
BIG POINTS IN C∗-ALGEBRAS AND JB∗-TRIPLES

JULIO BECERRA GUERRERO AND A. RODRÍGUEZ-PALACIOS

1. Introduction

Throughout this paper K will mean the field of real or complex numbers.
Given a normed space X over K , SX , BX , and X∗ will denote the unit
sphere, the closed unit ball, and the (topological) dual, respectively, of X,
and GX will stand for the group of all surjective linear isometries from X to
X. We say that an element u in a normed space X is a big point of X if
co(GX(u)) = BX , where co means closed convex hull. Note that big points
of X lie in SX (unless X = 0). The normed space X is said to be convex-
transitive if all elements in SX are big points of X. The space X is said to
be transitive (respectively, almost transitive) if, for every (equivalently,
some) element u in SX , we have GX(u) = SX (respectively, GX(u) = SX).
The notions just defined provide us with a chain of implications

transitivity ⇒ almost transitivity ⇒ convex transitivity ,

none of which is reversible.
The literature dealing with transitivity conditions on normed spaces is

linked to the Banach-Mazur “rotation” problem [2] of whether every transi-
tive separable Banach space is linearly isometric to `2. The reader is referred
to the book of S. Rolewicz [49] and the survey papers of F. Cabello [19] and
the authors [11] for a comprehensive view of known results and fundamental
questions in relation to this matter.

In [10] we showed that the existence in a Banach space X of a big point
u such that

η(X,u) := lim sup
‖h‖→0

‖u+ h‖+ ‖u− h‖ − 2
‖h‖

< 2

implies that X is superreflexive, and that, if in fact the norm of X is Fréchet
differentiable at the big point u (equivalently, η(X,u) = 0), then X is in
addition almost transitive. These results suggest that some other “smooth”
behaviours of a Banach space at their big points could imply relevant prop-
erties of isomorphic or isometric type. In the present paper we choose as
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“smooth” behaviour of a Banach space X at a point u ∈ SX the one that
σ(X,u) is “small”. Here σ(X,u) is defined by the equality

σ(X,u) := sup{‖ψ −ΠX(ψ)‖ : ψ ∈ D(X∗∗, u)},

where, for any normed space Y , D(Y, · ) denotes the duality mapping of
Y , and ΠY : Y ∗∗∗ → Y ∗ stands for the Dixmier projection. The constant
σ(X,u) is implicitly considered in [34], where it is shown that, if X is a
Banach space, and if there is 0 ≤ k < 1 such that σ(X,u) ≤ k for every
u ∈ SX , then X is Asplund and no proper closed subspace of X∗ is norming
for X.

In Theorem 2.5 we prove that, if X is a Banach space, and if there is a
big point u of X with σ(X,u) < 1 and such that the norm of X is strongly
subdifferentiable at u, then X is Asplund and no proper closed subspace
of X∗ is norming for X. The strong subdifferentiability of the norm of a
Banach space was introduced in [36], becoming the natural succedaneus of
the Fréchet differentiability of the norm when smoothness is not required.
We note that not much can be expected from the existence in a Banach space
X of a big point u such that the norm of X is strongly subdifferentiable at
u. Indeed, for every unital C∗-algebra X, the unit u of X is a big point of X
(by the Russo-Dye theorem [15, Theorem 30.2]) such that the norm of X is
strongly subdifferentiable at u (by [1, Theorem 2.7] and [48, Proposition 3]).
We apply Theorem 2.5 and the tools in its proof, together with some results
taken from [8] and [10], to obtain in Proposition 2.9 new characterizations
of almost transitive superreflexive Banach spaces. Such spaces were first
considered by C. Finet [30] (see also [26, Corollary IV.5.7]), who proves that
they are uniformly smooth and uniformly convex, and have been revisited
recently by F. Cabello [21] and the authors (in references [8] and [10] just
quoted). Theorem 2.5 will also become one of the crucial tools in the proof
of one of the main results in the paper (namely, Theorem 4.12).

Section 3 is devoted to collect other results on Banach spaces, which
will be useful in the proof of the two main theorems of the paper (namely,
Theorems 4.1 and 4.12). We include also a consequence of one of such
auxiliary results, which will be not applied later, but has its own interest.
Thus, among other things, Corollary 3.5 asserts that, if X is a complex
Banach space having a big point u with σ(X,u) < 1

e , then the commutator
of GX (in the algebra L(X) of all bounded linear operators on X) is a
reflexive Banach space. We note that there exist unital C∗-algebras X such
that the commutator of GX contains `∞ [12, Example 3.1].

Section 4 contains the main results of the paper. Centering in a first in-
stance in the setting of C∗-algebras, we prove that, ifX is either a C∗-algebra
or the predual of a von Neumann algebra, and if there is a big point u of X
with σ(X,u) < 2 and such that the norm of X is strongly subdifferentiable
at u, then X is finite-dimensional, and the big points of X are precisely
the extreme points of BX (Corollaries 4.6 and 4.13). In the case that X is
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a C∗-algebra, the assumption that the norm of X is strongly subdifferen-
tiable at u is superabundant, and the remaining requirements on X actu-
ally characterize finite-dimensional C∗-algebras among all C∗-algebras (see
again Corollary 4.6). The situation for preduals of von Neumann algebras is
rather different. Indeed, although the norm of every finite-dimensional Ba-
nach space is strongly subdifferentiable at every point of its unit sphere, the
dual of a finite-dimensional C∗-algebra X has big points if and only if X is a
finite `∞-sum of copies of L(H) for some finite-dimensional complex Hilbert
space (see again Corollary 4.13). The results on C∗-algebras and preduals of
von Neumann algebras just reviewed follow almost straightforwardly from
more general ones on JB∗-triples and preduals of JBW ∗-triples (Theorems
4.1 and 4.12, respectively). The formulations of such more general results
are very similar to those already reviewed in the C∗-algebra setting. Indeed,
if X is either a JB∗-triple or the predual of a JBW ∗-triple, and if there
is a big point u of X with σ(X,u) < 2 and such that the norm of X is
strongly subdifferentiable at u, then the Banach space of X is isomorphic
to a Hilbert space, and the big points of X are precisely the extreme points
of BX . As above, in the case that X is a JB∗-triple, the assumption that
the norm of X is strongly subdifferentiable at u is superabundant, and the
remaining requirements on X characterize the JB∗-triples whose Banach
spaces are isomorphic to Hilbert spaces, whereas in the case that X is the
predual of a JBW ∗-triple, the requirements on X characterize the preduals
of those JB∗-triples which are finite `∞-sums of copies of a simple JB∗-triple
of “finite rank”. We note that, in the theory of JB∗-triples, the property
of finite rank [42] play a roll similar to that of finite-dimensionality in the
C∗-algebra setting. Moreover, we point out the well-known fact that a JB∗-
triple X is of finite rank if and only if the Banach space of X is isomorphic
to a Hilbert space, if and only if all single-generated subtriples of X are
finite-dimensional.

In the concluding section (Section 5) we apply Theorems 4.1 and 4.12 just
reviewed to obtain new characterizations of complex Hilbert spaces among
JB∗-triples and preduals of JBW ∗-triples. We prove that a complex Banach
space X is a Hilbert space if (and only if) it is either a JB∗-triple or the
predual of a JBW ∗-triple, and there exists a big point u in X such that
η(X,u) < 2 (Theorem 5.2). For other results in the same line the reader is
referred to [51], [9] and [11].

2. A theorem for Banach spaces

Let X be a normed space over K. For u in BX , we define the set D(X,u)
of all states of X relative to u by

D(X,u) := {f ∈ BX∗ : f(u) = 1},
which is nonempty if and only if u belongs to SX . If this is the case, then
D(X,u) is a nonempty w∗-closed face of BX∗ . The set valued function
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v → D(X, v) on SX is called the duality mapping of X. We denote by
ΠX the canonical projection from X∗∗∗ onto X∗, and, for u in SX , we put

σ(X,u) := sup{‖ψ −ΠX(ψ)‖ : ψ ∈ D(X∗∗, u)}.
Given a non negative number k, we denote by σk(X) the set of those elements
v in SX such that σ(X, v) ≤ k. We recall that a subspace P of X∗ is called
a norming subspace for X if for every x in X we have

‖x‖ = sup{|f(x)| : f ∈ SP },
and that X is said to be nicely smooth if X∗ contains no proper closed
norming subspace. Concerning nicely smooth Banach spaces, the reader is
referred to [35] and [3].

Most results in this section are inspired by the Giles-Gregory-Sims paper
[34]. In particular, the proof of Proposition 2.1 immediately below follows
the lines of that of [34, Theorem 3.3]. There it is shown that, if X is a
Banach space, and if there is 0 ≤ k < 1 such that σk(X) = SX , then X is
nicely smooth and Asplund.

