C) satisfying ‖η(t)‖ = t, which implies

sp(M2(C),
√

η(t)∗η(t)) \ {0} = {t}.
It follows that ηK is a non self-adjoint idempotent of C(K, M2(C)) satisfying
sp(C(K, M2(C)),

√
η∗KηK) \ {0} = K. On the other hand, the mapping

F : A(K) → C(K, M2(C))

is a ∗-homomorphism if (and only if), for every t ∈ K, the composition of
F with the valuation at t is a ∗-homomorphism from A(K) to M2(C). But
this last fact follows from the definition of the operations on A(K), and the
second part of Lemma 2.2. Finally, both the continuity of F (it is in fact
contractive) and that F(u[21]) = ηK become obvious facts.

Now, we invoke one of the main results in [1], namely the following.

Proposition 2.4. Let A be a C∗-algebra, and let e be a non self-adjoint
idempotent in A. Then K := sp(A,

√
e∗e)\{0} is a compact subset of [1,∞[

whose maximum element (namely ‖e‖) is grater than 1, and there exists a
unique continuous ∗-homomorphism F : A(K) → A such that F (u[21]) = e.
Moreover we have:

(1) The closure in A of the range of F coincides with the C∗-subalgebra
of A generated by e.

(2) F is injective if and only if either 1 does not belong to K or 1 is
an accumulation point of K.

(3) If 1 is an isolated point of K, then ker(F ) consists precisely of those
matrices (fij) ∈ A(K) which vanish at every t ∈ K\{1} and satisfy

f11(1) + f12(1) + f21(1) + f22(1) = 0.
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As an immediate consequence of Propositions 2.3 and 2.4, we obtain the
following.

Corollary 2.5. Let K be a compact subset of [1,∞[ whose maxi-
mum element is greater than 1, and let F : A(K) → C(K, M2(C)) be the
∗-homomorphism given by Proposition 2.3. Then we have:

(1) The closure in C(K, M2(C)) of the range of F coincides with the
C∗-subalgebra of C(K, M2(C)) generated by ηK .

(2) F is injective if and only if either 1 does not belong to K or 1 is
an accumulation point of K.

(3) If 1 is an isolated point of K, then ker(F) consists precisely of those
matrices (fij) ∈ A(K) which vanish at every t ∈ K\{1} and satisfy

f11(1) + f12(1) + f21(1) + f22(1) = 0.

Lemma 2.6. Let X be a complex normed space, let Ω be a Hausdorff
compact topological space, and let f be a function from Ω to C such that
there are continuous mappings α, β : Ω → X satisfying β(t) 6= 0 and
α(t) = f(t)β(t) for every t ∈ Ω. Then f is continuous.

Proof. Put M := max{‖α(t)‖ : t ∈ Ω} and m := min{‖β(t)‖ : t ∈ Ω}.
Then we have m > 0, and hence |f(t)| ≤ m−1M for every t ∈ Ω, so that f
is bounded. Let t be in Ω, and let {tλ} be a net in Ω converging to t. Take
a cluster point z of the net {f(tλ)} in C. Then (z, α(t)) is a cluster point
of the net {(f(tλ), α(tλ))} in C × X, and therefore we have α(t) = zβ(t),
which implies (since β(t) 6= 0) z = f(t). In this way we have shown that
f(t) is the unique cluster point of {f(tλ)} in C. Since {f(tλ)} is bounded,
we deduce that {f(tλ)} converges to f(t).

Lemma 2.7. Let K be a compact subset of ]1,∞[. Then the ∗-homomor-
phism F : A(K) → C(K, M2(C)), given by Proposition 2.3, is surjective.
As a consequence, C(K, M2(C)) is generated by ηK as a C∗-algebra.

Proof. Let us fix t ∈ K. By Lemma 2.2, the linear hull of

{ηij(t) : i, j ∈ {1, 2}}
is a ∗-invariant subalgebra of M2(C). Moreover, since t ∈]1,∞[, such a sub-
algebra is not commutative (indeed, η12(t) does not commute with η21(t)).
If follows that such a subalgebra is the whole algebra M2(C), and, conse-
quently, that {ηij(t) : i, j ∈ {1, 2}} becomes a basis of M2(C).

Let α be in C(K, M2(C)). It follows from the above that, for each t ∈ K,
there are complex numbers f11(t), f12(t), f21(t), f22(t) uniquely determined
by the condition

(2.1) α(t) = f11(t)η11(t) + f12(t)η12(t) + f21(t)η21(t) + f22(t)η22(t).

Moreover, applying again Lemma 2.2, for every t ∈ K we have:
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η11(t)α(t)η11(t) = (f11(t) + t−1f12(t) + t−1f21(t) + t−2f22(t))η11(t),

η12(t)α(t)η12(t) = (t−1f11(t) + t−2f12(t) + f21(t) + t−1f22(t))η12(t),
η21(t)α(t)η21(t) = (t−1f11(t) + f12(t) + t−2f21(t) + t−1f22(t))η21(t),
η22(t)α(t)η22(t) = (t−2f11(t) + t−1f12(t) + t−1f21(t) + f22(t))η22(t).

Since, for i, j ∈ {1, 2}, ηK
ij αηK

ij and ηK
ij are continuous functions on K, and

ηij(t) 6= 0 for every t ∈ K, it follows from Lemma 2.6 that the mappings

t → f11(t) + t−1f12(t) + t−1f21(t) + t−2f22(t),

t → t−1f11(t) + t−2f12(t) + f21(t) + t−1f22(t),
t → t−1f11(t) + f12(t) + t−2f21(t) + t−1f22(t),
t → t−2f11(t) + t−1f12(t) + t−1f21(t) + f22(t)

from K to C are continuous. Since, for t ∈ K we have∣∣∣∣∣∣∣∣
1 t−1 t−1 t−2

t−1 t−2 1 t−1

t−1 1 t−2 t−1

t−2 t−1 t−1 1

∣∣∣∣∣∣∣∣ = t−8

∣∣∣∣∣∣∣∣
t2 t t 1
t 1 t2 t
t t2 1 t
1 t t t2

∣∣∣∣∣∣∣∣ = −t−8(t2 − 1)4 6= 0,

we deduce that, for all i, j ∈ {1, 2}, the function fij : t → fij(t) from K to C
is continuous. Therefore, we can consider the element (fij) of A(K), which,
in view of (2.1), satisfies F((fij)) = α. Since α is arbitrary in C(K, M2(C)),
the surjectivity of F is proved. Now, it follows from Assertion (1) in Corol-
lary 2.5 that C(K, M2(C)) is generated by ηK as a C∗-algebra.

