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1. Introduction

By a normed algebra we mean a real or complex (possibly nonassocia-
tive) algebra A endowed with a norm ‖ · ‖ satisfying ‖xy‖ ≤ ‖x‖‖y‖ for all
x, y ∈ A. A complete normed associative algebra will be called a Banach
algebra. A normed algebra is called norm-unital if it has a unit 1 such that
‖1‖ = 1. Unitary elements of a norm-unital normed associative algebra A
are defined as those invertible elements u of A satisfying ‖u‖ = ‖u−1‖ = 1.
By a unitary normed associative algebra we mean a norm-unital associative
normed algebra A such that the convex hull of the set of its unitary elements
is norm-dense in the closed unit ball of A. In the sequel we will denote by
UA the set of unitary elements of A. Relevant examples of unitary Banach
algebras are all unital C∗-algebras and the discrete group algebras `1(G) for
every group G.

The study of unitary Banach algebras is quite recent (see [2, 8, 14, 15,
20, 51]). They were first considered by E. R. Cowie in her P.D. thesis [14].
However, with the exception of some facts concerning discrete group al-
gebras [15], her results were not published elsewhere. Fifteen years later,
unitary Banach algebras were reconsidered by M. L. Hansen and R. V. Kadi-
son [20], who were unaware of Cowie’s work. Both [14] and [20] were mainly
concerned with the achievement of characterizations of unital C∗-algebras
among unitary Banach algebras. Recently, G. V. Wood [51] recovers some of
Cowie’s unpublished results, surveys the Hansen-Kadison paper, and proves
some new results about discrete group algebras. In [8], complex Banach
spaces whose algebras of operators are unitary are studied, and it is proved
that, under certain additional conditions, they turn out to be Hilbert spaces.
In [2], unitary Banach algebras are considered by themselves, showing that
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all unitary Banach algebras are quotients of discrete group algebras, proving
different characterizations of them in terms of numerical ranges, studying
dentability of their closed unit balls, and characterizing unital C∗-algebras
among them by means of holomorphic conditions.

In the present paper, we continue the line of [2], thus devoting the most
part of it to the development of a general theory of unitary Banach algebras.
We also retake the study, begun in [8], of those complex Banach spaces whose
algebras of operators are unitary, and, by the first time, we extend such a
study to the case of real spaces. Moreover, at the end of the paper, we leave
the associative scope in order to deal by the first time with nonassociative
unitary normed algebras.

The content of the paper is organized as follows. In Section 2 we revisit
the concepts of maximality and unique maximality (which are closely related
to that of unitarity), introduced in [20] and [14] (see also [15]), respectively.
By the sake of usefulness, we introduce the notions of strong maximality
and strong unique maximality, and clarify how all these notions are related
among them, as well as with that of unitarity. To this end, we also introduce
the concept of minimality of the equivalent norm (a weakening of the classical
notion of minimality of the norm [9]), and prove in Corollary 2.2 that a
norm-unital associative normed algebra is uniquely maximal (respectively,
strongly uniquely maximal) if and only if it is unitary and has minimality of
the equivalent norm (respectively, minimality of the norm). Consequently,
from the known facts that unital C∗-algebras are unitary (by the Russo-
Dye theorem) and have minimality of the norm, we deduce that they are
strongly uniquely maximal (Corollary 2.3). Moreover, applying a result of
Cowie (collected in our Corollary 3.11), we realize that, in the commutative
case, unital C∗-algebras are nothing other than strongly uniquely maximal
complex Banach algebras (Remark 2.6.(b)). We remark how some known
results, proved in the literature under the requirement of unique maximality,
actually remain true under the weaker one of minimality of the equivalent
norm (see Theorem 2.5).

For a real (respectively, complex) norm unital Banach algebra A, con-
sider Property (S) which follows:

(S) There exists a linear (respectively, conjugate-linear) algebra invo-
lution on A mapping each unitary element to its inverse.