Proposition 2.1. Let X be a Banach space over K such that there is
0 ≤ k < 1 in such a way that the interior of σk(X) relative to SX con-
tains big points of X. Then X is nicely smooth.

Proof. Assume that there exists a proper closed norming subspace of X∗

(say P ). By Riesz’s lemma, there exists h in SX∗ satisfying ‖h + P‖ > k.
Now, let u and δ be a big point of X and a positive number, respectively,
such that x belongs to σk(X) whenever x ∈ SX and ‖x− u‖ ≤ δ. Since u is
a big point of X, the set

{T ∗(f) : f ∈ D(X,x) , x ∈ SX , ‖x− u‖ ≤ δ , T ∈ GX }
is dense in SX∗ [11, Lemma 5.7]. It follows that there exist T ∈ GX ,
x ∈ σk(X), and f ∈ D(X,x) satisfying ‖T ∗(f) + P‖ > k. Then, putting
Q := (T ∗)−1(P ), we have ‖f+Q‖ > k, and hence the Hahn-Banach theorem
provides us with some α in SX∗∗ such that α(Q) = 0 and |α(f)| > k. Since
Q is a norming subspace of X∗, we have ‖y‖ ≤ ‖y+β‖ for every y in X and
every β in the polar Q◦ of Q in X∗∗. This implies that X ∩Q◦ = 0 and that
the unique linear extension of f to X ⊕Q◦ which vanishes on Q◦ is in fact
a Hahn-Banach extension (say g). Now, take a Hahn-Banach extension of
g to X∗∗ (say ψ). Since α belongs to Q◦, the equality ψ(α) = 0 holds. On
the other hand, since ψ extends f , we have ΠX(ψ) = f . It follows

‖ψ −ΠX(ψ)‖ ≥ |(ψ −ΠX(ψ))(α)| = |f(α)| > k.

Since ψ belongs to D(X∗∗, x), and x belongs to σk(X), the inequality
‖ψ −ΠX(ψ)‖ > k just obtained becomes a contradiction.

Let X be a Banach space fulfilling the requirements in Proposition 2.1.
As a consequence of that proposition, we are provided with the relevant
isomorphic property that dens(X∗) = dens(X), where dens(.) means density
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character. In what follows we will prove that all requirements on X are
inherited by certain closed separable subspaces ofX, the abundance of which
is enough to deduce thatX becomes an Asplund space. The following lemma
is a variant of [20, Theorem 1.2].

Lemma 2.2. Let X be a normed space over K , M be a separable subspace
of X, and u a big point of X. Then there exists a closed separable subspace
N of X containing Ku+M and such that u becomes a big point of N .

Proof. Put Y1 := Ku+M , and choose a countable dense subset D1 of SY1 .
For d in D1 and m in N, there exists a finite subset Gd,m of GX such that
the distance from d to the convex hull of Gd,m(u) is less than 1

m . Denoting
by G1 the subgroup of GX generated by

⋃
(d,m)∈D1×N Gd,m , G1 is a countable

set and we have D1 ⊆ co(G1(u)). Now, denote by Y2 the closed linear hull
of G1(Y1), and choose a countable dense subset D2 of SY2 containing D1.
Minor changes in the above argument allow us to show the existence of a
countable subgroup G2 of GX containing G1 and satisfying D2 ⊆ co(G2(u)).
Proceeding in such a way we obtain increasing sequences {Yn}, {Dn}, and
{Gn} such that, for every n in N, Yn is a separable subspace of X containing
Ku + M , Dn is a dense subset of SYn , Gn is a subgroup of GX satisfying
Gn(Yn) ⊆ Yn+1, and the inclusion Dn ⊆ co(Gn(u)) holds. Now, the desired
subspace N is nothing but the closure of

⋃
n∈N Yn in X. Indeed, putting

G∞ :=
⋃
n∈N Gn, G∞ becomes a subgroup of GX , N is G∞-invariant (so that

G∞ can be regarded as a subgroup of GN ), and we have co(G∞(u)) = BN .

For background on Asplund spaces the reader is referred to [16] and [26].

Proposition 2.3. Let X be a Banach space over K such that there is
0 ≤ k < 1 in such a way that the interior of σk(X) relative to SX con-
tains big points of X. Then X is Asplund.

Proof. Let M be a separable subspace of X. We are going to show that M∗

is separable. Let u be a big point ofX in the interior of σk(X) relative to SX .
By Lemma 2.2, there exists a closed separable subspace N of X containing
Ku+M and such that u is a big point of N . On the other hand, as remarked
in the proof of [34, Theorem 3.3], we have σk(X) ∩N ⊆ σk(N). Now u is a
big point of N in the interior of σk(N) relative to SN , so that Proposition
2.1 applies with N instead of X to obtain that dens(N∗) = dens(N). Thus
N∗ (and hence M∗) is separable.

Let X be a normed space over K , and let u be in SX . For x in X, the
mapping α→ ‖u+ αx‖ from R to R is convex, and hence there exists

τ(u, x) := lim
α→0+

‖u+ αx‖ − 1
α

.

It is well-known that, for x in X, the equality

τ(u, x) = max{<e(λ) : λ ∈ V (X,u, x)}
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holds, where V (X,u, x) (called the numerical range of x relative to (X,u))
is defined by

V (X,u, x) := {f(x) : f ∈ D(X,u)}
(see for instance [28, Theorem V.9.5]). We say that the norm of X is
strongly subdifferentiable at u if

lim
α→0+

‖u+ αx‖ − 1
α

= τ(u, x) uniformly for x ∈ BX .

The reader is referred to [36], [1], [31], and [13] for a comprehensive view
of the usefulness of the strong subdifferentiability of the norm in the theory
of Banach spaces. We note that the Fréchet differentiability of the norm of
X at u is nothing but the strong subdifferentiability of the norm of X at u
together with the smoothness of X at u.

Lemma 2.4. Let X be Banach space over K , and let u be in SX such
that the norm of X is strongly subdifferentiable at u. Then the mapping
x→ σ(X,x) from SX to R is upper semicontinuous at u.

Proof. Let ε be a positive number. By [36, Corollary 4.4] and [34, Corollary
2.1], there exists δ > 0 such that the inclusion

D(X∗∗, α) ⊆ D(X∗∗, u) +
ε

3
BX∗∗∗

holds whenever α is in SX∗∗ with ‖α − u‖ < δ. Let x be in SX such that
‖x − u‖ < δ. Given ψ in D(X∗∗, x), there exists ϕ in D(X∗∗, u) satisfying
‖ψ − ϕ‖ ≤ ε

3 , and therefore we have

‖ψ −ΠX(ψ)‖ = ‖ψ − ϕ−ΠX(ψ − ϕ) + ϕ−ΠX(ϕ)‖ ≤ 2ε
3

+ σ(X,u).

Since ψ is arbitrary in D(X∗∗, x), we obtain σ(X,x) < ε+ σ(X,u).

According to Lemma 2.4, if X is a Banach space, if u is a norm-one
element of X, and if the norm of X is strongly subdifferentiable at u,
then u lies in the interior of σk(X) relative to SX for every real number
k > σ(X,u). Therefore Theorem 2.5 immediately below follows from Propo-
sitions 2.1 and 2.3.

Theorem 2.5. Let X be a Banach space over K . Assume that there exists
a big point u of X satisfying σ(X,u) < 1 and such that the norm of X is
strongly subdifferentiable at u. Then X is nicely smooth and Asplund.

Let X be a normed space, and let u be a norm-one element in X. We
denote by δ(X,u) the diameter of D(X,u). Since σ(X,u) ≤ δ(X∗∗, u), the
next corollary follows straightforwardly from Propositions 2.1 and 2.3.

Corollary 2.6. Let X be a Banach space over K. Assume that there is
0 ≤ k < 1 such that the interior of the set {u ∈ SX : δ(X∗∗, u) ≤ k} relative
to SX contains big points of X. Then X is nicely smooth and Asplund.
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Let X be a normed space, let u be in SX , and let τ be a vector space
topology on X∗. Following [34], we say that the duality mapping of X
is upper semicontinuous (n− τ) at u if for every τ -neighborhood of zero
(say B) in X∗ there exists a norm-neighborhood of u (say C) in SX such that
D(X,x) ⊆ D(X,u) + B whenever x belongs to C. Denote by w and n the
weak and norm topologies on X∗, respectively. Corollary 4.4 of [36], applied
in the proof of Lemma 2.4, asserts that the strong subdifferentiability of
the norm of X at u is equivalent to the upper semicontinuity (n − n) of
the duality mapping of X at u, and hence implies the upper semicontinuity
(n − w) of the duality mapping of X at u. On the other hand, if X is
complete, then the upper semicontinuity (n− w) of the duality mapping of
X at u is equivalent to the fact that D(X,u) is dense in D(X∗∗, u) for the
w∗-topology of X∗∗∗ [36, Theorem 3.1], which implies δ(X∗∗, u) = δ(X,u)
and, consequently σ(X,u) ≤ δ(X,u).