Now we are ready to prove the main result in this section.

Theorem 2.8. Let A be a C∗-algebra, and let e be a non self-adjoint
idempotent in A. Put K := sp(A,

√
e∗e) \ {0} (which, in view of Proposi-

tion 2.4, is a compact subset of [1,∞[ whose maximum element is greater
than 1), and assume that 1 does not belong to K. Then the C∗-subalgebra of
A generated by e is ∗-isomorphic to C(K, M2(C)). More precisely, we have

(1) There exists a unique ∗-homomorphism Φ : C(K, M2(C)) → A such
that Φ(ηK) = e.

(2) Such a ∗-homomorphism is isometric, and its range coincides with
the C∗-subalgebra of A generated by e.

Proof. Let F : A(K) → C(K, M2(C)) and F : A(K) → A be the
∗-homomorphisms given by Propositions 2.3 and 2.4, respectively. By As-
sertion (2) in Corollary 2.5 (respectively, Proposition 2.3) F (respectively, F )
is injective. On the other hand, by the first conclusion in Lemma 2.7, F is
surjective. It follows that Φ := F ◦F−1 is an injective ∗-homomorphism from
C(K, M2(C)) to A satisfying Φ(ηK) = e. As any injective ∗-homomorphism
between C∗-algebras, Φ is isometric, and hence has closed range. Now,
that Φ is the unique ∗-homomorphism from C(K, M2(C)) to A satisfying
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Φ(ηK) = e, as well as that the range of Φ coincides with the C∗-subalgebra
of A generated by e, follows from the fact (given also by Lemma 2.7) that
C(K, M2(C)) is generated by ηK as a C∗-algebra.

3. The case of C∗-algebras: the second theorem

Let A be an associative complex algebra. The quasi-product a ◦ b of two
elements a, b of A is defined by a ◦ b := ab− a− b. An element a ∈ A is said
to be quasi-invertible in A if there exists b ∈ A satisfying a◦ b = b◦a = 0. It
is well-known and easy to see that the element a ∈ A is quasi-invertible in A
if and only if 1 − a is invertible in A1, if and only if there exists a unique
element b ∈ A satisfying a ◦ b = 0.

Lemma 3.1. Let K be a compact subset of [1,∞[ whose maximum el-
ement is greater than 1, and let F : A(K) → C(K, M2(C)) be the ∗-
homomorphism given by Proposition 2.3. Then an element x ∈ A(K) is
quasi-invertible in A(K) if and only if F(x) is quasi-invertible in C(K, M2(C)).

Proof. Let x = (fij) be in A(K). We claim that x is quasi-invertible
in A(K) if and only if λx(t) 6= 0 for every t ∈ K, where λx(t) :=

t2 − 1
t2

(f11(t)f22(t)− f12(t)f21(t))−
1
t
(f12(t) + f21(t))− f11(t)− f22(t) + 1.

Assume that x is quasi-invertible in A(K). Let us fix t ∈ K, and iden-
tify complex-valued continuous functions on {t} with complex numbers.
Then, since the restriction mapping A(K) → A({t}) is a homomorphism,
(fij(t)) is a quasi-invertible element of A({t}), and hence there are complex
numbers g11(t), g12(t), g21(t), g22(t) uniquely determined by the condition
(fij(t)) ◦ (gij(t)) = 0. This means that the linear system in the indetermi-
nates x11, x12, x21, x22 ∈ C

(3.1)


(f11(t) + t−1f12(t)− 1)x11 + (f12(t) + t−1f11(t))x21 = f11(t)
(f11(t) + t−1f12(t)− 1)x12 + (f12(t) + t−1f11(t))x22 = f12(t)
(f21(t) + t−1f22(t))x11 + (f22(t) + t−1f21(t)− 1)x21 = f21(t)
(f21(t) + t−1f22(t))x12 + (f22(t) + t−1f21(t)− 1)x22 = f22(t)

has a unique solution (namely xij = gij(t)), and hence that the principal
determinant of the system (by the way, equal to λx(t)2) is nonzero. Con-
versely, assume that λx(t) 6= 0 for every t ∈ K. Then, for each t ∈ K,
the system (3.1) has a unique solution xij = gij(t), and, since the function
t → λx(t) from K to C is continuous, the functions gij : t → gij(t) from
K to C are continuous. Then we easily realize that y := (gij) ∈ A(K) is
the unique element of A(K) satisfying x ◦ y = 0, which implies that x is
quasi-invertible in A(K). Now, the claim is proved.

On the other hand, F(x) is quasi-invertible in C(K, M2(C)) if and only if
1−F(x) is invertible in C(K, M2(C)), if and only if 1−F(x)(t) is invertible
in M2(C) for every t ∈ K, if and only if det(1 − F(x)(t)) 6= 0 for every
t ∈ K, where det(·) means determinant. But, for t ∈ K, a straightforward
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but tedious computation shows that det(1 − F(x)(t)) = λx(t). Therefore,
F(x) is quasi-invertible in C(K, M2(C)) if and only if λx(t) 6= 0. By invoking
the claim proved in the preceding paragraph, the result follows.

Let K be a compact subset of [1,∞[ with 1 ∈ K, and let p be a self-
adjoint idempotent in M2(C), different from 0 and 1. Then Cp is a self-
adjoint subalgebra of M2(C), and hence

Cp(K, M2(C)) := {α ∈ C(K, M2(C)) : α(1) ∈ Cp}

is a proper C∗-subalgebra of C(K, M2(C)). We note that, in the construc-
tion of the C∗-algebra Cp(K, M2(C)), the choice of the idempotent p is struc-
turally irrelevant. Indeed, if, for i ∈ {1, 2}, pi is a self-adjoint idempotent in
M2(C), different from 0 and 1, then there exists a norm-one element χi in the
Hilbert space C2 such that pi is the operator χ → (χ|χi)χi on C2, and hence,
since there exists a unitary element v ∈ M2(C) with vχ1 = χ2 (by transitiv-
ity of Hilbert spaces), the mapping α → vαv∗ becomes a ∗-automorphism
of C(K, M2(C)) sending Cp1(K, M2(C)) onto Cp2(K, M2(C)). We also note
that, if we take p = η(1), then Cp(K, M2(C)) contains ηK .

Lemma 3.2. Let K be a compact subset of [1,∞[ with 1 ∈ K, and whose
maximum element is greater than 1, and let F : A(K) → C(K, M2(C))
be the ∗-homomorphism given by Proposition 2.3. Then the closure in
C(K, M2(C)) of the range of F coincides with Cη(1)(K, M2(C)). As a con-
sequence, Cη(1)(K, M2(C)) is generated by ηK as a C∗-algebra.

