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1. Introduction

An element u of a norm-unital Banach algebra A is said to be unitary if

u is invertible in A and satisfies ‖u‖ = ‖u−1‖ = 1. The norm-unital Banach

algebra A is called unitary if the convex hull of the set of its unitary elements

is norm-dense in the closed unit ball of A. If X is a complex Hilbert space,

then the algebra BL(X) of all bounded linear operators on X is unitary (by

the Russo-Dye theorem [10] Theorem 30.2). The question whether the above

fact characterizes complex Hilbert spaces among complex Banach spaces

seems to be open (see [12], [18], and [31]). In this paper we prove some

partial affirmative answers to the question just quoted. Indeed, a complex

Banach space X is a Hilbert space if (and only if) BL(X) is unitary and, for

Y equal to either X, X∗, or X∗∗, there exists a biholomorphic automorphism

of the open unit ball of Y which cannot be extended to a surjective linear

isometry on Y (see Theorems 2.2, 2.5, and 2.10, respectively).

The proof of our results involves deep facts taken from the theory of the

infinite dimensional holomorphy. The reader is referred to the survey paper

of J. Arazy [1], as well as to Section 2 of the Arazy-Solel paper [2], for a

comprehensive view of the part of that theory involved in our arguments.
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Partially supported by Junta de Andalućıa grant FQM 0199 and Acción Integrada

HB1999-0052.

1
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Actually we have had to slightly develop the theory of circular homogeneous

domains on complex Banach spaces. Indeed, as a key tool for the proof of

Theorem 2.10, we prove in Proposition 2.9 that, if X is a complex Banach

space, and if the orbit of zero under the group of all biholomorphic auto-

morphisms of the open unit ball of X∗∗ contains the open unit ball of X,

then such an orbit is in fact the whole open unit ball of X∗∗ (i.e., X∗∗ is a

JB∗-triple, see [21] and [22]).

2. The results

Throughout this paper K will mean the field of real or complex numbers.

Let X be a Banach space over K . We denote by SX , BX , ∆X , and X∗ the

unit sphere, the closed unit ball, the open unit ball, and the (topological)

dual, respectively, of X. Given (x, f) in X × X∗, the value of f at x will

be denoted by < f, x >. The symbol GX will stand for the group of all

surjective linear isometries from X to X. We note that GX is nothing but

the set of all unitary elements of the norm-unital Banach algebra BL(X).

For a subset A of X, coA will mean the (norm-) closed convex hull of A in

X.

Lemma 2.1. For a Banach space X over K, consider the following condi-

tions:

(1) BL(X) is unitary.

(2) For every α in SX∗∗ we have

co{T ∗∗(α) : T ∈ GX} ⊇ BX .

(3) For every f in SX∗ we have

co{T ∗(f) : T ∈ GX} = BX∗ .

(4) For every x in SX we have

co{T (x) : T ∈ GX} = BX .
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Then 1 ⇒ 2 ⇒ 3 ⇒ 4.

Proof. 1 ⇒ 2.- Let x and α be in BX and SX∗∗ , respectively. Fix ε > 0, take

f in BX∗ such that |1− < α, f > | < ε
2 , and denote by x⊗f the operator on

X defined by (x⊗f)(y) :=< f, y > x for every y in X. By the assumption 1,

there exists F in the convex hull of GX satisfying ‖x⊗f−F‖ < ε
2 . Therefore

we have

‖x− F ∗∗(α)‖ ≤ ‖x− < α, f > x‖+ ‖ < α, f > x− F ∗∗(α)‖

= ‖(1− < α, f >)x‖+ ‖(x⊗ f − F )∗∗(α)‖ < ε .

2 ⇒ 3.- As a consequence of the assumption 2, for every α in SX∗∗ the

convex hull of {T ∗∗(α) : T ∈ GX} is w∗-dense in BX∗∗ . Then 3 follows from

the Hahn-Banach theorem.

3 ⇒ 4.- The assumption 3 implies that for every f in SX∗ the convex hull

of {T ∗(f) : T ∈ GX} is w∗-dense in BX∗ . By another application of the

Hahn-Banach theorem, 4 holds.

