BANACH SPACE CHARACTERIZATIONS OF UNITARIES

ÁNGEL RODRÍGUEZ-PALACIOS

Abstract

We invoke the early paper of H. F. Bohnenblust and S. Karling [3] to provide a very short proof of the recent theorem of C. Akemann and N. Weaver [1] characterizing unitary elements of a unital C^{*}-algebra A as those norm-one elements u of A such that the dual space A^{*} is the linear hull of the set of states S_{u} of u. Moreover, we generalize such a theorem to the setting of $J B^{*}$-triples.

1. Discussing the Akemann-Weaver theorem

In [1], C. Akemann and N. Weaver point out how the celebrated paper of R. V. Kadison [10] implicitly contains a Banach space characterization of unitary elements in unital C^{*}-algebras. Then they ask for explicit characterizations of such a kind, and provide those given by the following theorem (see Theorem 2 of [1] and its proof).

Theorem 1.1. Let A be a unital C^{*}-algebra, and let u be a norm-one element of A. Then the following conditions are equivalent:
(1) u is unitary.
(2) The dual space A^{*} is the linear hull of the set of states S_{u} of u.
(3) u is a vertex of the closed unit ball of A.

We recall that, given a norm-one element u of a Banach space X, the states of u (relative to X) are defined as those norm-one elements f of the dual space X^{*} satisfying $f(u)=1$. We also recall that vertices of the closed unit ball of a Banach space X are defined as those norm-one elements u of X such that the set of states S_{u} of u separates the points of X.

The proof provided in [1] of the implication (1) \Rightarrow (2) is really easy. Indeed, Condition (2) is known to be fulfilled in the case that u equals the unit 1 of A, and hence it also remains fulfilled for every unitary u because unitary elements of A lie in the orbit of $\mathbf{1}$ under the group of all surjective linear isometries on A. By the way, an alternative proof of $(1) \Rightarrow$ (2) can be given by noticing that, if u is a unitary element of A, then A becomes a C^{*}-algebra with unit u under the product $x \square y:=x u^{*} y$ and the involution $x \rightarrow u x^{*} u$. On the other hand, the implication (2) $\Rightarrow(3)$ is clear. The main aim of this section is to point out that, as a matter of fact, the implication $(3) \Rightarrow(1)$ is proved in Example 4.1 of the early paper of H . F. Bohnenblust and S. Karling [3] (see also [16, Theorem 9.5.16.(c)]). By

[^0]the way, Bohnenblust and Karlin also point out in [3] how the equivalence $(3) \Longleftrightarrow(1)$ drastically simplifies Kadison's original arguments in [10].

We conclude this section by listing, in Remark 1.2 immediately below, some other known results related to Akemann-Weaver Theorem 1.1. To be short, norm-one elements u of a Banach space X such that X^{*} is the linear hull of S_{u} will be called geometrically unitary elements of X.

Remark 1.2. (a).- Let X be a Banach space, let u be a norm-one element of X, and define the numerical index, $n(X, u)$, of X at u by

$$
n(X, u):=\inf _{\|x\|=1} \sup _{f \in S_{u}}|f(x)|
$$

(equivalently, $n(X, u)$ is the maximum nonnegative number k satisfying $k \sup _{f \in S_{u}}|f(x)| \leqslant\|x\|$ for every $\left.x \in X\right)$. Then u is a geometrically unitary element of X if and only if $n(X, u)>0$ [15, Theorem 3.2].
(b).- The above result becomes an abstract version of the Moore-Sinclair theorem [5, Theorem 31.1] that, if A is a complex Banach algebra with a norm-one unit $\mathbf{1}$, then $\mathbf{1}$ is a geometrically unitary element of A. Indeed, it is enough to apply the Bohnenblust-Karlin theorem that $n(A, \mathbf{1}) \geqslant \frac{1}{e}[3]$ (see also [4, Theorem 4.1]). Part (a) of the present remark also implies that the requirement of associativity of A in the Moore-Sinclair theorem can be altogether removed because, as pointed out in [15, p. 617], the BohnenblustKarlin theorem remains true in the non-associative context.
(c).- Let A be a complex Banach algebra with a norm-one unit $\mathbf{1}$ (associativity of A is now required), and let u be an algebraically unitary element of A (i.e., an invertible element satisfying $\|u\|=\left\|u^{-1}\right\|$). Since the operator of left multiplication by u on A is a surjective linear isometry taking $\mathbf{1}$ to u, it follows from the Moore-Sinclair theorem that u is a geometrically unitary element of A.
(d).- Parts (a) and (c) of the present remark have been recently rediscovered (see [2, Theorem 3.1] and [2, Corollary 3.5], respectively).
(e).- Let X be a Banach space, and let u be a norm-one element of X. Then we have $n\left(X^{* *}, u\right)=n(X, u)$ [15, Lemma 4.8]. Consequently, by Part (a) of the present remark, u is a geometrically unitary element of $X^{* *}$ if and only if it is a geometrically unitary element of X [2, Corollary 3.4].
(f).- Let A be a unital C^{*}-algebra. It follows from [7, Theorem 1] that, for a norm-one element u in A, each of Conditions (1) to (3) in Theorem 1.1 is equivalent to
(4) $n(A, u)$ is equal to 1 or $\frac{1}{2}$.