Proof. For x = (fij) in A(K), we have

F(x)(1) = (f11(1) + f12(1) + f21(1) + f22(1))η(1) ∈ Cη(1),

and therefore F(x) lies in Cη(1)(K, M2(C)). This shows that the range of F
(say B) is contained in Cη(1)(K, M2(C)).

To continue our argument, it is useful to identify C(K, M2(C)) with
C(K)⊗M2(C) in the natural manner. Then we have:

(3.2) 2⊗ η(1) = 1⊗
(

1 1
1 1

)
= (1 + u)−1u(ηK

11 + ηK
12 + ηK

21 + ηK
22) ∈ B,

(3.3)
√

u2 − 1⊗
(

0 1
−1 0

)
= u(ηK

21 − ηK
12) ∈ B,

(3.4)
√

u2 − 1⊗
(

1 0
0 −1

)
= u(ηK

22 − ηK
11) ∈ B,

(3.5) (u2 − 1)⊗
(

1 0
0 1

)
= u2(ηK

22 + ηK
11)− u(ηK

12 + ηK
21) ∈ B.

Now, keep in mind that B is a C(K)-submodule of C(K, M2(C)), and de-
note by C1(K) the closed ideal of C(K) consisting of those complex-valued
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continuous functions on K vanishing at 1. It follows from (3.2) that

C(K)⊗
(

1 1
1 1

)
⊆ B,

and, by invoking the Stone-Weierstrass theorem, it follows from (3.3), (3.4),
and (3.5) that

C1(K)⊗
(

0 1
−1 0

)
⊆ B, C1(K)⊗

(
1 0
0 −1

)
⊆ B, C1(K)⊗

(
1 0
0 1

)
⊆ B.

Since {(
1 1
1 1

)
,

(
0 1
−1 0

)
,

(
1 0
0 −1

)
,

(
1 0
0 1

)}
is a basis of M2(C), we deduce that C1(K)⊗M2(C) ⊆ B. Since

Cη(1)(K, M2(C)) = [C⊗ η(1)]⊕ [C1(K)⊗M2(C)],

and C⊗ η(1) ⊆ B (by (3.2)), we obtain Cη(1)(K, M2(C)) ⊆ B. By invoking
the first paragraph in the present proof, we have Cη(1)(K, M2(C)) = B.

Now, it follows from Assertion (1) in Corollary 2.5 that Cη(1)(K, M2(C))
is generated by ηK as a C∗-algebra.

Now we are ready to prove the main result in this section.

Theorem 3.3. Let A be a C∗-algebra, and let e be a non self-adjoint
idempotent in A. Put K := sp(A,

√
e∗e) \ {0} (which, in view of Proposi-

tion 2.4, is a compact subset of [1,∞[ whose maximum element is greater
than 1), and assume that 1 belongs to K. Then the C∗-subalgebra of A gen-
erated by e is ∗-isomorphic to Cp(K, M2(C)) for any self-adjoint idempotent
p ∈ M2(C) different from 0 and 1. More precisely, we have:

(1) There exists a unique ∗-homomorphism Φ : Cη(1)(K, M2(C)) → A
such that Φ(ηK) = e.

(2) Such a ∗-homomorphism is isometric, and its range coincides with
the C∗-subalgebra of A generated by e.

Proof. For every element c in a complex Banach algebra C, put

r(C, c) := max{|λ| : λ ∈ sp(C, c)},
and note that, since

{0} ∪ sp(C, c) = {0} ∪ {λ ∈ C \ {0} : λ−1c /∈ q − inv(C)}
(where q − inv(C) stands por the set of all quasi-invertible elements of C),
we have

(3.6) r(C, c) = max[{0} ∪ {|λ| : λ ∈ C \ {0}, λ−1c /∈ q − inv(C)}].
Now, let F : A(K) → C(K, M2(C)) and F : A(K) → A be the ∗-

homomorphisms given by Propositions 2.3 and 2.4, respectively. Then, for
x ∈ A(K) we have

‖F (x)‖2 = r(A,F (x∗x)) ≤ r(A(K), x∗x),
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and, by keeping in mind Lemma 3.1 and (3.6), we have also

r(A(K), x∗x) = r(C(K, M2(C)),F(x∗x)) = ‖F(x)‖2,

so that the inequality ‖F (x)‖ ≤ ‖F(x)‖ holds. Therefore F(x) → F (x)
(x ∈ A(K)) becomes a (well-defined) continuous ∗-homomorphism from
the range of F to A. Then, by the first conclusion in Lemma 3.2, such a
∗-homomorphism extends by continuity to a ∗-homomorphism

Φ : Cη(1)(K, M2(C)) → A

satisfying Φ ◦ F = F , and hence Φ(ηK) = e. Now, that Φ is the unique
∗-homomorphism from Cη(1)(K, M2(C)) to A satisfying Φ(ηK) = e, as well
as that the range of Φ coincides with the C∗-subalgebra of A generated
by e, follows from the fact (given also by Lemma 3.2) that Cη(1)(K, M2(C))
is generated by ηK as a C∗-algebra.

To conclude the proof, it is enough to show that Φ is injective. Let α be
in ker(Φ). Then, by Lemma 3.2, there exists a sequence xn = (fn

ij) in A(K)
such that F(xn) → α. For n ∈ N and i, j ∈ {1, 2}, define gn

ij ∈ C(K) by

gn
11 := fn

11 + u−1fn
12 + u−1fn

21 + u−2fn
22,

gn
12 := u−1fn

11 + u−2fn
12 + fn

21 + u−1fn
22,

gn
21 := u−1fn

11 + fn
12 + u−2fn

21 + u−1fn
22,

gn
22 := u−2fn

11 + u−1fn
12 + u−1fn

21 + fn
22.

Then we have [ij]xn[ij] = gn
ij [ij]. Now, since the restriction of F to C(K)[ij]

is an isometry (by the proof of Theorem 2.6 of [1]), we deduce

‖gn
ij‖ = ‖gn

ij [ij]‖ = ‖F (gn
ij [ij])‖ = ‖F ([ij]xn[ij])‖ = ‖F ([ij])F (xn)F ([ij])‖

= ‖F ([ij])Φ(F(xn))F ([ij])‖ → ‖F ([ij])Φ(α)F ([ij])‖ = 0.