Now, let X be a Banach space such that there exists a big point u of X in
such a way that the norm of X is strongly subdifferentiable at u. It follows
from Theorem 2.5 and the above comments that, if δ(X,u) < 1, then X
is nicely smooth and Asplund. Actually, a better result holds. Indeed, X
is superreflexive whenever δ(X,u) < 2 (see Corollary 2.8 below). Through
Lemma 2.7 which follows, this result is germinally contained in [10].

For any norm-one element u in a normed space X, we define the rough-
ness of X at u, η(X,u), by

η(X,u) := lim sup
‖h‖→0

‖u+ h‖+ ‖u− h‖ − 2
‖h‖

.

The absence of roughness of X at u (i.e., η(X,u) = 0) is nothing but the
Fréchet differentiability of the norm of X at u [26, Lemma I.1.10].

Lemma 2.7. Let X be a normed space over K , and u a norm-one element
of X. Then δ(X,u) ≤ η(X,u). If in addition the norm of X is strongly
subdifferentiable at u, then we have δ(X,u) = η(X,u).

Proof. We may assume that K = R. Let Γ denote the mapping

h→ ‖u+ h‖+ ‖u− h‖ − 2
‖h‖

from X \ {0} into R. For x in SX we have

max{λ : λ ∈ V (X,u, x)} −min{µ : µ ∈ V (X,u, x)}

= lim
α→0+

‖u+ αx‖+ ‖u− αx‖ − 2
α

,

and hence

max{λ : λ ∈ V (X,u, x)} −min{µ : µ ∈ V (X,u, x)}

becomes a cluster point for Γ when ‖h‖ → 0. Since

δ(X,u) = sup{max{λ : λ ∈ V (X,u, x)}−min{µ : µ ∈ V (X,u, x)} : x ∈ SX},
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we deduce that δ(X,u) is also a cluster point for Γ when ‖h‖ → 0. Therefore
we obtain δ(X,u) ≤ lim sup‖h‖→0 Γ(h) = η(X,u).

Now suppose that the norm of X is strongly subdifferentiable at u. Let
ε > 0. We can find ρ > 0 such that

‖u+ αx‖ − 1
α

< τ(u, x) +
ε

2
whenever x is in BX and 0 < α < ρ. Therefore, for 0 < ‖h‖ < ρ we have

Γ(h) =
‖u+ h‖+ ‖u− h‖ − 2

‖h‖
< τ(u,

h

‖h‖
) + τ(u,− h

‖h‖
) + ε

= max{λ : λ ∈ V (X,u,
h

‖h‖
)}−min{µ : µ ∈ V (X,u,

h

‖h‖
)}+ε ≤ δ(X,u)+ε.

The above shows δ(X,u) ≥ lim sup‖h‖→0 Γ(h) = η(X,u).

It is proved in [10] that, if X is a Banach space, and if there exists a big
point u of X such that η(X,u) < 2, then X is superreflexive. Together with
Lemma 2.7 above, this yields the following corollary.

Corollary 2.8. Let X be a Banach space over K . Assume that there exists
a big point u of X satisfying δ(X,u) < 2 and such that the norm of X is
strongly subdifferentiable at u. Then X is superreflexive.

From now on, J will denote the class of almost transitive super-
reflexive Banach spaces. This class is reasonably large (see for example
[8, Remark 4.3]). A systematic study of the class J has been first made by C.
Finet [30] (see also [26, Corollary IV.5.7]). She proves that every member of
J is uniformly smooth and uniformly convex. Recently, the class J has been
revisited by F. Cabello [21] and the authors (see [8] and [10]). According to
[8, Corollary 3.3], members of J are nothing but convex-transitive Asplund
spaces. The results in [30] and [8] just quoted, together with Proposition
2.3, Theorem 2.5, Corollaries 2.6 and 2.8, and the comments after Corollary
2.6 directly yield some new characterizations of members of J , which we
list in the following proposition.

Proposition 2.9. Let X be a Banach space over K . Each of the follow-
ing conditions, added to the convex transitivity of X, characterizes X as a
member of J .

1. There exists 0 ≤ k < 1 such that σk(X) has nonempty interior relative
to SX .

2. There is a norm-one element u in X satisfying σ(X,u) < 1 and such
that the norm of X is strongly subdifferentiable at u.

3. There exists 0 ≤ k < 1 such that the set of those elements u in SX
satisfying δ(X∗∗, u) ≤ k has nonempty interior relative to SX .

4. There exists 0 ≤ k < 1 such that the set of those elements u in SX
such that the duality mapping of X is upper semicontinuous (n − w)
at u and δ(X,u) ≤ k has nonempty interior relative to SX .
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5. There is a norm-one element u in X satisfying δ(X,u) < 2 and such
that the norm of X is strongly subdifferentiable at u.

Of course, suitable strengthenings of Conditions 1 to 5, added to the
convex transitivity of a Banach space X, also characterize X as a member
of J . For instance, a convex transitive Banach space X lies in J if (and only
if) σ0(X) has nonempty interior relative to SX , if (and only if) σ0(X) = SX
(i.e. D(X,u) = D(X∗∗, u) for every norm-one element u of X). In fact, the
last characterization follows straightforwardly from [34] and [8]. Note that
non-reflexive Banach spaces X satisfying σ0(X) = SX do exist. Indeed,
take X equal to c0, or the space of all compact operators on a Hilbert
space, or (more generally) any nontrivial “M -embedded” Banach space (see
Lemma 3.1 below). Another consequence of Proposition 2.9 is that a convex-
transitive Banach space X lies in J if (and only if) there is a norm-one
element u in X such that the norm of X is Fréchet differentiable at u.
However, as commented in Section 1, a better result holds. Indeed, a Banach
space X is a member of J if (and only if) there exists a big point u of X
such that the norm of X is Fréchet differentiable at u [10]. In relation
to Condition 4 in Proposition 2.9, it is worth mentioning that a convex-
transitive Banach space X lies in J if (and only if) the duality mapping of
X is upper semicontinuous (n − w) at every element of SX . This follows
from [23] and [8].

3. Other auxiliary results

Let X be a Banach space over K. An L-projection on X is a linear
projection (say π) on X satisfying

‖x‖ = ‖π(x)‖+ ‖x− π(x)‖

for every x ∈ X. A subspace M of X is said to be an L-summand of
X if it is the range of an L-projection on X, and an M-ideal of X if
M◦ (the polar of M in X∗) is an L-summand of X∗. X is said to be L-
embedded (respectively, M-embedded) whenever X is an L-summand
(respectively, an M -ideal) of X∗∗. According to [37, Proposition III.1.2], X
is M -embedded if and only if ΠX is an L-projection on X∗∗∗. Consequently,
if X is M -embedded, then X∗ is L-embedded.

Lemma 3.1. Let X be a Banach space over K, and let u be in SX . If X∗

is L-embedded, then either σ(X,u) = 0 or σ(X,u) = 2. If actually X is
M -embedded, then σ(X,u) = 0.

Proof. Assume that X∗ is L-embedded and that σ(X,u) 6= 0. Then X∗ is
the range of an L-projection π on X∗∗∗, and there exists ψ ∈ D(X∗∗, u)\X∗.
Thus we have

1 = <e[π(ψ)(u)] + <e[(1− π)(ψ)(u)] ≤ ‖π(ψ)‖+ ‖(1− π)(ψ)‖ = 1,
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so <e[(1 − π)(ψ)(u)] = ‖(1 − π)(ψ)‖, and so φ := (1−π)(ψ)
‖(1−π)(ψ)‖ belongs to

D(X∗∗, u). Moreover, since φ belongs to ker(π), and ΠX(φ) belongs to
π(X∗∗∗), we have

‖φ−ΠX(φ)‖ = ‖φ‖+ ‖ΠX(φ)‖ = 2,

and hence σ(X,u) = 2.
Now assume that X is M -embedded. Let ψ be in D(X∗∗, u). Then, since

ΠX is an L-projection on X∗∗∗, we have

‖(1−ΠX)(ψ)‖ = 1− ‖ΠX(ψ)‖ ≤ 1− |ΠX(ψ)(u)| = 1− ψ(u) = 0.

Since ψ is arbitrary in D(X∗∗, u), we deduce σ(X,u) = 0.

Let X be a normed space over K, and let u be in SX . For x in X, the
numerical radius of x relative to (X,u), denoted by v(X,u, x), is defined
by the equality

v(X,u, x) := sup{|λ| : λ ∈ V (X,u, x)}.