It is known that Property (S) is fulfilled in the case that A is a unital
C∗-algebra, a discrete group algebra, or a finite-dimensional unitary Ba-
nach algebra. However, in general, unitary Banach algebras need not satisfy
Property (S), even if they are complex and commutative [2]. The main re-
sult in Section 3 (Theorem 3.2) asserts that unitary semisimple commutative
complex Banach algebras satisfy Property (S), and that, endowed with the
involution given by such a property, they become hermitian ∗-algebras. From
this theorem we deduce that, in the commutative case, unital C∗-algebras
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are nothing other than strongly maximal unitary semisimple complex Ba-
nach algebras (Corollary 3.7). We emphasize also Theorem 3.10, which
shows that a uniquely maximal complex Banach algebra “close enough to
be commutative” is isometrically isomorphic to a commutative C∗-algebra.

Section 4 is mainly devoted to study Property (S) in the noncommu-
tative case. To this end, we introduce “good” groups as those groups G
such that every primitive ideal of the complex Banach ∗-algebra `1(G) is
∗-invariant, and prove that, if A is a real or complex unitary semisimple Ba-
nach algebra such that the group UA is good, then A satisfies Property (S)
(Theorem 4.2 and Corollary 4.7). It seems to be an open problem whether
or not every group is good. Anyway, we show that this problem has an
affirmative answer if (and only if) every primitive unitary complex Banach
algebra satisfies Property (S), if (and only if) every primitive unitary real
Banach algebra satisfies Property (S) (Proposition 4.8). The section ends
with several characterizations, involving strong maximality, of unital C∗-
algebras (Proposition 4.9). It follows from such characterizations that, if G
is a non trivial group, then the unitary semisimple complex Banach algebra
`1(G) is not strongly maximal (much less strongly uniquely maximal) (Re-
mark 4.10). We note that there are choices of G such that `1(G) is uniquely
maximal [15], as well as other choices such that G is commutative and `1(G)
is maximal but not uniquely maximal [51].

In Section 5 we translate to the real case some of the results obtained for
complex algebras in Sections 2 and 3. Thus, we prove that every uniquely
maximal norm-unital commutative real Banach algebra is isometrically iso-
morphic to a real C∗-algebra (Proposition 5.1). In [2] it is shown that every
finite-dimensional real C∗-algebra is unitary. However, in general, unital
real C∗-algebras need not be unitary. Anyway, since real C∗-algebras have
minimality of the norm (Corollary 5.3), it follows that, for real C∗-algebras,
the concepts of unitarity and strong unique maximality are equivalent. As
a consequence, every finite-dimensional real C∗-algebra is strongly uniquely
maximal. We conclude this section by proving that every maximal semisim-
ple finite-dimensional real Banach algebra is isometrically isomorphic to a
real C∗-algebra (Theorem 5.8). This generalizes to the real case the corre-
sponding result for complex algebras, first proved in [14] (see also [51]).