As a consequence, gn
ij(t) → 0 for every t ∈ K. Since for t ∈ K \{1}, we have∣∣∣∣∣∣∣∣

1 t−1 t−1 t−2

t−1 t−2 1 t−1

t−1 1 t−2 t−1

t−2 t−1 t−1 1

∣∣∣∣∣∣∣∣ = −t−8(t2 − 1)4 6= 0,

it follows from the definition of gn
ij that fn

ij(t) → 0 for every t ∈ K \ {1}.
Now, since for t ∈ K \ {1} we have F(xn)(t) → α(t) and

F(xn)(t) =
∑

i,j∈{1,2}

fn
ij(t)ηij(t) → 0,

for such a t we obtain α(t) = 0. Therefore, if 1 is an accumulation point of
K, then α = 0, as desired. Assume that 1 is an isolated point of K. Then
the function χ : K → C, defined by χ(1) := 1 and χ(t) := 0 for t ∈ K \ {1},
is continuous, and, since there exists λ ∈ C such that α(1) = λη(1), for such
a λ we have α = λχηK

21 = F(λχ[21]). Therefore

0 = Φ(α) = Φ(F(λχ[21])) = F (λχ[21])),
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which, in view of Assertion (3) in Proposition 2.4, implies λ = 0, and hence
α = 0.

4. The case of C∗-algebras: some consequences

In this section, we combine Theorems 2.8 and 3.3 to derive some attrac-
tive consequences. We begin with an easy corollary to Theorem 3.3.

Corollary 4.1. Let A be a C∗-algebra generated by a non self-adjoint
idempotent e, and put K := sp(A,

√
e∗e) \ {0}. If 1 is an isolated point of

the compact set K, then A is ∗-isomorphic to the C∗-algebra

C× C(K \ {1},M2(C)).

Proof. If 1 belongs to K, then, for α in Cη(1)(K, M2(C)), there exists a
unique complex number λ(α) such that α(1) = λ(α)η(1), and the mapping

α → (λ(α), α|K\{1})

becomes an injective ∗-homomorphism from Cη(1)(K, M2(C)) to

C× Cb(K \ {1},M2(C)),

where Cb(K \ {1},M2(C)) stands for the C∗-algebra of all bounded contin-
uous function from K \ {1} to M2(C). Moreover, if 1 is in fact an isolated
point of K, then we have that

Cb(K \ {1},M2(C)) = C(K \ {1},M2(C)),

and that the above ∗-homomorphism is surjective. Finally, apply Theo-
rem 3.3.

Corollary 4.2. Let A be a C∗-algebra generated by a non self-adjoint
idempotent e, and put K := sp(A,

√
e∗e) \ {0}. Then A has a unit if and

only if either 1 does not belong to K or 1 is an isolated point of K.

Proof. In view of Theorems 2.8 and 3.3, and Corollary 4.1, it is enough
to show that, if 1 is an accumulation point of K, then Cη(1)(K, M2(C)) has
not a unit. Assume that 1 belongs to K. We claim that, given
t0 ∈ K \ {0}, the valuation at t0 (as a mapping from Cη(1)(K, M2(C))
to M2(C)) is surjective. Indeed, if a = (λij) is an arbitrary element of
M2(C), then, for i, j ∈ {1, 2}, there exists fij ∈ C(K) such that fij(1) = 0
and fij(t0) = λij , and hence the element α of C(K, M2(C)), defined by
α(t) := (fij(t)) for every t ∈ K, lies in Cη(1)(K, M2(C)) and satisfies
α(t0) = a. Assume in addition that Cη(1)(K, M2(C)) has a unit 1. Then, by
the claim just proved, for every t ∈ K \ {1}, 1(t) must be equal to the unit
of M2(C). Now, if 1 is in fact an accumulation point of K, then 1(1) is the
unit of M2(C), which is not possible because 1(1) is a complex multiple of
η(1).
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Corollary 4.3. Let A be a C∗-algebra. Then A has a non self-adjoint
idempotent (if and) only if it contains (as a C∗-subalgebra) a copy of ei-
ther M2(C) or Cp([1, 2],M2(C)) for any self-adjoint idempotent p ∈ M2(C)
different from 0 and 1.

Proof. Assume that A has a non self-adjoint idempotent e, and put
K := sp(A,

√
e∗e)\{0}. We may suppose that A is generated by e. If 1 does

not belong to K, then, by Theorem 2.8, A contains a copy of M2(C). As-
sume that 1 belongs to K, and that K is disconnected. Take a clopen proper
subset U of K with 1 ∈ U . Then, arguing as in the proof of Corollary 4.1,
we realize that A is ∗-isomorphic to Cp(U,M2(C)) × C(K \ U,M2(C)), for
some self-adjoint idempotent p ∈ M2(C) different from 0 and 1, and hence
it contains a copy of M2(C). Finally, assume that 1 belongs to K, and
that K is connected. Then we have K = [1, ‖e‖], and therefore, by Theo-
rem 3.3, A is isomorphic to Cp([1, ‖e‖],M2(C)), for some p as above. But,
taking a homeomorphism φ from [1, ‖e‖] onto [1, 2] with φ(1) = 1, φ in-
duces a ∗-isomorphism from C([1, ‖e‖],M2(C)) onto C([1, 2],M2(C)) send-
ing Cp([1, ‖e‖],M2(C)) onto Cp([1, 2],M2(C)).

We Remark that Cp([1, 2],M2(C)) does not contain any copy of M2(C).
To realize this, we argue by contradiction, and hence we assume that
Cp([1, 2],M2(C)) contains a copy (say B) of M2(C). For α ∈ Cp([1, 2],M2(C)),
let λ(α) stand for the unique complex number satisfying α(1) = λ(α)p.
Then, since λ : Cp([1, 2],M2(C)) → C is a homomorphism, by the simplicity
of B we have λ(B) = 0. Therefore B is contained in the ideal (say M)
of C([1, 2],M2(C)) consisting of those continuous functions from [1, 2] to
M2(C) vanishing at 1. Now, since (clearly) M has no nonzero idempotent,
and the unit of B is a nonzero idempotent of M , the contradiction is clear.

Remark 4.4. In relation to Corollary 4.3 above, it is worth mentioning
that a C∗-algebra contains a non self-adjoint idempotent if and only if it
contains a non central self-adjoint idempotent [1]. By the way, the “only if”
part of the result in [1] just quoted follows easily from Corollary 4.3, whereas
the “if part” is a consequence of Proposition 4.5 immediately below.

In relation to Proposition 4.5 immediately below, we note that non self-
adjoint idempotents in a C∗-algebra are non central.

Proposition 4.5. Let A be a C∗-algebra containing a non central idem-
potent e. Then there exists a continuous mapping r → er from [1,∞[ to the
set of idempotents of A satisfying e‖e‖ = e and ‖er‖ = r for every r ∈ [1,∞[.