The numerical index of (X,u), denoted by n(X,u), is the number

n(X,u) := max{r ≥ 0 : r‖x‖ ≤ v(X,u, x) for all x in X}.

Lemma 3.2. Let X be a Banach space over K, and let u be in SX . Then
we have ‖1−ΠX‖n(X,u) ≤ σ(X,u).

Proof. Let (x∗∗, x∗∗∗) be in X∗∗ × BX∗∗∗ . Since n(X∗∗, u) = n(X,u) [46,
Lemma 4.8], we have

n(X,u)|x∗∗∗(x∗∗)| ≤ v(X∗∗, u, x∗∗).

Since x∗∗ is arbitrary inX∗∗, it follows from [46, Theorem 3.1] that n(X,u)x∗∗∗

belongs to the norm closure of the absolutely convex hull of D(X∗∗, u).
Therefore, since x∗∗∗ is arbitrary in BX∗∗∗ , for every bounded linear opera-
tor F : X∗∗∗ → X∗∗∗ we have

n(X,u)‖F‖ ≤ sup{‖F (ψ)‖ : ψ ∈ D(X∗∗, u)}.

Now the result follows by taking F = 1−ΠX .

Corollary 3.3. Let X be a Banach space over K, and let u be in SX . If
σ(X,u) < 2n(X,u), then X does not contain an isomorphic copy of `1. If
actually σ(X,u) < n(X,u), then X is reflexive.

Proof. If σ(X,u) < 2n(X,u), then from Lemma 3.2 we deduce that
‖1−ΠX‖ < 2, and therefore, by [22, Proposition 2], X does not contain an
isomorphic copy of `1. If σ(X,u) < n(X,u), then again from Lemma 3.2 we
deduce that ‖1−ΠX‖ < 1, so ΠX = 1, and so X is reflexive.

Corollary 3.4. Let X denote the real or complex space `1, and let u be any
element in the canonical basis of X. Then σ(X,u) = 2.
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Proof. From the fact that Ku is an L-summand of X we easily deduce that
n(X,u) = 1. Now apply Corollary 3.3

The next corollary will not be applied in the remaining part of this paper,
but has its own interest. It follows the line of [12, Theorem 3.2], where it
is shown that, if X is a complex normed space having a big point u with
δ(X,u) <

√
3
e , then Com(GX) is equal to CIX . Here Com(GX) stands for the

set of those bounded linear operators on X which commute with all elements
of GX , and IX denotes the identity mapping on X. For any normed space
X, define the normed space numerical index, N(X), of X by N(X) :=
n(L(X), IX). The arguments in the proof of [12, Theorem 3.2] actually
show that Com(GX) = CIX whenever X is a real (respectively, complex)
normed space having a big point u with δ(X,u) < 2N(X) (respectively,
δ(X,u) <

√
3N(X)). The original formulation of [12, Theorem 3.2] quoted

above follows from the refinement just pointed out and the Bohnenblust-
Karlin theorem [14, Theorem 4.1] that N(X) ≥ 1

e when X is a complex
normed space.

Corollary 3.5. Let X be a Banach space over K having a big point u. Then
we have:

(a) If σ(X,u) < 2N(X), then Com(GX) does not contain an isomorphic
copy of `1.

(b) If σ(X,u) < N(X), then Com(GX) is reflexive.
(c) If K = C, and if σ(X,u) < 2

e , then Com(GX) does not contain an
isomorphic copy of `1.

(d) If K = C, and if σ(X,u) < 1
e , then Com(GX) is reflexive.

(e) If X is M -embedded, and if N(X) > 0, then Com(GX) is reflexive.
(f) If K = C, and if X is M -embedded, then Com(GX) is reflexive.

Proof. We have clearly

N(X) = n(L(X), IX) ≤ n(Com(GX), IX).

On the other hand, for F ∈ Com(GX), the set {x ∈ X : ‖F (x)‖ ≤ ‖F (u)‖}
is closed, convex, and GX -invariant, so that the bigness of u gives ‖F‖ =
‖F (u)‖. Therefore the mapping F → F (u) from Com(GX) to X is a linear
isometry sending IX into u, and hence we have

σ(Com(GX), IX) = σ(Com(GX)(u), u) ≤ σ(X,u).

Now, (a) and (b) follow from Corollary 3.3, whereas (c) and (d) follow from
(a) and (b), respectively, and the Bohnenblust-Karlin theorem. Finally,
keeping in mind Lemma 3.1, (e) and (f) follow from (b) and (d), respectively.

The following lemma is known in the case τ = n (see [31, Theorem 1.2
and Proposition 3.1]).
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Lemma 3.6. Let X be a Banach space over K, let u, v be in SX such that
D(X,u) = D(X, v), and let τ be a vector space topology on X∗. If the
duality mapping of X is upper semicontinuous (n− τ) at u, then the duality
mapping of X is upper semicontinuous (n− τ) at v.

Proof. Assume that the duality mapping of X is upper semicontinuous
(n − τ) at u but not at v. Then, by [34, Theorem 2.1], there exists a
τ -neighborhood N of zero in X∗ such that for every n ∈ N we can find
fn ∈ BX∗ satisfying

(3.1) <e(fn(v)) >
n

n+ 1
and

(3.2) fn /∈ D(X, v) +N,

and there exists 0 < δ < 1 such that

(3.3) {g ∈ BX∗ : <e(g(u)) > δ} ⊆ D(X,u) +N.

Take a cluster point f to the sequence {fn} in the w∗-topology of X∗. Then,
by (3.1), we have f ∈ D(X, v) = D(X,u), so 1 = f(u) is a cluster point
of {<e(fn(u))}, and so there is m ∈ N with <e(fm(u)) > δ. By (3.3), fm
belongs to D(X,u) +N . But, applying again that D(X,u) = D(X, v), this
contradicts (3.2).

In Corollaries 3.7 and 3.8 which follow we emphasize the cases τ = n
and τ = w of Lemma 3.6, respectively, adding some peculiar information
for such cases. We recall that strong subdifferentiability of the norm of a
normed space X at a point u ∈ SX is nothing but the upper semicontinuity
(n− n) of the duality mapping of X at u [36, Corollary 4.4]

Corollary 3.7. Let X be a Banach space over K, and let u, v be in SX such
that D(X,u) = D(X, v). If the norm of X is strongly subdifferentiable at u,
then the norm of X is strongly subdifferentiable at v. If in addition u is a
big point of X, then v is also a big point of X.

Proof. Assume that the norm of X is strongly subdifferentiable at u and v,
and that u is a big point of X. Then, by the equality D(X,u) = D(X, v)
and the equivalence 2 ⇐⇒ 6 in [6, Corollary 3.6], v is a big point of X

Corollary 3.8. Let X be a Banach space over K, and let u, v be in SX such
that D(X,u) = D(X, v). If the duality mapping of X is upper semicontin-
uous (n − w) at u, then the duality mapping of X is upper semicontinuous
(n− w) at v, and we have σ(X,u) = σ(X, v).

Proof. We recall that, since X is complete, the upper semicontinuity (n−w)
of the duality mapping of X at a point x ∈ SX is equivalent to the fact that
D(X,x) is dense in D(X∗∗, x) for the w∗-topology of X∗∗∗ [34, Theorem 3.1].
Therefore, if the duality mapping of X is upper semicontinuous (n− w) at
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u and v, then, by the assumption D(X,u) = D(X, v), we have D(X∗∗, u) =
D(X∗∗, v), which implies σ(X,u) = σ(X, v).

Corollary 3.9. Let X be a Banach space over K, and let u, v be in SX such
that D(X,u) = D(X, v). If σ(X,u) = 0, then also σ(X, v) = 0.

Proof. Assume that σ(X,u) = 0. Then we have D(X∗∗, u) = D(X,u), and
hence, by Theorem 3.1 of [34] just applied in the proof of Corollary 3.8, the
duality mapping of X is upper semicontinuous at u. Now apply Corollary
3.8.

4. The main results

We recall that a JB∗-triple is a complex Banach space X with a continu-
ous triple product {·, ·, ·} : X×X×X → X which is linear and symmetric in
the outer variables, and conjugate-linear in the middle variable, and satisfies:

1. For all x in X, the mapping y → {x, x, y} from X to X is a hermitian
operator on X and has nonnegative spectrum.

2. The main identity

{a, b, {x, y, z}} = {{a, b, x}, y, z} − {x, {b, a, y}, z}+ {x, y, {a, b, z}}
holds for all a, b, x, y, z in X.