If X is a complex Hilbert space, then the algebra L(X) (of all bounded
linear operators on X) is a (complex) C∗-algebra, and hence it is unitary. It
seems to be an open problem whether or not all complex Banach spaces X
such that L(X) is unitary are in fact Hilbert spaces. Some partial affirma-
tive answers to this problem have been given in [8]. We devote Section 6 to
provide the reader with some new partial affirmative answers to this prob-
lem, to formulate the actual variant of the problem for real spaces, and to
give partial affirmative answers to such a variant. We prove that a complex
Banach space X is a Hilbert space if (and only if) L(X) is unitary and sat-
isfies Property (S) (Theorem 6.4). Therefore, according to Proposition 4.8
already commented, if every group is good, then all complex Banach spaces
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X such that L(X) is unitary are in fact Hilbert spaces. Given a real or
complex Banach space X, and a vector space topology τ on L(X) stronger
than the weak-operator topology (in short, wop), let us say that L(X) is
τ -unitary if the τ -closed convex hull of UL(X) is equal to the closed unit ball
of L(X). It seems to be an unsolved problem whether or not L(X) is unitary
whenever X is an infinite-dimensional real Hilbert space. Anyway, we prove
that the problem just raised answers affirmatively if, in its formulation, uni-
tarity is replaced with wop-unitarity (Corollary 6.6). On the other hand, if
X is a complex Banach space such that L(X) is wop-unitary and satisfies
Property (S), then X is a Hilbert space (see again Theorem 6.4). It turns
out a reasonable conjecture that a real Banach space X is a Hilbert space
if (and only if) L(X) is wop-unitary. We prove that a real Banach space X
is a Hilbert space if (and only if) L(X) is wop-unitary, fulfils Property (S),
and the involution (say •) given by such a property satisfies T • ◦ T 6= 0 for
some one-dimensional operator T ∈ L(X) (Theorem 6.7). It is shown in [8]
that a complex Banach space X is a Hilbert space if (and only if) L(X)
is unitary and, for Y equal to X,X∗ or X∗∗, there exists a biholomorphic
automorphism of the open unit ball of Y which cannot be extended to a
surjective linear isometry on Y . We note that the existence of such a bi-
holomorphic automorphism of the open unit ball of a complex Banach space
Y is plenty guaranteed in the case that Y is a (complex) JB∗-triple [31].
We also note that complex Hilbert spaces are JB∗-triples. Keeping in mind
these ideas, we extend to the setting of real spaces the results of [8] quoted
above. Indeed, we prove the following facts:

(1) A real Banach space X is a Hilbert space if (and only if) L(X) is
w′op-unitary (where w′op means the dual weak-operator topology [29])
and X or X∗∗ is a real JB∗-triple in the sense of [22] (Theo-
rem 6.12).

(2) A real Banach space X is a Hilbert space if (and only if) L(X) is
w′′op-unitary (where w′′op means the second dual weak-operator topol-
ogy) and X∗ is a real JB∗-triple (Theorem 6.15).

By the way, some of the new techniques developed in this section allows us
also to complement the results of [8] in their original complex setting (see
Theorem 6.18).

In the last two sections of the paper, we are concerned with the gen-
eralization of the theory of unitary normed algebras to the non-associative
setting. Such a generalization is mainly motivated by the Russo-Dye-type
theorem for unital JB∗-algebras, proved by J.D.M. Wright and M.A. Young-
son [52]. Although non-commutative JB∗-algebras are “nearly” associative
(they are in fact non-commutative Jordan algebras in the sense of [34]), in
a very precise sense they become the largest non-associative generalizations
of (associative) C∗-algebras. Indeed, it proved in [26] that an associative
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(respectively, non-associative) normed complex algebra is a C∗-algebra (re-
spectively, a non-commutative JB∗-algebra) if and only if it has an approx-
imate unit bounded by one, and its open unit ball is a bounded symmetric
domain (equivalently, the normed space of the algebra is linearly isometric to
a JB∗-triple). In view of the above comments, and due to the fact that the
setting of unital non-commutative Jordan algebras becomes the largest non-
associative one where a notion of invertible element works reasonably [35],
we restrict our attention to norm-unital normed non-commutative Jordan
algebras. Unitary elements of such an algebra are defined verbatim as in
the associative case, and the the notions of unitarity, maximality, strong
maximality, unique maximality, and strong unique maximality are trans-
lated literally from the associative setting to the more general one. Since
the set of all unitary elements of a norm-unital normed non-commutative
Jordan algebra need not be multiplicatively closed, we introduce weakly uni-
tary normed non-commutative Jordan algebras as those norm-unital normed
non-commutative Jordan algebras A such that the convex multiplicatively
closed hull of UA is dense in the closed unit ball of A. Replacing unitarity
with weak unitarity, most results obtained in Section 2 remain true in the
new setting (see Proposition 7.3 and Corollary 7.5). As a consequence, unital
non-commutative JB∗-algebras turn out to be strongly uniquely maximal
(Proposition 7.10). Moreover, weakly unitary norm-unital closed subalge-
bras of non-commutative JB∗-algebras are non-commutative JB∗-algebras
(Theorem 7.11). The result just quoted becomes a non-associative gener-
alization of [20, Theorem 4]. Alternative algebras (respectively, alternative
C∗-algebras) are very particular examples of non-commutative Jordan alge-
bras (respectively, non-commutative JB∗-algebras). It is worth mentioning
that, as in the particular associative case, for a norm-unital normed alterna-
tive algebra A, the set UA is multiplicatively closed, and hence the concepts
of unitarity and weak unitarity are equivalent for A. We prove that ev-
ery finite-dimensional maximal unitary normed alternative complex algebra
is isometrically isomorphic to an alternative C∗-algebra (Theorem 7.12).
This generalizes [20, Theorem 6] (see also [2, Corollary 2.7]). Moreover,
we prove a variant of Theorem 5.8 (reviewed some paragraphs ago) in the
case of complex alternative algebras (see Theorem 7.16). Due to the lack
of associativity, the proof of such a variant becomes the hardest one in the
paper.