Moreover, the existence of a norm-one element u of A with $n(A, u)=1$ is equivalent to the commutativity of A.
(g).- Vertices u of the closed unit ball of a Banach space X need not be geometrically unitary. Indeed, there exists a real Banach space E such that, taking X equal to the space of all bounded linear operators on E, and u equal to the identity mapping on E, u becomes a vertex of the closed ball of
X but we have $n(X, u)=0$ [14, Example 3.b]. A less natural example can be found in [2, Example 3.7].

2. Generalizing the Akemann-Weaver theorem

$J B^{*}$-triples are defined as those complex Banach spaces X endowed with a continuous triple product $\{\cdots\}: X \times X \times X \longrightarrow X$ which is linear and symmetric in the outer variables, and conjugate-linear in the middle variable, and satisfies:
(1) For all x in X, the mapping $y \rightarrow\{x x y\}$ from X to X is a hermitian operator on X (in the sense of [4, Definition 5.1]) and has nonnegative spectrum.
(2) The equality

$$
\{a b\{x y z\}\}=\{\{a b x\} y z\}-\{x\{b a y\} z\}+\{x y\{a b z\}\}
$$

holds for all a, b, x, y, z in X.
(3) $\|\{x x x\}\|=\|x\|^{3}$ for every x in X.

Every C^{*}-algebra becomes a $J B^{*}$-triple under the triple product

$$
\{x y z\}:=\frac{1}{2}\left(x y^{*} z+z y^{*} x\right)
$$

More generally, C^{*}-algebras are $J B^{*}$-algebras (under the product $\left.x \circ y:=\frac{1}{2}(x y+y x)\right)$, and $J B^{*}$-algebras become $J B^{*}$-triples (under a triple product naturally derived from their binary products and involutions) [6, 18]. We recall that $J B^{*}$-algebras are defined as those complete normed Jordan complex algebras A endowed with a conjugate-linear algebra-involution $*$ satisfying $\left\|U_{x}\left(x^{*}\right)\right\|=\|x\|^{3}$ for every x in A, where, for x in A, the operator $U_{x}: A \rightarrow A$ is defined by $U_{x}(y)=2 x \circ(x \circ y)-x^{2} \circ y$.

The main interest of $J B^{*}$-triples relies on the fact that, up to biholomorphic equivalence, there are no bounded symmetric domains in complex Banach spaces others than the open unit balls of $J B^{*}$-triples [12]. Unitary elements of a $J B^{*}$-triple X are defined as those elements u of X satisfying $\{u\{u x u\} u\}=x$ for every $x \in X$. It is easily seen that, if a C^{*}-algebra A has a unitary element in the $J B^{*}$-sense, then A has a unit, and unitary elements in the $J B^{*}$-sense coincide with unitary elements in the usual C^{*}-meaning. Now, the main result in this section reads as follows.

Theorem 2.1. For a norm-one element u in a $J B^{*}$-triple X, the following conditions are equivalent:
(1) u is unitary.
(2) $n(X, u)$ is equal to 1 or $\frac{1}{2}$.
(3) u is geometrically unitary.
(4) u is a vertex of the closed unit ball of A.