3. ‖ {x, x, x} ‖=‖ x ‖3 for every x in X.
Concerning Condition 1 above, we also recall that a bounded linear operator
T on a complex Banach space X is said to be hermitian if exp(irT ) belongs
to GX for every r in R.
JB∗-triples are of capital importance in the study of bounded symmetric

domains in complex Banach spaces. Indeed, open balls in JB∗-triples are
bounded symmetric domains, and every symmetric domain in a complex
Banach space is biholomorphically equivalent to the open unit ball of a
suitable JB∗-triple (see [41] and [43]). Examples of JB∗-triples are all C∗

algebras under the triple product

(4.1) {x, y, z} :=
1
2
(xy∗z + zy∗x),

the spaces L(H1,H2) (bounded linear operators) for arbitrary complex Hilbert
spaces H1 and H2 (with triple product formally defined as in (4.1)), and the
so-called spin factors. These are constructed from an arbitrary complex
Hilbert space (H, (·|·)) of hilbertian dimension ≥ 3, by taking a conjugate-
linear involutive isometry σ on H, and then by defining the triple product
and the norm by

{x, y, z} := (x|y)z + (z|y)x− (x|σ(z))σ(y)

and
‖x‖2 := (x|x) +

√
(x|x)2 − |(x|σ(x))|2,
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respectively, for all x, y, z in H. Other examples can be obtained by noticing
that the class of JB∗-triples is closed under `∞− and c0-sums.

Our first main result reads as follows.

Theorem 4.1. Let X be a JB∗-triple. Then the following conditions are
equivalent:

1. There exists a big point v of X such that σ(X, v) < 2.
2. The Banach space of X is isomorphic to a Hilbert space.
3. X is M -embedded and has big points.

Moreover, if the above conditions are fulfilled, then big points of X, denting
points of BX , and extreme points of BX coincide.

The proof of Theorem 4.1 involves a big amount of background on JB∗-
triples, a part of which is being recalled before formally attacking such a
proof. First of all, we recall that linear mappings preserving triple products
between JB∗-triples are called triple homomorphisms, and that triple
isomorphisms (i.e., bijective triple homomorphisms) between JB∗-triples are
nothing but surjective linear isometries [43].

Let X be a JB∗-triple. A subtriple (respectively, triple ideal) of J
is a subspace M of J such that {MMM} ⊆ M (respectively, {MJJ} +
{JMJ} ⊆ M). We say that X is simple (respectively, topologically
simple) if there are no triple ideals (respectively, closed triple ideals) of X
others than {0} and X. Now let x be in X, and denote by Xx the closed
subtriple of X generated by X. It is well-known that there is a unique couple
(Sx, φx), where Sx is a locally compact subset of ]0,∞[ such that Sx∪{0} is
compact, and φx is a triple isomorphism fromXx onto the C∗-algebra C0(Sx)
(of all complex-valued continuous functions on Sx vanishing at infinity), such
that φx(x) is the inclusion mapping Sx ↪→ C (see [41, 4.8], [43, 1.15], and
[32]). Following [17], we say that the JB∗-triple X is elementary if it is
of one of the following types: K(H1,H2) (compact operators) for complex
Hilbert spaces H1 and H2, {x ∈ K(H) : x = −θx∗θ} for a complex Hilbert
space H and a conjugation θ on H, {x ∈ K(H) : x = θx∗θ} for H and θ as
above, a spin factor, the JB∗-triple consisting of all 1× 2 matrices over the
complex Cayley numbers, or the JB∗-triple consisting of all hermitian 3× 3
matrices over the complex Cayley numbers. An element x of X is said to be
weakly compact if the conjugate-linear operator {x, ·, x} is weakly compact,
and the JB∗-triple X is called weakly compact whenever every element
of X is weakly compact.

Weakly compact JB∗-triples are well-understood thanks to the results
in [18]. For instance, elementary JB∗-triples are nothing but topologically
simple weakly compact JB∗-triples. Actually, keeping in mind [5, Theorem
3.2], the following characterizations of weakly compact JB∗-triples follow
from [18].

Lemma 4.2. Let X be a JB∗ triple. Then the following assertions are
equivalent:
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1. X is weakly compact
2. Sx is discrete for every x ∈ X.
3. X is M -embedded.
4. X is the c0-sum of a suitable family of elementary JB∗-triples.

Let X be a JB∗-triple. An element u of X is said to be a tripotent if
{u, u, u} = u. Given a tripotent u inX, we haveX = X0(u)⊕X1(u)⊕X2(u),
where, for j ∈ {0, 1, 2}, Xj(u) denotes the eigenspace of the operator {u, u, ·}
corresponding to the eigenvalue 1

2j. Following [42], the tripotent u is said
to be maximal (respectively, minimal) if X0(u) = 0 (respectively, if u 6= 0
and X2(u) = Cu). Two tripotents u, v in X are said to be orthogonal if
{u, v,X} = {v, u,X} = 0. The results of [18], together with [32, Lemma
2.11] and [4, p. 270], lead to the next lemma.

Lemma 4.3. Let X be a weakly compact JB∗-triple. Then we have:
1. There exists a canonical bijection from the set of all extreme points

of BX∗ to the set of all minimal tripotents of X, which extends to an
injective and contractive and conjugate-linear mapping π : X∗ → X.

2. The mapping (f, g) → (f |g) := f(π(g)) from X∗ × X∗ to C becomes
an inner product on X∗.

3. For x in X there are (possibly finite) sequences {λn} of positive num-
bers and {un} of pair-wise orthogonal minimal tripotents of X such
that x =

∑
n λnun (which implies ‖x‖ = maxn{λn}). Moreover, x

lies in the range of π if and only if
∑

n λn < ∞, and if this is the
case, then, taking f in X∗ with π(f) = x, we have ‖f‖ =

∑
n λn and

(f |f) =
∑

n λ
2
n.

Let X be a JB∗-triple. By a frame in X we mean a family E of pair-wise
orthogonal minimal tripotents of X such that

⋂
u∈E X0(u) = 0. We say that

X is of finite rank if there exists a finite frame in X. As a by-product of
Lemma 4.4 immediately below, we realize that JB∗-triples of finite rank are
weakly compact. For the proof of Lemma 4.4 the reader is referred to [42,
(2.15) and (4.10)] and [18, Proposition 4.5.(iii) and its proof], noticing that
the implication 4 ⇒ 5 in the lemma is clear.

Lemma 4.4. Let X be a JB∗ triple. Then the following assertions are
equivalent:

1. X is of finite rank.
2. X has the Radon-Nikodym property
3. Sx is finite for all x ∈ X.
4. X is a finite `∞-sum of closed simple triple ideals which are either

finite-dimensional, spin factors, or of the form L(H1,H2) for suitable
complex Hilbert spaces H1 and H2 with dim(H2) <∞.

5. The Banach space of X is isomorphic to a Hilbert space.

In relation to Lemma 4.4 just formulated, it is worth mentioning that cer-
tain requirements on a JB∗-tripleX, much weaker than the Radon-Nikodym
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property, also imply that the Banach space of X is isomorphic to a Hilbert
space [7].

Let X be a JB∗-triple. Since the elements of GX are nothing but the
triple automorphisms of X, the set of all maximal tripotents of X is GX -
invariant. If X is finite-dimensional, then in fact GX acts transitively on
the set of all maximal tripotents of X [45, Theorem 5.3.(b)]. But, actually
the same is true if X is an arbitrary JB∗-triple of finite rank. Indeed, with
the help of Lemma 4.4 above, we can reduce to the case that X is either
finite-dimensional (where, as we have just seen, the result is known), a spin
factor, or of the form L(H1,H2) for suitable complex Hilbert spaces H1 and
H2 with dim(H2) < ∞, and, in the two last cases, the result follows by
a direct inspection (see [42, Section 3] and [38]). Therefore we have the
following.

Lemma 4.5. Let X be a JB∗-triple of finite rank. Then GX acts transitively
on the set of all maximal tripotents of X.

JBW ∗-triples are defined as those JB∗-triples having a (complete) pred-
ual. The bidualX∗∗ of every JB∗-tripleX is a JBW ∗-triple under a suitable
triple product which extends the one of X [27]. Now, let X be a JBW ∗-
triple. Then the predual ofX (denoted byX∗) is unique, and the triple prod-
uct of X becomes w∗-continuous in each of its variables [5, Theorem 2.1].
On the other hand, for x in SX , D(X,x) ∩X∗ is a (possibly empty) proper
closed face of BX∗ , and therefore, by [29, Theorem 4.4], there is a unique
tripotent u (possibly equal to zero) such that D(X,x)∩X∗ = D(X,u)∩X∗.
Such a tripotent u is called the support of x in X, and will be denoted
by u(X,x).

Proof of Theorem 4.1.
1 ⇒ 2.- Let v be the big point of X whose existence is assumed in Con-

dition 1. Since σ(X, v) < 2, and X∗ is L-embedded [5, Proposition 3.4],
Lemma 3.1 applies, giving that σ(X, v) = 0. Now we proceed in several
steps.