In the last section (Section 8) we introduce real non-commutative JB∗-
algebras and real alternative C∗-algebras, and extend to the real case some
results of the previous section. Among them, we emphasize the variant of
Theorem 7.12 (reviewed in the preceding paragraph) for real algebras (see
Theorem 8.10). It is also worth mentioning the fact that every group is good
if and only if every unitary semisimple complete normed complex alterna-
tive algebra satisfies Property (S), if and only if every unitary semisimple
complete normed real alternative algebra satisfies Property (S) (Proposi-
tion 8.11).
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Notation. Given a vector space X, we denote by L(X) the algebra of
all linear operators on X. Now, let X be a real or complex normed space.
Then the symbol L(X) (respectively, K(X), or F(X)) will stand for the
normed algebra of all bounded (respectively, compact, or finte-rank) linear
operators on X. We denote by BX , SX , and X∗ the closed unit ball, the unit
sphere, and the (topological) dual, respectively, of X. The normed space X
will be regarded without notice as a subspace of its second dual X∗∗. For a
bounded linear mapping T from X to another normed space Y , we denote
by T ∗ : Y ∗ → X∗ the transpose of T .

2. Basic definitions and facts

Let A be a norm-unital normed associative algebra. We say that A

is


maximal

strongly maximal
uniquely maximal

strongly uniquely maximal

 if, whenever ||| · ||| is an


equivalent
continuous
equivalent
continuous


norm on A converting A into a norm-unital normed algebra and satisfying

UA ⊆ U(A,|||·|||), we have that


UA = U(A,|||·|||)
UA = U(A,|||·|||)
‖ · ‖ = ||| · |||
‖ · ‖ = ||| · |||

. The implications

(2.1) strong unique maximality
����

@@@@

unique maximality

strong maximality

@@@@

����
maximality

are clear.
The relation between the notions just introduced and that of unitarity

is being clarified by means of the following proposition.

Proposition 2.1. Let A be a norm-unital normed algebra. Then the
following conditions are equivalent:

(1) A is unitary.
(2) For every continuous norm ||| · ||| on A satisfying

(a) (A, ||| · |||) is a norm-unital normed algebra, and
(b) UA ⊆ U(A,|||·|||),

we have ||| · ||| ≤ ‖ · ‖.
(3) For every equivalent norm ||| · ||| on A satisfying (a) and (b) above,

we have ||| · ||| ≤ ‖ · ‖.
(4) For every continuous norm ||| · ||| on A satisfying (a), (b) above, and

(c) ‖ · ‖ ≤ ||| · |||,
we have ||| · ||| = ‖ · ‖.