The proof of Theorem 2.1 goes as follows. If Condition (1) is fulfilled, then X, endowed with the product $x \circ y:=\{x u y\}$ and the involution $x^{*}:=\{u x u\}$, becomes a unital $J B^{*}$-algebra whose unit is precisely u (see [6]), and hence (2) holds by [17, Theorem 26] (see also [9, Theorem 4]). On the other hand,
the implication $(2) \Rightarrow(3)$ follows from Remark 1.2.(a), and the one $(3) \Rightarrow(4)$ is clear. Finally, the implication $(4) \Rightarrow(1)$ follows from [6, Proposition 4.3] and $[11$, Lemma 3.1]. An alternative proof of $(4) \Rightarrow(1)$ can be given by keeping in mind that vertices of the closed unit ball of a Banach space are extreme points, that extreme points of the closed unit ball of a $J B^{*}$-triple are well-understood [13, Proposition 3.5], and then by selecting (with the help of $[8$, Proposition 1.(a)]) those extreme points which are in fact vertices.

In relation to the above proof, it is worth mentioning that, contrarily to what happens in the case of C^{*}-algebras, the group of all surjective linear isometries on a $J B^{*}$-triple X need not act transitively on the set of all unitary elements of X [6, Example 5.7]. Let us also notice that, by the references applied above, the existence in a $J B^{*}$-triple X of a norm-one element u with $n(X, u)=1$ is equivalent to the fact that X is triple-isomorphic to a unital commutative C^{*}-algebra.

References

[1] C. AKEMANN and N. WEAVER, Geometric characterizations of some classes of operators in C^{*}-algebras and von Neumann algebras. Proc. Amer. Math. Soc. 130 (2002), 3033-3037.
[2] P. BANDYOPADHYAY, K. JAROSZ, AND T. S. S. R. K. RAO, Unitaries in Banach spaces. Illinois J. Math. 48 (2004), 339-351.
[3] H. F. BOHNENBLUST and S. KARLIN, Geometrical properties of the unit sphere of a Banach algebra. Ann. Math. 62 (1955), 217-229.
[4] F. F. BONSALL and J. DUNCAN, Numerical ranges of operators on normed spaces and of elements of normed algebras. London Math. Soc. Lecture Note Series 2, Cambridge, 1971.
[5] F. F. BONSALL and J. DUNCAN, Numerical ranges II. London Math. Soc. Lecture Note Series 10, Cambridge, 1973.
[6] R. B. BRAUN, W. KAUP, and H. UPMEIER, A holomorphic characterization of Jordan C^{*}-algebras. Math. Z. 161 (1978), 277-290.
[7] M. J. CRABB, J. DUNCAN, and C. M. McGREGOR, Characterizations of commutativity for C^{*}-algebras. Glasgow Math. J. 15 (1974), 172-175.
[8] Y. FRIEDMAN and B. RUSSO, Structure of the predual of a $J B W^{*}$-triple. J. Reine Angew. Math. 356 (1985), 67-89.
[9] B. IOCHUM, G. LOUPIAS, and A. RODRÍGUEZ, Commutativity of C^{*}-algebras and associativity of $J B^{*}$-algebras. Math. Proc. Cambridge Phil. Soc. 106 (1989), 281-291.
[10] R. V. KADISON, Isometries of operator algebras. Ann. Math. 54 (1951), 325-338.
[11] A. KAIDI, A MORALES, and A. RODRÍGUEZ, A holomorphic characterization of C^{*} - and $J B^{*}$-algebras. Manuscripta Math. 104 (2001), 467-478.
[12] W. KAUP, A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces. Math. Z. 183 (1983), 503-529.
[13] W. KAUP and H. UPMEIER, Jordan algebras and symmetric Siegel domains in Banach spaces. Math. Z. 157 (1977), 179-200.
[14] M. MARTÍN and R. PAYÁ, Numerical index of vector-valued function spaces. Studia Math. 142 (2000), 262-180.
[15] J. MARTINEZ, J. F. MENA, R. PAYÁ, and A. RODRÍGUEZ, An approach to numerical ranges without Banach algebra theory. Illinois J. Math. 29 (1985), 609625.
[16] T. W. PALMER, Banach algebras and the general theory of *-algebras, Volume II, *-algebras. Encyclopedia of Mathematics and its Applications 79, Cambridge University Press, 2001.
[17] A. RODRÍGUEZ, A Vidav-Palmer theorem for Jordan C^{*}-algebras and related topics. J. London Math. Soc. 22 (1980), 318-332.
[18] M. A. YOUNGSON, Non unital Banach Jordan algebras and C^{*}-triple systems. Proc. Edinburgh Math. Soc. 24 (1981), 19-31.

Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain, e-mail : apalacio@ugr.es

[^0]: Date: 28th June 2006.
 2000 Mathematics Subject Classification. 46B04, 46LA05, 46L70.
 Partially supported by Junta de Andalucía grant FQM 0199.