Step (a).- There exists a tripotent u in X with the same properties as v.
Indeed, since σ(X, v) = 0, the duality mapping ofX is upper semicontinuous
(n−w) at v (see the proof of Corollary 3.9), and, by [13, Theorem 2.7], this
last fact is equivalent to the one that u := u(X∗∗, v) lies in X. Since for x in
BX we have D(X∗∗, x) ∩X∗ = D(X,x), the definition of u(X∗∗, v) and the
above lead to D(X, v) = D(X,u), and hence, from Corollary 3.9 we deduce
σ(X,u) = 0. Since the norm of X is strongly subdifferentiable at u [13,
Corollary 2.4], and v is a big point of X, and D(X, v) = D(X,u), Corollary
3.7 applies, giving that u is a big point of X.

Step (b).- X is weakly compact. Let u be the tripotent of X given by Step
(a). It is well known that X2(u), endowed with the product x�y := {x, u, y},
becomes a norm unital complete normed (possibly non associative) algebra
whose unit is precisely u, and hence we have n(X2(u), u) > 0 [46, p. 617].
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Since 0 ≤ σ(X2(u), u) ≤ σ(X,u) = 0, it follows from Corollary 3.3 that
X2(u) is a reflexive Banach space. Therefore, since {uXu} is contained in
X2(u), we realize that u is a weakly compact element of X. Now, recalling
that elements of GX are triple automorphisms, it follows that every element
of GX(u) is weakly compact. Since the set of all weakly compact elements
of X is a closed subspace of X [18, Proposition 4.7], and u is a big point of
X, we obtain that all elements of X are weakly compact, i.e., X is a weakly
compact JB∗-triple.

Accordingly to Step (b) and Lemma 4.3, the tripotent u of X given by
Step (a) satisfies u = u1 + ... + um for some m ∈ N and suitable pair-wise
orthogonal minimal tripotents u1, ..., um ∈ X.

Step (c).- Every set of pair-wise orthogonal minimal tripotents of X has
at most m elements. Assume on the contrary that we have found pair-
wise orthogonal minimal tripotents v1, ..., vm+1 in X. Let T be in GX .
Since T (u1), ..., T (um) are pair-wise orthogonal minimal tripotents inX with∑m

j=1 T (uj) = T (u), Step (b) and Lemma 4.3 apply to find f, g ∈ X∗ satis-
fying π(f) = T (u), π(g) =

∑m+1
i=1 vi, ‖f‖ = (f |f) = m, and ‖g‖ = (g|g) =

m+ 1. Then we have

|g(T (u))| = |g(π(f))| = |(g|f)| ≤
√

(g|g)
√

(f |f) =
√

(m+ 1)m.

Since T is arbitrary in GX , and u is a big point of X, the above shows

(m+ 1) = ‖g‖ = sup{|g(T (u))| : T ∈ GX} ≤
√

(m+ 1)m,

a contradiction.
Step (d).- X satisfies Condition 2 in the theorem. By Steps (b) and (c),

and Lemma 4.3, every element of X belongs to the linear hull of a finite set
of pair-wise orthogonal tripotents of X. Since the linear hull of any set of
pair-wise orthogonal tripotents of X is a subtriple of X, it follows that Xx

is finite-dimensional (equivalently, Sx is finite) for all x ∈ X. By Lemma
4.4, X fulfils Condition 2.

2 ⇒ 3.- The assumption 2 clearly implies that X is weakly compact. On
the other hand, by the assumption 2 and the Krein-Milman theorem, BX is
the norm-closed convex hull of its extreme points. Since extreme points of
BX are precisely the maximal tripotents of X [44, Proposition 3.5], and GX
acts transitively on the set of all maximal tripotents ofX (by the assumption
2 and Lemmas 4.4 and 4.5), it follows that each extreme point of BX is a
big point of X.

3 ⇒ 1.- By Lemma 3.1.

Now, the equivalence of Conditions 1 to 3 in the theorem has been es-
tablished. Assume that X fulfills Condition 2. We have just shown that
extreme points of BX are big points of X. Take an extreme point u of BX .
Then, since u is a big point of X, and BX is dentable, Proposition 4.3 of
[6] applies, giving that big points of X and denting points of BX coincide,
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and that GX(u) is dense in the set of all big points of X. Since GX(u) con-
sists only of extreme points of BX , and the set of all extreme points of BX
is closed (since they are the maximal tripotents of X), it follows that big
points of X are extreme points of BX .

Since C∗-algebras are JB∗-triples, and they are finite-dimensional when-
ever their Banach spaces are reflexive [50], the next corollary follows straight-
forwardly from Theorem 4.1.

Corollary 4.6. Let X be a C∗-algebra. Then the following conditions are
equivalent:

1. There exists a big point v of X such that σ(X, v) < 2.
2. X is finite-dimensional.
3. X is M -embedded and has big points.

Moreover, if the above conditions are fulfilled, then the big points of X are
precisely the extreme points of BX .

It is well-known that M -embedded C∗-algebras are precisely those of the
form (

⊕
λ∈ΛK(Hλ))c0 for some family {Hλ}λ∈Λ of complex Hilbert spaces.

It is also known that extreme points of the closed unit ball of a finite-
dimensional C∗-algebra X are the unitary elements of X.

Now, we are going to determine those JBW ∗-triples X such that there
exists a big point f of X∗ with σ(X∗, f) < 2 and such that the norm of X∗
is strongly subdifferentiable at f .

Proposition 4.7. Let X be a weakly compact JB∗-triple. Then the follow-
ing conditions are equivalent:

1. X∗ has big points.
2. X is the c0-sum of a suitable family of copies of some elementary JB∗-

triple.
3. GX acts transitively on the set of all minimal tripotents of X.
4. GX∗ acts transitively on the set of all extreme points of BX∗.

Moreover, if the above conditions are fulfilled, then big points of X∗, denting
points of BX∗, and extreme points of BX∗ coincide.

Proof. 1 ⇒ 2.- By Lemma 4.2, we have X = (
⊕

λ∈ΛXλ)c0 for some family
{Xλ}λ∈Λ of elementary JB∗-triples, so that we have X∗ = (

⊕
λ∈ΛX

∗
λ)`1 in

the natural manner. Let λ and µ be in Λ. SinceXλ andXµ areM -embedded
(by Lemma 4.2), they are Asplund spaces (by [37, Theorem III.3.1]), so X∗

λ
and X∗

µ have the Radon-Nikodym property, and so we may choose fλ and
fµ denting points of BX∗

λ
and BX∗

µ
, respectively, which are also denting

points of BX∗ (since X∗
λ and X∗

µ are L-summands of X∗). Now the assump-
tion 1 and [6, Proposition 4.3] provide us with some T ∈ GX∗ satisfying
‖T (fλ) − fµ‖ < 2. On the other hand, since X is M -embedded, we have
T = F ∗ for some F in GX (by [37, Proposition III.2.2]), and, since {Xλ}λ∈Λ

is the family of all minimal closed ideals of X, we must have F (Xλ) = Xρ

for some ρ ∈ Λ. It follows that T (X∗
λ) = X∗

ρ , which, together with fλ ∈ SX∗
λ
,
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fµ ∈ SX∗
µ
, and ‖T (fλ) − fµ‖ < 2, implies that ρ = µ. Now Xµ is a copy of

Xλ by means of the restriction of F to Xλ.
2 ⇒ 3.- Since a minimal tripotent in a c0-sum of JB∗-triples must lie in

some of the summands, and, by the assumption 2, all summands are identical
in our case, we may actually assume that the JB∗-triple X is elementary.
Then Condition 3 follows from [42, (4.6)] if X is of finite rank, and by a
direct inspection from the few remaining examples otherwise (compare [42,
Section 3]).

3 ⇒ 4.- Let π be the mapping from X∗ to X given by Lemma 4.3. Since
π is canonical, we have π ◦ (F ∗)−1 = F ◦ π for every F ∈ GX . Now, let f
and g be extreme points of BX∗ . By the assumption 3, there exists F ∈ GX
satisfying F (π(f)) = π(g). Since π is injective, it follows that T (f) = g with
T := (F ∗)−1 ∈ GX∗ .

4 ⇒ 1.- We know that X∗ has the Radon-Nikodym property, and hence
BX∗ is the norm-closed convex hull of its denting points. Since denting
points of BX∗ are extreme points of BX∗ , it follows from the assumption
4 that denting points of BX∗ and extreme points of BX∗ actually coincide,
and that each extreme point of BX∗ is a big point of BX∗ . Finally, since
BX∗ is dentable, it follows from [6, Proposition 4.3] that big points of BX∗

are denting points of BX∗ .