Proof. First assume that e is not self-adjoint. Then, by Theorems 2.8
and 3.3, we may assume that A is of the form C(K, M2(C)) or Cη(1)(K, M2(C)),
where, in the first case, K is a compact subset of ]1,∞[ and, in the second
case, K is a compact subset of [1,∞[ whose maximum element is greater
than 1 and such that 1 ∈ K. In any case, put ρ := max K > 1. Let r be in
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[1,∞[, and let er denote the element of C(K, M2(C)) defined by

er(t) := η(1 +
(r − 1)(t− 1)

ρ− 1
)

for every t ∈ K. Noticing that, in the case that 1 belongs to K, er lies in
Cη(1)(K, M2(C)), it turns out that, in any case er is an element of A. More-
over, keeping in mind Lemma 2.2, we easily realize that er is an idempotent,
and that ‖er‖ = r. On the other hand, since ‖ηK‖ = ρ, we have e‖ηK‖ = ηK .
Now it only remains to show that the mapping r → er is continuous. Fix
r ∈ [1,∞[ and ε > 0, and take δ > 0 such that ‖η(s)− η(r)‖ < ε whenever
s is in [1,∞[ with |s− r| < δ. Then, for s ∈ [1,∞[ with |s− r| < δ, we have
for every t ∈ K,∣∣∣∣[1 +

(s− 1)(t− 1)
ρ− 1

]
−

[
1 +

(r − 1)(t− 1)
ρ− 1

]∣∣∣∣ =
|s− r|(t− 1)

ρ− 1
≤ |s− r| < δ,

so ‖es(t)− er(t)‖ < ε for every t ∈ K, and so ‖es − er‖ ≤ ε.
Now assume that e is self-adjoint. Since e is non central, we may choose

a self-adjoint element a ∈ A with ea−ae 6= 0. Then the mapping D : A → A
defined by D(b) := ba− ab for every b ∈ A becomes a continuous derivation
satisfying D(e) 6= 0 and D(b∗) = −D(b)∗ for every b ∈ A. Therefore, for
s ∈ R, exp(sD) is a continuous automorphism of A satisfying

[exp(sD)(b)]∗ = exp(−sD)(b∗)

for every b ∈ A, and consequently

g(s) := exp(sD)(e)

is a nonzero idempotent in A, and we have

(4.1) g(s)∗ = g(−s).

Now, consider the continuous mapping f : R → [1,∞[ defined by

f(s) := ‖g(s)‖.
By (4.1), we have

(4.2) f(−s) = f(s)

for every s ∈ R. Let r, s be in R. Then, keeping in mind (4.1), (4.2), and
that exp( s−r

2 D) is an automorphism of A, we have

f(
r + s

2
)2 = ‖g(

r + s

2
)‖2 = ‖g(

r + s

2
)∗g(

r + s

2
)‖ = r(A, g(

r + s

2
)∗g(

r + s

2
))

= r(A, g(−r + s

2
)g(

r + s

2
)) = r[A, exp(

s− r

2
D)(g(−r + s

2
)g(

r + s

2
))]

= r[A, [exp(
s− r

2
D)(g(−r + s

2
))][exp(

s− r

2
D)g((

r + s

2
))]]

= r(A, g(−r)g(s)) ≤ ‖g(−r)‖‖g(s)‖ = f(−r)f(s) = f(r)f(s),
and therefore

f(
r + s

2
) ≤

√
f(r)f(s) ≤ f(r) + f(s)

2
.
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In this way we have shown that f is convex. Assume that f(r) = 1 for
some r ∈]0,∞[. Then, by (4.2) and the convexity of f , we have f(s) = 1 for
every s ∈ [−r, r]. Therefore, for s ∈ [−r, r], the idempotent g(s) has norm
equal to 1, so it is self-adjoint, and so, by (4.1) the equality g(s) = g(−s)
holds. Since g is differentiable at 0 with g′(0) = D(e), the above implies
D(e) = 0, which is a contradiction. Thus, f(r) > 1 for every r ∈]0,∞[.
Now, let 0 < r < s. Noticing that f(0) = 1 and that then, by the convexity
of f , the mapping t → f(t)−1

t is incresing, we have

0 < f(r)− 1 <
s

r
(f(r)− 1) ≤ f(s)− 1.

In this way, we have shown that f|[0,∞[ is strictly increasing and non bounded.
As a consequence, the range of f|[0,∞[ is [1,∞[, and the inverse mapping
h : [1,∞[→ [0,∞[ is continuous. Now, for r ∈ [1,∞[, let er be the idem-
potent of A defined by er := g(h(r)). Then, clearly, the mapping r → er is
continuous, and we have e1 = e. Moreover, by the definition of g and h, we
have also that ‖er‖ = f(h(r)) = r for every r ∈ [1,∞[.

We recall that partial isometries in a C∗-algebra A are defined as those
elements a ∈ A satisfying aa∗a = a.

Lemma 4.6. Let A be a C∗-algebra, and let a be a partial isometry in A
such that both a∗a and aa∗ lie in the centre of A. Then a is normal.

Proof. For x, y ∈ A, put [x, y] := xy− yx. Since a∗a and aa∗ lie in the
centre of A, we have [a∗a, a] = 0 and [aa∗, a] = 0, which reads as a∗a2 = a
and a2a∗ = a, respectively. The two las equalities, together with the one
aa∗a = a, and those obtained by taking adjoints, imply [[a, a∗], a] = 0. By
Proposition 18.13 of [2], we have r(A, [a, a∗]) = 0, and hence, since [a, a∗] is
self-adjoint, we actually have [a, a∗] = 0.

Let A denote the C∗-algebra of all bounded linear operators on an
infinite-dimensional complex Hilbert space H, let b : H → H be any non
surjective linear isometry, and put a := b (respectively a := b∗). Then a is
a non normal partial isometry in A such that a∗a (respectively, aa∗) lies in
the centre of A.

Corollary 4.7. Let A be a C∗-algebra. Then the following assertions
are equivalent:

(1) A contains a non central self-adjoint idempotent.
(2) There exists a non normal partial isometry a ∈ A such that a be-

longs to a2Aa2.
(3) A contains a non normal partial isometry.

Proof. (1) ⇒ (2).- By the assumption (1), Remark 4.4, and Theo-
rems 2.8 and 3.3, we may assume that A is of the form C(K, M2(C)) or
Cη(1)(K, M2(C)), where, in the first case, K is a compact subset of ]1,∞[
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and, in the second case, K is a compact subset of [1,∞[ whose maximum el-
ement is greater than 1 and such that 1 ∈ K. In any case, by Lemma 2.2, ηK

21

is a non normal partial isometry in A, and we have ηK
21 = (ηK

21)
2(u2ηK

12)(η
K
21)

2.
(2) ⇒ (3).- This is clear.
(3) ⇒ (1).- Let a be the partial isometry whose existence is assumed

in (3). Then, keeping in mind that both a∗a and aa∗ are self-adjoint idem-
potents, it follows from Lemma 4.6 that A contains a non central self-adjoint
idempotent.

