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Abstract. We invoke the early paper of H. F. Bohnenblust and S. Kar-
ling [3] to provide a very short proof of the recent theorem of C. Akemann
and N. Weaver [1] characterizing unitary elements of a unital C∗-algebra
A as those norm-one elements u of A such that the dual space A∗ is the
linear hull of the set of states Su of u. Moreover, we generalize such a
theorem to the setting of JB∗-triples.

1. Discussing the Akemann-Weaver theorem

In [1], C. Akemann and N. Weaver point out how the celebrated paper
of R. V. Kadison [10] implicitly contains a Banach space characterization of
unitary elements in unital C∗-algebras. Then they ask for explicit charac-
terizations of such a kind, and provide those given by the following theorem
(see Theorem 2 of [1] and its proof).

Theorem 1.1. Let A be a unital C∗-algebra, and let u be a norm-one ele-
ment of A. Then the following conditions are equivalent:

(1) u is unitary.
(2) The dual space A∗ is the linear hull of the set of states Su of u.
(3) u is a vertex of the closed unit ball of A.

We recall that, given a norm-one element u of a Banach space X, the
states of u (relative to X) are defined as those norm-one elements f of the
dual space X∗ satisfying f(u) = 1. We also recall that vertices of the closed
unit ball of a Banach space X are defined as those norm-one elements u of
X such that the set of states Su of u separates the points of X.

The proof provided in [1] of the implication (1) ⇒ (2) is really easy.
Indeed, Condition (2) is known to be fulfilled in the case that u equals
the unit 1 of A, and hence it also remains fulfilled for every unitary u
because unitary elements of A lie in the orbit of 1 under the group of all
surjective linear isometries on A. By the way, an alternative proof of (1) ⇒
(2) can be given by noticing that, if u is a unitary element of A, then A
becomes a C∗-algebra with unit u under the product x�y := xu∗y and the
involution x → ux∗u. On the other hand, the implication (2) ⇒ (3) is clear.
The main aim of this section is to point out that, as a matter of fact, the
implication (3) ⇒ (1) is proved in Example 4.1 of the early paper of H.
F. Bohnenblust and S. Karling [3] (see also [16, Theorem 9.5.16.(c)]). By
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the way, Bohnenblust and Karlin also point out in [3] how the equivalence
(3) ⇐⇒ (1) drastically simplifies Kadison’s original arguments in [10].

We conclude this section by listing, in Remark 1.2 immediately below,
some other known results related to Akemann-Weaver Theorem 1.1. To be
short, norm-one elements u of a Banach space X such that X∗ is the linear
hull of Su will be called geometrically unitary elements of X.

Remark 1.2. (a).- Let X be a Banach space, let u be a norm-one element
of X, and define the numerical index, n(X, u), of X at u by

n(X, u) := inf‖x‖=1 supf∈Su
|f(x)|

(equivalently, n(X, u) is the maximum nonnegative number k satisfying
k supf∈Su

|f(x)| 6 ‖x‖ for every x ∈ X). Then u is a geometrically uni-
tary element of X if and only if n(X, u) > 0 [15, Theorem 3.2].

(b).- The above result becomes an abstract version of the Moore-Sinclair
theorem [5, Theorem 31.1] that, if A is a complex Banach algebra with a
norm-one unit 1, then 1 is a geometrically unitary element of A. Indeed,
it is enough to apply the Bohnenblust-Karlin theorem that n(A,1) > 1

e [3]
(see also [4, Theorem 4.1]). Part (a) of the present remark also implies that
the requirement of associativity of A in the Moore-Sinclair theorem can be
altogether removed because, as pointed out in [15, p. 617], the Bohnenblust-
Karlin theorem remains true in the non-associative context.

(c).- Let A be a complex Banach algebra with a norm-one unit 1 (asso-
ciativity of A is now required), and let u be an algebraically unitary element
of A (i.e., an invertible element satisfying ‖u‖ = ‖u−1‖). Since the operator
of left multiplication by u on A is a surjective linear isometry taking 1 to u,
it follows from the Moore-Sinclair theorem that u is a geometrically unitary
element of A.

(d).- Parts (a) and (c) of the present remark have been recently rediscov-
ered (see [2, Theorem 3.1] and [2, Corollary 3.5], respectively).

(e).- Let X be a Banach space, and let u be a norm-one element of X.
Then we have n(X∗∗, u) = n(X, u) [15, Lemma 4.8]. Consequently, by
Part (a) of the present remark, u is a geometrically unitary element of X∗∗

if and only if it is a geometrically unitary element of X [2, Corollary 3.4].