Proof. (1) ⇒ (2).- Let ||| · ||| be a continuous norm on A satisfying (a)
and (b). Then B(A,|||·|||) is ‖ · ‖-closed, and hence, by the assumption (1), we
have

BA = co(UA) ⊆ coU(A,|||·|||) ⊆ B(A,|||·|||),
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which implies ||| · ||| ≤ ‖ · ‖.
(2) ⇒ (3).- This is clear.
(3) ⇒ (4).- This is also clear by noticing that continuous norms ||| · ||| on

A satisfying (c) are equivalent to ‖ · ‖.
(4) ⇒ (1).- This is the implication (vii) ⇒ (vi) in [2, Theorem 3.8].

Let A be a (possibly nonassociative) normed algebra. We say that A has

minimality of the
{

norm
equivalent norm

}
if, for every

{
algebra

equivalent algebra

}
norm ||| · ||| on A satisfying ||| · ||| ≤ ‖ · ‖, we have ||| · ||| = ‖ · ‖. The implication

(2.2) minimality of the norm ⇒ minimality of the equivalent norm

is clear.

Corollary 2.2. Let A be a norm-unital associative normed algebra.
Then we have:

(i) A is uniquely maximal if and only if it is unitary and has minimality
of the equivalent norm.

(ii) A is strongly uniquely maximal if and only if it is unitary and has
minimality of the norm.

Proof. Assume that A is uniquely maximal. Then, by the implication
(3) ⇒ (1) in Proposition 2.1, A is unitary. Let ||| · ||| be an equivalent algebra
norm on A with ||| · ||| ≤ ‖·‖. Then ||| · ||| is an equivalent norm on A converting
A into a norm-unital normed algebra and satisfying UA ⊆ U(A,|||·|||). Since A
is uniquely maximal, we have ||| · ||| = ‖ · ‖. Thus A has minimality of the
equivalent norm. Now, assume that A is unitary and has minimality of the
equivalent norm. Then, by the implication (1) ⇒ (3) in Proposition 2.1, A
is uniquely maximal.

The above paragraph proves assertion (i) in the present corollary. By
invoking the equivalence (1) ⇐⇒ (2) in Proposition 2.1 instead of that
(1) ⇐⇒ (3), the proof of assertion (ii) is similar.

Since unital C∗-algebras are unitary (by the Russo-Dye theorem [10,
Theorem 38.12]) and have minimality of the norm (see for example [45,
Lemma 1]), Corollary 2.2 leads to the following.

Corollary 2.3. Let A be a unital C∗-algebra. Then A is strongly
uniquely maximal.

The following lemma will be useful for later discussion.

Lemma 2.4. Let A be a unital normed algebra. If A has minimality
of the equivalent norm, then A is norm-unital. If A has minimality of the
norm, and if it is associative and maximal, then it is strongly maximal.

Proof. The Minkowski functional of the absolutely convex hull of
BA ∪ {1} is an equivalent norm (say ||| · |||) on A converting A into a norm-
unital normed algebra, and satisfying ||| · ||| ≤ ‖ · ‖. Therefore, if A has
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minimality of the equivalent norm, then we have ||| · ||| = ‖ · ‖, and hence A is
norm-unital. Assume that A is associative and has minimality of the norm.
Then continuous algebra norms on A are equivalent to ‖ · ‖ [45, Proposi-
tion 1]. Therefore, if in addition A is maximal, then it is strongly maximal.

Most notions and facts collected in this section arise previously in the
literature. Thus, minimality of the norm is a very early concept, due to
F. F. Bonsall [9]. Unique maximality is introduced by E. R. Cowie [14]
(see also [15] and [51]). Both unitarity and maximality are independently
introduced by Cowie [14] and Hansen-Kadison [20]. Maximality of normed
algebras of the form L(X), for some normed space X, can be expressed
intrinsically in terms of X [51, Definitions 1 and 7, Lemma 1, and Theo-
rem 1], thus becoming a much earlier classical notion [43, Section 9.6]. The
equivalence (1) ⇐⇒ (4) in Proposition 2.1 is proved in [2]. Its consequence,
that unique maximality implies unitarity, is an earlier result [14]. Both the
fact that minimality of the norm plus unitarity implies unique maximality,
and the one that C∗-algebras are uniquely maximal, are also known in [14].