Put A := M2(C) and a :=
(

0 1
0 0

)
. Then a is a non normal partial

isometry in A, which does not belong to a2Aa2.

5. The case of JB∗-algebras: the main results

Over fields of characteristic different from two, Jordan algebras are de-
fined as those (possibly non associative) commutative algebras satisfying the
identity (x · y) · x2 = x · (y · x2). For a and b in a Jordan algebra, we put
Ua(b) := 2a · (a ·b)−a2 ·b. Let A be an associative algebra. Then A becomes
a Jordan algebra under the Jordan product defined by

a · b :=
1
2
(ab + ba).

Moreover, for all a, b ∈ A we have

(5.1) Ua(b) := 2a · (a · b)− a2 · b = aba.

Jordan subalgebras of A are, by definition, those subspaces J of A satisfying
J · J ⊆ J .

Let K be a compact subset of [1,∞[. Then the linear mapping
Θ : A(K) → A(K), determined by

Θ(f [ij]) := f [ij] if i 6= j, Θ(f [11]) := f [22], Θ(f [22]) := f [11]

for every f ∈ C(K), becomes an isometric involutive ∗-antiautomorphism
of A(K). Therefore, the set of fixed elements for Θ is a closed ∗-invariant
Jordan subalgebra of A(K), and hence a Banach-Jordan ∗-algebra. Such
a Banach-Jordan ∗-algebra will be denoted by J (K). Note that elements
of J (K) are precisely those matrices (fij) ∈ A(K) satisfying f11 = f22, or
equivalently, those elements of A(K) of the form f([11]+[22])+g[12]+h[21]
with f, g, h ∈ C(K).

We take from [1] the following.

Lemma 5.1. Let K be a compact subset of [1,∞[. Then J (K) is gener-
ated by u[21] as a Jordan-Banach ∗-algebra.

JB∗-algebras are defined as those Banach-Jordan ∗-algebras J satisfying
‖Ua(a∗)‖ = ‖a‖3 for every a ∈ J . By keeping in mind (5.1), it is easy to
realize that C∗-algebras are JB∗-algebras under their Jordan products.
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The mapping

θ :
(

λ11 λ12

λ21 λ22

)
→

(
λ22 λ12

λ21 λ11

)
is an involutive ∗-antiautomorphism of M2(C). Therefore, the set of fixed el-
ements for θ is a ∗-invariant Jordan subalgebra of the C∗-algebra M2(C), and
hence a JB∗-algebra. Such a JB∗-algebra is called the three-dimensional
spin factor, and is denoted by C3.

Let K be a compact subset of [1,∞[. We denote by C(K, C3) the JB∗-
algebra of all continuous functions from K to C3. We will identify C(K, C3)
with the JB∗-subalgebra of C(K, M2(C)) consisting of those continuous
functions from K to M2(C) whose range is contained in C3.

Lemma 5.2. Let K be a compact subset of [1,∞[ whose maximum ele-
ment is greater than 1, let F : A(K) → C(K, M2(C)) be the ∗-homomorphism
given by Proposition 2.3, and let G denote the restriction to J (K) of F .
Then G is a ∗-homomorphism from J (K) to the JB∗-algebra underlying
C(K, M2(C)), and the closure in C(K, M2(C)) of the range of G coincides
with the JB∗-subalgebra of C(K, C3) generated by ηK .

Proof. Noticing that G(u[21]) = ηK , and keeping in mind Lemma 5.1,
it is enough to show that the range of G is contained in C(K, C3). But
this follows from the fact that ηK actually belongs to C(K, C3), and a new
application of Lemma 5.1.

Lemma 5.3. Let K be a compact subset of ]1,∞[. Then C(K, C3) is
generated by ηK as a JB∗-algebra.

Proof. Identifying C(K, M2(C)) with C(K) ⊗ M2(C) in the natural
manner, the operator θ̂ := 1⊗ θ becomes an involutive ∗-antiautomorphism
of C(K, M2(C)), whose set of fixed points is precisely C(K, C3). Moreover,
since A(K) is generated by u[21] as a Banach ∗-algebra (by Lemma 2.5
of [1]), and F(Θ(u[21])) = θ̂(F(u[21])), we have F ◦Θ = θ̂◦F . On the other
hand, by Lemma 2.7, F : A(K) → C(K, M2(C)) is surjective. Since J (K)
is the set of fixed points for Θ, and C(K, C3) is the set of fixed points for θ̂,
and G is the restriction to J (K) of F , it follows that G (as a mapping from
J (K) → C(K, C3)) is surjective. Now, apply Lemma 5.2.

We recall that a JB∗-triple is a complex Banach space X endowed with
a continuous triple product {·, ·, ·} : X × X × X → X which is linear and
symmetric in the outer variables, and conjugate-linear in the middle variable,
and satisfies:

(1) For all x in X, the mapping y → {x,x,y} from X to X is a hermitian
operator on X and has nonnegative spectrum.

(2) The main identity

{a, b, {x, y, z}} = {{a, b, x}, y, z} − {x, {b, a, y, }, z}+ {x, y, {a, b, z}}
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holds for all a, b, x, y, z in X.
(3) ‖{x, x, x}‖ = ‖x‖3 for every x in X.

Concerning Condition (1) above, we also recall that a bounded linear opera-
tor T on a complex Banach space X is said to be hermitian if ‖ exp(irT )‖ = 1
for every r in R. Examples of JB∗-triples are all C∗-algebras under the triple
product {·, ·, ·} determined by {a, b, a} := ab∗a.

Let X be a JB∗-triple, and let x be in X. It is well-known that there is
a unique couple (K, φ), where K is a compact subset of [0,∞[ with 0 ∈ K,
and φ is an isometric triple homomorphism from C0(K) to X, such that
the range of φ coincides with the JB∗-subtriple of X generated by x, and
φ(v) = x, where v stands for the mapping t → t from K to C (see [8, 4.8],
[9, 1.15], and [5]). The locally compact subset K \{0} of ]0,∞[ is called the
triple spectrum of x, and will be denoted by σ(x). We note that σ(x) does
not change when we replace X with any JB∗-subtriple of X containing x.

We take from [1] the following.