Lemma 4.8. Let X be a JBW ∗-triple, and let {uλ}λ∈Λ be a family of pair-
wise orthogonal nonzero tripotents of X. Then, for φ ∈ `∞(Λ,C), the fam-
ily {φ(λ)uλ}λ∈Λ is w∗-sumable in X, and the mapping φ →

∑
λ∈Λ φ(λ)uλ

becomes a triple isomorphism from `∞(Λ,C) onto the smallest w∗-closed
subtriple of X containing {uλ : λ ∈ Λ}.

Proof. Put Y := c0(Λ,C). Then, for ψ ∈ Y , the family {ψ(λ)uλ}λ∈Λ is
norm-sumable in X, and the mapping Ψ : ψ →

∑
λ∈Λ ψ(λ)uλ becomes a

triple homomorphism from c0(Λ,C) to X. By [47, Lemma 1.5] and the
separate w∗-continuity of the triple product of X, Ψ extends uniquely to a
w∗-continuous triple homomorphism Φ : Y ∗∗ = `∞(Λ,C) → X. Denote by
{eλ}λ∈Λ the canonical generalized basis of Y . For φ ∈ `∞(Λ,C), the family
{φ(λ)eλ}λ∈Λ is w∗-sumable in Y with sum φ, and hence, since Φ(eλ) = uλ
for all λ ∈ Λ, the family {φ(λ)uλ}λ∈Λ is w∗-sumable in X with sum Φ(φ).
If Φ(φ) = 0 for some φ in `∞(Λ,C), then for every µ ∈ Λ we have

0 = {Φ(φ), uµ, uµ} = {
∑
λ∈Λ

φ(λ)uλ, uµ, uµ} =
∑
λ∈Λ

{φ(λ)uλ, uµ, uµ} = φ(µ)uµ ,

and hence φ = 0. Finally note that, by [40, Proposition 1.2] and [47, Lemma
1.3], w∗-continuous triple homomorphisms between JBW ∗-triples have w∗-
closed range.

Proposition 4.9. Let X be a JB∗-triple. Then the Banach space of X is
isomorphic to a Hilbert space if (and only if) X is a JBW ∗-triple whose
predual does not contain an isomorphic copy of `1.
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Proof. Assume that X is a JBW ∗-triple whose Banach space is not iso-
morphic to a Hilbert space. By Lemma 4.4, the Banach space of X is not
reflexive. By [39, Theorem 3.23], this implies the existence of a sequence
{un}n∈N of pairwise orthogonal nonzero tripotents of X. By Lemma 4.8,
X contains a w∗-closed subspace linearly isometric to `∞. Since `1 is the
unique predual of `∞, this is equivalent to the existence of a closed subspace
of P of X∗ such that X∗/P = `1 isometrically. By lifting the canonical basis
of `1 to a bounded subset of X∗, and passing to the closed linear hull, we
obtain an isomorphic copy of `1 in X∗.

Corollary 4.10. Let X be a JBW ∗-triple, and let f be in SX∗ such that the
duality mapping of X∗ is upper semicontinuous (n − w) at f . Then either
σ(X∗, f) = 0 or σ(X∗, f) = 2.

Proof. By [29, Theorem 4.6], there exists a nonzero tripotent u in X such
thatD(X∗, f) = u+BX0(u). Therefore we haveD(X∗, f) ⊇ u+BX0(u)◦◦ . We
identify X0(u)◦◦ with X0(u)∗∗, and note that X0(u) is a JBW ∗-triple, and
that, in the above identification, the restriction of ΠX∗ to X0(u)◦◦ converts
into Π(X0(u))∗ . Let g be in BX0(u)∗∗ . Then u + g lies in D(X∗, f), and the
equality ΠX∗(u+ g) = u+ Π(X0(u))∗(g) holds. Therefore we have

‖(1−Π(X0(u))∗)(g)‖ = ‖(1−ΠX∗)(u+ g)‖ ≤ σ(X∗, f),

and, since g is arbitrary in BX0(u)∗∗ , we deduce ‖1−Π(X0(u))∗‖ ≤ σ(X∗, f).
Assume that σ(X∗, f) < 2. Then we have ‖1−Π(X0(u))∗‖ < 2, and hence, by
[22, Proposition 2], (X0(u))∗ does not contain an isomorphic copy of `1. By
Proposition 4.9, X0(u) is a reflexive Banach space. Since
D(X∗, f) = u+BX0(u), and the duality mapping of X∗ is upper semicontinu-
ous (n−w) at f , it follows from [34, Theorem 3.1] thatD(X∗, f) = D(X∗, f),
i.e. σ(X∗, f) = 0.

Given a normed space X and a subset U of SX , we say that the norm of
X is uniformly strongly subdifferentiable on U if

lim
α→0+

‖u+ αx‖ − 1
α

= τ(u, x) uniformly for (u, x) ∈ U ×BX .

Proposition 4.11. Let X be a JB∗-triple of finite rank. Then the norm of
X∗ is uniformly strongly subdifferentiable on the set of all extreme points of
BX∗.

Proof. Since X is a finite `∞-sum of simple JB∗-triples of finite rank (by
Lemma 4.4), we may assume that X is simple.

Assume in addition that X is finite-dimensional. Then the norm of X∗ is
strongly subdifferentiable at every point of SX∗ [1, p. 123]. But, since GX∗

acts transitively on the set of all extreme points of BX∗ (by Proposition 4.7),
we have in fact that the norm of X∗ is uniformly strongly subdifferentiable
on such a set.
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Now assume that X = L(H1,H2) for suitable complex Hilbert spaces
H1 and H2 with dim(H1) = ∞ and dim(H2) < ∞. Let K be the com-
plex Hilbert space of dimension equal to dim(H2) + 1, and let Y stand for
L(K,H2). Let ε > 0. By the above paragraph, there exists δ > 0 such that

‖f̂ + αĝ‖ − 1
α

− τ(f̂ , ĝ) < ε

whenever f̂ is an extreme point of BY ∗ , ĝ belongs to BY ∗ , and 0 < α < δ.
Now, let f be an extreme point of BX∗ , and let g be in BX∗ . Since X∗

equals the projective tensor product H1 ⊗π H2, and f = x1 ⊗ x2 for some
(x1, x2) ∈ H1 × H2, there exists a copy of K in H1 such that K ⊗ H2

contains f and g. Moreover, since K is one-complemented in H1, the natural
mapping K ⊗π H2 → H1 ⊗π H2 is an isometry [25, Proposition 3.9]. Since
Y ∗ = K ⊗π H2, it follows

‖f + αg‖ − 1
α

− τ(f, g) < ε

whenever 0 < α < δ.
In view of Lemma 4.4, to conclude the proof it is enough to consider the

case thatX is an infinite-dimensional spin factor. Then we haveX = C⊗πH,
where H is an infinite-dimensional real Hilbert space [47, pp. 438-441]. Let
K be the real Hilbert space of dimension 4, and let Y stand for the 4-
dimensional spin factor C⊗πK. Let ε > 0. We know that there exists δ > 0
such that

‖f̂ + αĝ‖ − 1
α

− τ(f̂ , ĝ) < ε

whenever f̂ is an extreme point of BY ∗ , ĝ belongs to BY ∗ , and 0 < α < δ.
Now, let f be an extreme point of BX∗ , and let g be in BX∗ . Since X∗ equals
the injective tensor product C⊗εH, there exists a copy of K in H such that
C ⊗K contains f and g. Since the natural mapping C ⊗ε K → C ⊗ε H is
an isometry [25, Proposition 4.3], and Y ∗ = C⊗ε K, it follows

‖f + αg‖ − 1
α

− τ(f, g) < ε

whenever 0 < α < δ.

We recall that a JBW ∗-triple X is said to be purely atomic if X∗ is the
closed linear hull of the set of all extreme points of BX∗ .

Theorem 4.12. Let X be a JBW ∗-triple. Then the following conditions
are equivalent:

1. There exists a big point f of X∗ with σ(X∗, f) < 2 and such that the
norm of X∗ is strongly subdifferentiable at f .

2. The Banach space of X is isomorphic to a Hilbert space, and X∗ has
big points.

3. X is purely atomic and there exists a big point f of X∗ satisfying
σ(X∗, f) < 2.
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4. X is a finite `∞-sum of copies of a simple JB∗-triple of finite rank.

Moreover, if the above conditions are fulfilled, then big points of X∗, denting
points of BX∗, and extreme points of BX∗ coincide.

Proof. 1 ⇒ 2.- Recalling that the strong subdifferentiability of the norm at
a point implies the upper semicontinuity (n−w) of the duality mapping at
that point, the proof of the present implication reduces to putting together
Corollary 4.10, Theorem 2.5, and Lemma 4.4.