(f).- Let A be a unital C∗-algebra. It follows from [7, Theorem 1] that,
for a norm-one element u in A, each of Conditions (1) to (3) in Theorem 1.1
is equivalent to

(4) n(A, u) is equal to 1 or 1
2 .

Moreover, the existence of a norm-one element u of A with n(A, u) = 1 is
equivalent to the commutativity of A.

(g).- Vertices u of the closed unit ball of a Banach space X need not be
geometrically unitary. Indeed, there exists a real Banach space E such that,
taking X equal to the space of all bounded linear operators on E, and u
equal to the identity mapping on E, u becomes a vertex of the closed ball of
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X but we have n(X, u) = 0 [14, Example 3.b]. A less natural example can
be found in [2, Example 3.7].

2. Generalizing the Akemann-Weaver theorem

JB∗-triples are defined as those complex Banach spaces X endowed with
a continuous triple product {· · ·} : X × X × X −→ X which is linear
and symmetric in the outer variables, and conjugate-linear in the middle
variable, and satisfies:

(1) For all x in X, the mapping y → {xxy} from X to X is a hermitian
operator on X (in the sense of [4, Definition 5.1]) and has nonnega-
tive spectrum.

(2) The equality

{ab{xyz}} = {{abx}yz} − {x{bay}z}+ {xy{abz}}
holds for all a, b, x, y, z in X.

(3) ‖{xxx}‖ = ‖x‖3 for every x in X.

Every C∗-algebra becomes a JB∗-triple under the triple product

{xyz} :=
1
2
(xy∗z + zy∗x).

More generally, C∗-algebras are JB∗-algebras (under the product
x ◦ y := 1

2(xy + yx)), and JB∗-algebras become JB∗-triples (under a triple
product naturally derived from their binary products and involutions) [6, 18].
We recall that JB∗-algebras are defined as those complete normed Jordan
complex algebras A endowed with a conjugate-linear algebra-involution ∗
satisfying ‖Ux(x∗)‖ = ‖x‖3 for every x in A, where, for x in A, the operator
Ux : A → A is defined by Ux(y) = 2x ◦ (x ◦ y)− x2 ◦ y.

The main interest of JB∗-triples relies on the fact that, up to biholo-
morphic equivalence, there are no bounded symmetric domains in complex
Banach spaces others than the open unit balls of JB∗-triples [12]. Unitary
elements of a JB∗-triple X are defined as those elements u of X satisfying
{u{uxu}u} = x for every x ∈ X. It is easily seen that, if a C∗-algebra A has
a unitary element in the JB∗-sense, then A has a unit, and unitary elements
in the JB∗-sense coincide with unitary elements in the usual C∗-meaning.
Now, the main result in this section reads as follows.

Theorem 2.1. For a norm-one element u in a JB∗-triple X, the following
conditions are equivalent:

(1) u is unitary.
(2) n(X, u) is equal to 1 or 1

2 .
(3) u is geometrically unitary.
(4) u is a vertex of the closed unit ball of A.

The proof of Theorem 2.1 goes as follows. If Condition (1) is fulfilled, then
X, endowed with the product x◦y := {xuy} and the involution x∗ := {uxu},
becomes a unital JB∗-algebra whose unit is precisely u (see [6]), and hence
(2) holds by [17, Theorem 26] (see also [9, Theorem 4]). On the other hand,
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the implication (2) ⇒ (3) follows from Remark 1.2.(a), and the one (3) ⇒ (4)
is clear. Finally, the implication (4) ⇒ (1) follows from [6, Proposition 4.3]
and [11, Lemma 3.1]. An alternative proof of (4) ⇒ (1) can be given by
keeping in mind that vertices of the closed unit ball of a Banach space are
extreme points, that extreme points of the closed unit ball of a JB∗-triple
are well-understood [13, Proposition 3.5], and then by selecting (with the
help of [8, Proposition 1.(a)]) those extreme points which are in fact vertices.

In relation to the above proof, it is worth mentioning that, contrarily
to what happens in the case of C∗-algebras, the group of all surjective lin-
ear isometries on a JB∗-triple X need not act transitively on the set of all
unitary elements of X [6, Example 5.7]. Let us also notice that, by the refer-
ences applied above, the existence in a JB∗-triple X of a norm-one element
u with n(X, u) = 1 is equivalent to the fact that X is triple-isomorphic to a
unital commutative C∗-algebra.
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