A Banach space X is said to be convex-transitive if it satisfies Condition

4 in Lemma 2.1. Thus Condition 3 in the above lemma is a stronger form

of the convex transitivity for X∗. The implications 1 ⇒ 3 and 1 ⇒ 4 in

Lemma 2.1 are first proved in [12]. For convex-transitive Banach spaces the

reader is referred to [4], [5], [6], [7], [8], [9], [11], [12], [20], [24], and [30].

Let X be a complex Banach space. Then ∆X is invariant under GX ,

and hence GX can be seen as a subgroup of the group of all biholomorphic

automorphism of ∆X . According to [1, Theorem 3.6 and Main Lemma 4.2],

the orbit of zero under the group of all biholomorphic automorphisms of

∆X becomes the open unit ball of a closed subspace of X, which is called

the symmetric part of X and is denoted by Xs. The possibility X = Xs

has been deeply studied by many authors since the fundamental work of W.

Kaup (see [21] and [22]), who proves that such an equality is equivalent to

the fact that X is a JB∗-triple. We recall that the complex Banach space X
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is said to be a JB∗-triple if it is endowed with a continuous triple product

{...} : X×X×X → X which is linear and symmetric in the outer variables,

and conjugate-linear in the middle variable, and satisfies:

(1) For all x in X, the mapping y → {xxy} from X to X is a hermitian

operator on X and has nonnegative spectrum;

(2) The main identity

{ab{xyz}} = {{abx}yz} − {x{bay}z}+ {xy{abz}}

holds for all a, b, x, y, z in X;

(3) ‖ {xxx} ‖=‖ x ‖3 for every x in X.

JB∗-triples which are dual Banach spaces are called JBW ∗-triples.

Theorem 2.2. Let X be a nonzero complex Banach space. Then X is a

Hilbert space if (and only if) BL(X) is unitary and there exists a biholo-

morphic automorphism of ∆X which does not lie in GX .

Proof. The “only if” part is well-known. Indeed, every complex Hilbert

space is in fact a JB∗-triple under the triple product

{xyz} :=
1
2
((x|y)z + (z|y)x) .

Assume that BL(X) is unitary and that there exists a biholomorphic

automorphism of ∆X which is not in GX . By the second assumption and

[1, Lemma 2.1], Xs is nonzero. Since Xs is invariant under GX , the first

assumption, together with the implication 1 ⇒ 4 in Lemma 2.1, gives that

X = Xs, that is X becomes a JB∗-triple. By [15], X∗∗ is a JBW ∗-triple.

Now X∗ is the predual of a JBW ∗-triple, as well as a convex-transitive

Banach space (a consequence of the implication 1 ⇒ 3 in Lemma 2.1),

and moreover the closed unit ball of X∗ has extreme points (by the Krein-

Milman theorem). It follows from [6, Theorem 3.1] that X∗ (and hence X)

is a Hilbert space.
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Banach spaces X which are ranges of a linear projection P on X∗∗ such

that 1− 2P is an isometry have been considered in [17].

Proposition 2.3. Let X be a Banach space over K . Assume that BL(X)

is unitary and that X is the range of a linear projection P on X∗∗ such that

1− 2P is an isometry. Then X is reflexive.

Proof. Let T be in GX . Then Q := (T ∗∗)−1PT ∗∗ is a projection on X∗∗ sat-

isfying Q(X∗∗) = X and such that 1− 2Q is an isometry. By the comments

after [8, Theorem 3.5], we have Q = P (i.e. P commutes with T ∗∗), and

hence (1 − P )(X∗∗) is invariant under T ∗∗. Now note that T is arbitrary

in GX and that, by the implication 1 ⇒ 2 in Lemma 2.1, every nonzero

closed subspace of X∗∗ invariant under {T ∗∗ : T ∈ GX} must contain X. It

follows that, if X were not reflexive, then we would have the contradiction

(1− P )(X∗∗) ⊇ X = P (X∗∗).

Let X be a Banach space over K . An L-projection on X is a linear

projection (say π) on X satisfying ‖x‖ = ‖π(x)‖ + ‖x − π(x)‖ for every x

in X. The Banach space X is said to be L-embedded if it is the range of

an L-projection on X∗∗. For the theory of L-embedded Banach spaces the

reader is referred to [19]. The next corollary follows straightforwardly from

Proposition 2.3.