Lemma 5.4. Let A be a C∗-algebra, and let a be in A such that
0 ∈ sp(a∗a). Then we have σ(a) = sp(A,

√
a∗a) \ {0}.

As in the particular case of C∗-algebras, already commented, JB∗-
algebras are JB∗-triples under the triple product {·, ·, ·} determined by
{a, b, a} := Ua(b∗) (see [3] and [13]). For later reference, we remark that, if
a JB∗-algebra J has a unit 1, then for a, b ∈ J we have

(5.2) a · b = {a,1, b} and a∗ = {1, a,1}.

Theorem 5.5. Let J be a JB∗-algebra, and let e be a non self-adjoint
idempotent in J . Put K := σ(e), and assume that 1 does not belong to K.
Then K is a compact subset of ]1,∞[, and the JB∗-subalgebra of J generated
by e is ∗-isomorphic to C(K, C3). More precisely, we have:

(1) There exists a unique ∗-homomorphism Ψ : C(K, C3) → J such
that Ψ(ηK) = e.

(2) Such a ∗-homomorphism is isometric, and its range coincides with
the JB∗-subalgebra of J generated by e.

Proof. Let Je denote the JB∗-subalgebra of J generated by e. By [13]
and [12], there exists a C∗-algebra A containing Je as a JB∗-subalgebra.
Therefore, by Lemma 5.4 and Proposition 2.4, K := σ(e) is a compact sub-
set of ]1,∞[. By Theorem 2.8, there exists an isometric ∗-homomorphism
Φ : C(K, M2(C)) → A such that Φ(ηK) = e. Let Ψ stands for the restric-
tion of Φ to C(K, C3). Then, clearly, Ψ is an isometric ∗-homomorphism
from C(K, C3) to the JB∗-algebra underlying A, which satisfies Ψ(ηK) = e.
Noticing that the JB∗-subalgebras of A and J generated by e coincide, it
follows from Lemma 5.3 that the range of Ψ is Je. This last fact allows us
to see Ψ as a ∗-homomorphisms from C(K, C3) to J . That Ψ is the unique
(automatically continuous [12]) ∗-homomorphism from C(K, C3) to J with
Ψ(ηK) = e follows from a new application of Lemma 5.3.
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Let K be a compact subset of [1,∞[ with 1 ∈ K, and let p be a self-
adjoint idempotent in C3, different from 0 and 1. Then

Cp(K, C3) := {α ∈ C(K, C3) : α(1) ∈ Cp}

is a proper JB∗-subalgebra of C(K, C3). As in the case of the C∗-algebra
Cp(K, M2(C)), the JB∗-algebra Cp(K, C3) does not depend structurally on p.
Indeed, if, for i ∈ {1, 2}, pi is a self-adjoint idempotent in M2(C), different
from 0 and 1, then {pi, 1− pi} is a “frame of tripotents” in the simple JB∗-
triple underlying C3, and therefore, by Theorem 5.9 of [10], there exists a
triple automorphism φ of C3 satisfying φ(p1) = p2 and φ(1 − p1) = 1 − p2.
This implies that φ(1) = 1, and then, by (5.2), that φ is actually an algebra
∗-automorphism. Such a ∗-automorphism of C3 induces a ∗-automorphism
of C(K, C3) sending Cp1(K, C3) onto Cp2(K, C3)

Lemma 5.6. Let K be a compact subset of [1,∞[ with 1 ∈ K, and whose
maximum element is greater than 1. Then Cη(1)(K, C3) is generated by ηK

as a JB∗-algebra.

Proof. Argue as in the proof of Lemma 5.3, invoking Lemma 3.2 in-
stead of Lemma 2.7.

By invoking Theorem 3.3 and Lemma 5.6 instead of Theorem 2.8 and
Lemma 5.3, respectively, the proof of the following theorem is similar to
that of Theorem 5.5, and hence is omitted.

Theorem 5.7. Let J be a JB∗-algebra, and let e be a non self-adjoint
idempotent in J . Put K := σ(e), and assume that 1 belongs to K. Then
K is a compact subset of [1,∞[ whose maximum element is greater than 1,
and the JB∗-subalgebra of J generated by e is ∗-isomorphic to Cp(K, C3) for
any self-adjoint idempotent p ∈ C3 different from 0 and 1. More precisely,
we have:

(1) There exists a unique ∗-homomorphism Ψ : Cη(1)(K, C3) → J such
that Ψ(ηK) = e.

(2) Such a ∗-homomorphism is isometric, and its range coincides with
the JB∗-subalgebra of J generated by e.

6. The case of JB∗-algebras: some consequences

In this section, we deal with the main corollaries to Theorems 5.5 and 5.7.

Corollary 6.1. Let J be a JB∗-algebra generated by a non self-adjoint
idempotent e, and put K := σ(e). If 1 is an isolated point of the compact
set K, then J is ∗-isomorphic to the JB∗-algebra

C× C(K \ {1}, C3).

Proof. Argue as in the proof of Corollary 4.1, invoking Theorem 5.7
instead of Theorem 3.3.
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Corollary 6.2. Let J be a JB∗-algebra generated by a non self-adjoint
idempotent e, and put K := σ(e). Then J has a unit if and only if either 1
does not belong to K or 1 is an isolated point of K.

Proof. Argue as in the proof of Corollary 4.2, invoking Theorems 5.5
and 5.7, and Corollary 6.1 instead of Theorems 2.8 and 3.3, and Corol-
lary 4.1, respectively.

Corollary 6.3. Let J be a JB∗-algebra. Then J has a non self-adjoint
idempotent (if and) only if it contains (as a JB∗-subalgebra) a copy of either
C3 or Cp([1, 2], C3) for any self-adjoint idempotent p ∈ C3 different from 0
and 1.

Proof. Argue as in the proof of Corollary 4.3, invoking Theorems 5.5
and 5.7, and Corollary 6.1 instead of Theorems 2.8 and 3.3, and Corol-
lary 4.1, respectively.

Arguing as in the comment following Corollary 4.3, one can realize that
the JB∗-algebra Cp([1, 2], C3) does not contain any copy of C3.

Let J be a Jordan algebra. For a, b, c ∈ J , we put

[a, b, c] := (a · b) · c− a · (b · c).
The centre of J is defined as the set of those elements a ∈ J such that
[a, J, J ] = 0. It is well-known and easy to see that central elements a of J
satisfy [J, J, a] = [J, a, J ] = 0.

Remark 6.4. In relation to Corollary 6.3 above, it is worth mentioning
that a JB∗-algebra contains a non self-adjoint idempotent if and only if it
contains a non central self-adjoint idempotent [1]. Actually, the “only if”
part of the result in [1] just quoted follows easily from Corollary 6.3, whereas
the “if part” is a consequence of Proposition 6.5 immediately below.