2 ⇒ 3.- This implication is clear.
3 ⇒ 4.- Assume that Condition 3 is fulfilled. Since X is atomic, we can

apply [33, Theorem E and Proposition 2] and Lemma 4.2 to realize that
X = Y ∗∗ for some weakly compact JB∗-triple Y . Let f be the big point
of X∗ = Y ∗ whose existence is assumed in 3. Since σ(Y ∗, f) < 2, it follows
from Corollary 3.4 that Y ∗ cannot contain an isometric copy of `1 in such a
way that f becomes an element of the canonical basis. Since the big points
of Y ∗ are the extreme points of BY ∗ , and GY ∗ acts transitively on the set
of all extreme points of BY ∗ (by Proposition 4.7), the fact just shown for f
remains true when f is replaced with any extreme point of BY ∗ . By Lemma
4.3, this implies that every set of pair-wise orthogonal minimal tripotents
of Y is finite. Then, applying again Lemma 4.3, we deduce that Sy is finite
for every y ∈ Y . Now Condition 4 follows from Lemma 4.4 and Proposition
4.7.

4 ⇒ 1.- By Lemma 4.4 and Propositions 4.7 and 4.11.
When Conditions 1 to 4 are fulfilled, the coincidence of big points of X∗,

denting points of BX∗ , and extreme points of BX∗ follows from Proposition
4.7.

Corollary 4.13. Let X be a von Neumann algebra. Then the following
conditions are equivalent:

1. There exists a big point f of X∗ with σ(X∗, f) < 2 and such that the
norm of X∗ is strongly subdifferentiable at f .

2. X is finite-dimensional, and X∗ has big points.
3. X is purely atomic and there exists a big point f of X∗ satisfying
σ(X∗, f) < 2.

4. X is a finite `∞-sum of copies of L(H) for some finite-dimensional
complex Hilbert space H.

Moreover, if the above conditions are fulfilled, then big points of X∗ and
extreme points of BX∗ coincide.
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5. Characterizing Hilbert spaces

Every complex Hilbert space H becomes a simple JB∗-triple of finite rank
(indeed, we have H = L(H,C)), whose triple product is given by

{x, y, z} =
1
2
((x|y)z + (z|y)x)

for all x, y, z ∈ H. More precisely, it follows from [42] that all frames in a
JB∗-triple X of finite rank have the same cardinal (called the rank of X),
and that complex Hilbert spaces are precisely the JB∗-triples of rank one.

In [9] we obtained several characterizations of complex Hilbert spaces,
among either the JB∗-triples or the preduals of JBW ∗-triples, in terms of
transitivity conditions. A detailed review of such characterizations and other
new characterizations in the same line can be seen in [11, Section 5]. On
the other hand, since almost transitive JBW ∗-triples are Hilbert spaces [9,
Corollary 2.6], all characterizations obtained in [8] and [10] of members X of
the class J (of all almost transitive superreflexive Banach spaces), as well as
the new ones shown in Proposition 2.9 of the present paper, become in fact
characterizations of complex Hilbert spaces when we require that X is in
addition a JB∗-triple. We are going to conclude this paper showing deeper
characterizations of complex Hilbert spaces, among either the JB∗-triples
or the preduals of JBW ∗-triples, again in terms of transitivity conditions.
JB∗-algebras are defined as those complete normed Jordan complex

algebras X endowed with a conjugate-linear algebra-involution ∗ satisfy-
ing ‖Ux(x∗)‖ = ‖x‖3 for every x in X, where, for x in X, the operator
Ux : X → X is defined by Ux(y) = 2x.(x.y) − x2.y. It is well-known that,
if X is a JB∗-triple, and if u is a tripotent of X, then X2(u) becomes a
JB∗-algebra with unit u for suitable product an involution.

Lemma 5.1. Let X be a nonzero JB∗-algebra with a unit 1 such that X 6=
C1. Then we have δ(X,1) = 2.

Proof. Take x = x∗ ∈ X \ R1. Then, since Jordan algebras are power-
associative, the closed subalgebra of X generated by {x,1} (say Y ) is as-
sociative and ∗-invariant, and hence it is a commutative C∗-algebra dif-
ferent from C1. Write Y = C(Ω) for some Hausdorff compact topolog-
ical space Ω, choose a, b ∈ Ω such that x(a) = min{x(t) : t ∈ Ω} and
x(b) = max{x(t) : t ∈ Ω}, and put

y :=
2x− x(b)− x(a)
x(b)− x(a)

∈ SY .

Since y(a) = 1 and y(b) = −1, the unit point measures at a and b on Ω are
elements of D(Y,1) whose distance is equal to 2. Since δ(X,1) ≥ δ(Y,1),
we have δ(X,1) = 2.

Theorem 5.2. For a complex Banach space X, the following assertions are
equivalent:
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1. X is a JB∗-triple and there exists a big point u of X with η(X,u) < 2.
2. X is a JB∗-triple and there exists a big point u of X with δ(X,u) < 2

and such that the duality mapping of X is upper semicontinuous (n−w)
at u.

3. X is the predual of a JBW ∗-triple and there exists a big point f of X
with η(X, f) < 2.

4. X is the predual of a JBW ∗-triple and there exists a big point f of X
with δ(X, f) < 2 and such that the norm of X is strongly subdifferen-
tiable at f .

5. X is a Hilbert space.

Proof. 1 ⇒ 2.- By [10, Lemma 1] and [24, Theorem VII.4.4], the assumption
1 implies that X is a superreflexive Banach space. As a consequence, X is
M -embedded. Since, by the assumption 1, X has big points, Theorem 4.1
applies giving that such big points are extreme points of BX , and hence
maximal tripotents. Since the norm of every JB∗-triple is strongly sudiffer-
entiable at any nonzero tripotent [13, Corollary 2.4], and, for the big point
u of X whose existence is assumed in 1, we have δ(X,u) < 2 (by Lemma
2.7), Assertion 2 follows.

2 ⇒ 5.- Let u be the big point of X whose existence is assumed in 2. By
the comments after Corollary 2.6, the assumption 2 implies that σ(X,u) < 2.
Then, by Theorem 4.1, u is a maximal tripotent of X. Now, since δ(X,u) <
2, X2(u) is a JB∗-algebra with unit u such that δ(X2(u), u) < 2. By Lemma
5.1, we have X2(u) = Cu, i.e., u is a minimal tripotent of X. It follows that
{u} is a frame in X, and therefore X is a JB∗-triple of rank one.

5 ⇒ 1.- This implication is clear.
3 ⇒ 4.- By [10, Lemma 1] and [24, Theorem VII.4.4], the assumption 3

implies that X is a superreflexive Banach space. Then, by Lemma 4.4, the
Banach space of the JBW ∗-tripleX∗ is isomorphic to a Hilbert space. Since,
by the assumption 3, X has big points, Theorem 4.12 applies giving that
such big points are extreme points of BX . Since the norm of X is strongly
sudifferentiable at every extreme point of BX (by Proposition 4.11), and, for
the big point f of X whose existence is assumed in 3, we have δ(X, f) < 2
(by Lemma 2.7), Assertion 4 follows.

4 ⇒ 5.- Let f be the big point of X whose existence is assumed in 4. By
the comments after Corollary 2.6, the assumption 4 implies that σ(X, f) <
2. Then, by Theorem 4.12, the JBW ∗-triple X∗ is of finite rank, and f
is an extreme point of BX . Since GX acts transitively on the set of all
extreme points of BX (by Proposition 4.7), and δ(X, f) < 2, it follows that
δ(X, g) < 2 for every extreme point g of BX . Now, assume that 5 does not
hold. Then X∗ is of finite rank > 1, and hence there are two orthogonal
minimal tripotents in X∗. With the help of Lemma 4.3, we can find extreme
points g1, g2 of BX such that the linear hull of {g1, g2} (say Y ) becomes an
isometric copy of `21 in such a way that {g1, g2} converts into the canonical
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basis. Therefore we have

2 = δ(Y, g1) ≤ δ(X, g1) < 2,

a contradiction.
5 ⇒ 3.- This implication is clear.

Corollary 5.3. For a complex Banach space X, the following assertions
are equivalent:

1. X is a C∗-algebra and there exists a big point u of X with η(X,u) < 2.
2. X is a C∗-algebra and there exists a big point u of X with δ(X,u) < 2

and such that the duality mapping of X is upper semicontinuous (n−w)
at u.

3. X is the predual of a von Neumann algebra and there exists a big point
f of X with η(X, f) < 2.

4. X is the predual of a von Neumann algebra and there exists a big point
f of X with δ(X, f) < 2 and such that the norm of X is strongly
subdifferentiable at f .

5. X = C.
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Matemático, 18071-Granada (Spain)

E-mail address: apalacio@ugr.es