Corollary 2.4. Let X be an L-embedded Banach space over K such that

BL(X) is unitary. Then X is reflexive.

Theorem 2.5. Let X be a nonzero complex Banach space. Then X is a

Hilbert space if (and only if) BL(X) is unitary and there exists a biholo-

morphic automorphism of ∆X∗ which does not lie in GX∗.

Proof. Assume that BL(X) is unitary and that there exists a biholomorphic

automorphism of ∆X∗ which is not in GX∗ . By the second assumption and

[1, Lemma 2.1], (X∗)s is nonzero. Since (X∗)s is invariant under GX∗ , the
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first assumption, together with the implication 1 ⇒ 3 in Lemma 2.1, gives

that X∗ = (X∗)s, that is X∗ becomes a JBW ∗-triple. Then, by [3, Propo-

sition 3.4], X is an L-embedded Banach space.

Now X is the predual of a JBW ∗-triple, as well as a convex-transitive

Banach space (by the implication 1 ⇒ 4 in Lemma 2.1), and moreover the

closed unit ball of X has extreme points (because, by Corollary 2.4, X is

reflexive). It follows from [6, Theorem 3.1] that X is a Hilbert space.

Remark 2.6. The Banach space X in Proposition 2.3 and Corollary 2.4, as

well as its dual X∗, is in fact superreflexive and almost transitive. This is

so because, by Lemma 2.1, X and X∗ are convex transitive, and, since they

are reflexive, [4, Corollary 3.3] applies. We recall that almost transitivity

of a Banach space Y means that, for every y in SY , GY (y) is dense in SY .

Since superreflexive almost transitive Banach spaces are uniformly smooth

[16] (see also [14, Corollary IV.5.7]), the concluding paragraph in the proof

of Theorem 2.5 can be replaced with an application of the refined version of

Corollary 2.4 just commented, keeping in mind either that smooth preduals

of JBW ∗-triples are Hilbert spaces [6, Proposition 2.4] or Tarasov’s theorem

[28] that smooth JB∗-triples are Hilbert spaces.

The next lemma is a non linear generalization of [10, Theorem 17.2].

Given a Banach space X over K , we denote by Π(X) the set of those ele-

ments (x, f) in SX × SX∗ such that < f, x >= 1.

Lemma 2.7. Let X be a Banach space over K , let (f, α) be an element of

Π(X∗), and let Λ be a bounded function from SX∗ to X∗ continuous at f .

Then < α,Λ(f) > belongs to the closure in K of the set

{< Λ(h), x >: (x, h) ∈ Π(X)} .

More precisely, for every positive number ρ, < α, Λ(f) > lies in the closure

in K of the set

{< Λ(h), x >: (x, h) ∈ Π(X), ‖f − h‖ < ρ} .
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Proof. Fix the positive number ρ in the statement, and let ε > 0. Since Λ

is continuous at f , there exists

0 < δ < min{1, ρ, ε}

such that ‖Λ(g) − Λ(f)‖ < ε whenever g is in SX∗ and ‖g − f‖ < δ. Since

BX is w∗-dense in BX∗∗ , there exists y ∈ BX satisfying

| < α− y, Λ(f) > | < ε and |1− < f, y > | = | < α− y, f > | < δ2

4
.

By the Bishop-Phelps-Bollobás theorem [10, Theorem 16.1], there exists

(x, h) ∈ Π(X) such that ‖y − x‖ < δ, and ‖f − h‖ < δ. Now we have

‖f − h‖ < ρ and

| < α,Λ(f) > − < Λ(h), x > |

≤ | < α− y, Λ(f) > |+ | < Λ(f)− Λ(h), y > |+ | < Λ(h), y − x > |

< ε(2 + ‖Λ‖) .

Let X be a complex Banach space. We recall that a holomorphic vector

field on ∆X is nothing but a holomorphic mapping from ∆X to X. A

holomorphic vector field Λ on ∆X is said to be complete if, for each x in

∆X , there exists a differentiable function ϕ : R → ∆X satisfying

ϕ(0) = x and
d

dt
ϕ(t) = Λ(ϕ(t))

for every t in R. The next lemma is due to L. Stacho [25] (see also [1, p.