Proposition 6.5. Let J be a JB∗-algebra containing a non central
idempotent e. Then there exists a continuous mapping r → er from [1,∞[
to the set of idempotents of J satisfying e‖e‖ = e and ‖er‖ = r for every
r ∈ [1,∞[.

Proof. First assume that e is not self-adjoint. Then, invoking Theo-
rems 5.5 and 5.7 instead of Theorems 2.8 and 3.3, respectively, and keeping
in mind that, for every t ∈ [1,∞[, η(t) lies in C3, the first part of the proof
of Proposition 4.5 works verbatim.

Now assume that e is self-adjoint. Since e is non central, we may apply
Lemma 2.5.5 of [6] to find c ∈ J such that Ue(c) 6= e · c or, equivalently,
[e, e, c] 6= 0. Moreover, clearly, such an element c can be chosen self-adjoint.
There is no loss of generality in assuming that J is generated by {e, c} as
a JB∗-algebra. Then, by [12], there exists a C∗-algebra A containing J
as a JB∗-subalgebra. Put a := i(ec − ce) ∈ A, and consider the mapping
D : A → A defined by D(b) := ba− ab for every b ∈ A. Then D becomes a
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continuous derivation of A satisfying D(b∗) = −D(b)∗ for every b ∈ A (since
a is self-adjoint). Moreover, for every b ∈ J we have

(6.1) D(b) = 4i[e, b, c] ∈ J,

and consequently D(e) 6= 0. By the second part of the proof of Proposi-
tion 4.5, there exists a continuous function h : [1,∞[→ R such that the
continuous mapping e → er := exp(h(r)D)(e), from [1,∞[ to the set of
idempotents of A, satisfies e1 = e and ‖er‖ = r for every r ∈ [1,∞[. There-
fore, the proof is concluded by realizing that, for every r ∈ [1,∞[, er lies
in J . But this follows from the fact that, by (6.1), J is invariant under D.

An element a in a JB∗-algebra J is said to be normal if the equality
[a, a, a∗] = 0 is satisfied. In the case that the JB∗-algebra J is a JB∗-
subalgebra of a given C∗-algebra A, the equality [a, a, a∗] = 0 in J reads
in A as [[a, a∗], a] = 0, and hence, by arguing as in the conclusion of the
proof of Lemma 4.4, it is equivalent to the usual normality in A, namely
[a, a∗] = 0.

An element x in a JB∗-triple is said to be a tripotent if the equality
{x, x, x} = x holds. Thus, the tripotents in a C∗-algebra are precisely the
partial isometries, and, more generally, the tripotents in a JB∗-algebra are
precisely those elements a satisfying Ua(a∗) = a.

Corollary 6.6. Let J be a JB∗-algebra. Then the following assertions
are equivalent:

(1) J contains a non central self-adjoint idempotent.
(2) There exists a non normal tripotent a ∈ J such that a belongs to

Ua2(J).

Proof. (1) ⇒ (2).- By the assumption (1), Remark 6.4, and Theo-
rems 5.5 and 5.7, we may assume that J is of the form C(K, C3) or Cη(1)(K, C3),
where, in the first case, K is a compact subset of ]1,∞[ and, in the second
case, K is a compact subset of [1,∞[ whose maximum element is greater
than 1 and such that 1 ∈ K. In any case, by Lemma 2.2, ηK

21 is a non normal
partial isometry in J , and we have ηK

21 = U(ηK
21)2(u

2ηK
12), with u2ηK

12 ∈ J .
(2) ⇒ (1).- Assume that Assertion (2) holds. We may suppose that J

is generated by a as a JB∗-algebra. Since a belongs to Ua2(J), Lemma 1 of
[11] applies, giving the existence of an idempotent e ∈ J such that

Ua(J) = Ue(J).

Note that, by [7, pages 118-119], Ue(J) is a subalgebra of J , and that e is a
unit for such a subalgebra. Assume that e is self-adjoint. Then Ue(J) is a
JB∗-subalgebra of J , and hence, since

a = Ua(a∗) ∈ Ua(J) = Ue(J),

and J is generated by a as a JB∗-algebra, we deduce that Ua(J) = J and
that e is a unit for J . It follows from [7, Theorem 13 in page 52] that there
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exists a unique element b ∈ J (called the “inverse” of a) such that a = Ua(b),
and that such a b satisfies [a, x, b] = 0 for every x ∈ J . Therefore we have
that b = a∗, and then that [a, a, a∗] = 0, contrarily to the assumption that
a is not normal. In this way we have shown that the idempotent e is not
self-adjoint, and the proof is concluded by applying Remark 6.4.

Comparing Corollary 6.6 with Corollary 4.7, one is tempted to conjecture
that the equivalent assertions (1) and (2) in Corollary 6.6 are also equivalent
to the following:

(3) J contains a non normal tripotent.
As a matter of fact, we have been unable to prove or disprove the conjec-
ture just formulated. Actually, an eventual verification of such a conjecture
would provide in particular an affirmative answer to the following unsolved
question.

Problem 6.7. Let J be a JB∗-algebra containing a nonzero tripotent.
Does J contain a nonzero self-adjoint idempotent?

We conclude the paper with an application to the theory of JB-algebras.
JB-algebras are defined as those Banach-Jordan real algebras J satisfying
‖a‖2 ≤ ‖a2 + b2‖ for all a, b ∈ J . The basic reference for JB-algebras
is [6]. By Proposition 3.8.2 of [6], the self-adjoint part of every JB∗-algebra
becomes a JB-algebra. In particular, the self-adjoint part of the three-
dimensional (complex) spin factor C3 is a JB-algebra, which is called the
three-dimensional real spin factor, and is denoted by S3. We denote by
C([1, 2],S3) the JB-algebra of all continuous functions from [1, 2] to S3.
Moreover, given an idempotent p ∈ S3 different from 0 and 1, we denote
by Cp([1, 2],S3) the JB-subalgebra of C([1, 2],S3) consisting of all elements
α ∈ C([1, 2],S3) such that α(1) belongs to Rp.

Now, we have the following.

Corollary 6.8. Let J be a JB-algebra. Then J has a non central
idempotent (if and) only if it contains (as a JB-subalgebra) a copy of either
S3 or Cp([1, 2],S3) for any idempotent p ∈ S3 different from 0 and 1.

Proof. By [12] and [13], there exists a JB∗-algebra whose self-adjoint
part is equal to J . Now apply Remark 6.4 and Corollary 6.3.
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