139], [26], [27], and [29, Lecture 4]). The formulation we give here is that of

[2, Proposition 2.5].

Lemma 2.8. Let X be a complex Banach space, and Λ a holomorphic vector

field on ∆X . Then Λ is complete if and only if it has a holomorphic extension

(say Λ̂) to a neighborhood of BX satisfying <e(< f, Λ̂(x) >) = 0 for every

(x, f) ∈ Π(X).
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Proposition 2.9. Let X be a complex Banach space such that (X∗∗)s ⊇ X.

Then X∗∗ is a JBW ∗-triple.

Proof. Since X is contained in the symmetric part of X∗∗, according to

[1, Lemma 3.5 and Theorems 3.3 and 3.6] (see also [1, Definition 3.7]),

for each x in X there exists a unique continuous quadratic mapping qx :

X∗∗ → X∗∗ such that (the restriction to ∆X∗∗ of) the function Λx : α →

x− qx(α) from X∗∗ to X∗∗ becomes a complete holomorphic vector field on

∆X∗∗ . Moreover, the mapping x → qx, from X to the Banach space of all

X∗∗-valued continuous quadratic functions on X∗∗, is conjugate-linear and

continuous. The continuity of the mapping x → qx is not explicitly noticed

in [1], but follows easily from Lemma 2.8 and the closed graph theorem. For

α in X∗∗ consider the continuous conjugate-linear mapping Fα : x → qx(α)

from X to X∗∗. Denote by Gα the unique w∗-continuous conjugate-linear

mapping from X∗∗ to X∗∗ which extends Fα (see for instance [23, Lemma

1.5]), and consider the function Λα : β → α−Gβ(α) from X∗∗ to X∗∗. Note

that the definition of Λα just given is consistent with the one previously

introduced in the particular case that α = x ∈ X. Now, let x, α, and (f, β)

be elements of X, X∗∗, and Π(X∗), respectively. Since Λx is a holomorphic

vector field on ∆X∗∗ and (β, f) belongs to Π(X∗∗), Lemma 2.8 applies giving

<e(< x− Fβ(x), f >) = <e(< Λx(β), f >) = 0 .

Since x is arbitrary in X, it follows from the w∗-density of X in X∗∗ that

<e(< α−Gβ(α), f >) = <e(< Λα(β), f >) = 0 .

Note now that Λα is a holomorphic mapping on X∗∗ bounded on BX∗∗

(indeed, it follows easily from the continuity of the mapping x → qx, and

the way of defining G�, that γ → Gγ(α) is a continuous quadratic mapping

from X∗∗ to X∗∗). Since (f, β) is arbitrary in Π(X∗), it follows from Lemma

2.7 that <e(< χ, Λα(γ) >) = 0 for every (γ, χ) ∈ Π(X∗∗). By Lemma 2.8,

Λα is a complete holomorphic vector field on ∆X∗∗ . By [1, Theorem 3.6],
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α = Λα(0) belongs to (X∗∗)s. Finally, since α is arbitrary in X∗∗, we have

X∗∗ = (X∗∗)s.

In relation to Proposition 2.9 above, it is worth mentioning that complex

Banach spaces whose biduals are JBW ∗-triples need not be JB∗-triples (see

for instance [6, Example 3.10]).

Theorem 2.10. Let X be a nonzero complex Banach space. Then X is a

Hilbert space if (and only if) BL(X) is unitary and there exists a biholo-

morphic automorphism of ∆X∗∗ which does not lie in GX∗∗.

Proof. Assume that BL(X) is unitary and that there exists a biholomorphic

automorphism of ∆X∗∗ which is not in GX∗∗ . By the second assumption and

[1, Lemma 2.1], (X∗∗)s is nonzero. Then, since (X∗∗)s is invariant under

GX∗∗ , the first assumption, together with the implication 1 ⇒ 2 in Lemma

2.1, gives that (X∗∗)s ⊇ X. By Proposition 2.9, X∗∗ is a JBW ∗-triple.

Now the proof of the present theorem is finished by repeating verbatim the

concluding paragraph of the proof of Theorem 2.2.
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