Despite the above comments, the notions of minimality of the equivalent
norm, strong maximality, and strong unique maximality seem to be new. We
have introduced them by the sake of usefulness. Indeed, without the intro-
duction of these concepts, none of the two conclusions in Corollary 2.2 could
have been formulated. On the other hand, strong maximality has shown to
be useful to characterize C∗-algebras (see Corollary 3.7 and Proposition 4.9
below). Perhaps because the property of minimality of the equivalent norm
has not been previously introduced, the fact that unique maximality implies
such a property seems to have been not noticed. This has its own interest,
since some known results, originally proved under the requirement of unique
maximality, actually holds under the weaker requirement of minimality of
the equivalent norm. For instance, this is the case of [14, Corollary 8.15]
(see also [51, Theorem 11]). We give here the actual formulation of the
result of [14] just quoted, and include its proof by the sake of completeness,
and to be referred later (see the proof of Theorem 7.8).

Theorem 2.5. [14] Let A be a norm-unital normed associative algebra
with minimality of the equivalent norm, and let M be a closed ideal of A.
Then, for every u ∈M we have ‖u‖ = sup{‖uv‖ : v ∈ BM}.

Proof. Let π : A→ A/M be the natural quotient homomorphism, and
consider the equivalent vector space norms ‖ · ‖1 and ‖ · ‖2 on A defined by
‖x‖1 := ‖x‖+ ‖π(x)‖ and ‖x‖2 := ‖Lx‖1. Then (A, ‖ · ‖2) is a norm-unital
normed algebra. Moreover, for x, y ∈ A, we have

‖xy‖1 = ‖xy‖+ ‖π(x)π(y)‖ ≤ ‖x‖‖y‖+ ‖π(x)‖‖π(y)‖ ≤ ‖x‖‖y‖1,
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and hence ‖x‖2 ≤ ‖x‖. Since A has minimality of the equivalent norm, we
deduce that ‖ · ‖2 = ‖ · ‖ on A, i.e., the equality

(2.3) ‖x‖ = sup{‖xy‖1 : y ∈ S(A,‖·‖1)}
holds for every x ∈ A.

Let u be in SM , and let ε > 0. Then, by (2.3), there exists y ∈ S(A,‖·‖1)

such that ‖uy‖1 > 1 − ε. Since uy lies in M , and ‖ · ‖1 = ‖ · ‖ on M ,
we have ‖y‖ = ‖u‖‖y‖ ≥ ‖uy‖ > 1 − ε, and hence ‖π(y)‖ < ε because
‖y‖ + ‖π(y)‖ = 1. Therefore, there exists w ∈ M such that ‖y + w‖ < ε,
and, for such an w, we have ‖u(y + w)‖ < ε and, consequently,

‖uw‖ = ‖u(y + w)− uy‖ ≥ ‖uy‖ − ε > 1− 2ε.

On the other hand, we have

‖w‖ ≤ ‖y‖+ ‖y + w‖ < 1 + ε.

It follows that, putting v := w
1+ε ∈ M , we have ‖v‖ ≤ 1 and ‖uv‖ ≥ 1−2ε

1+ε .
By the arbitraryness of ε > 0, we deduce 1 ≤ sup{‖uv‖ : v ∈ BM}. The
converse inequality is clear.

Remark 2.6. (a) Clearly, for finite-dimensional norm-unital Banach al-
gebras, maximality (respectively, unique maximality, or minimality of the
equivalent norm) is equivalent to strong maximality (respectively, strong
unique maximality, or minimality of the norm). Moreover, by (2.1), Corol-
laries 2.2 and 2.3, [20, Theorem 6], and [51, Theorem 10], for a finite-
dimensional norm-unital complex Banach algebra A, the following condi-
tions are equivalent:

(1) A is a C∗-algebra (for some involution).
(2) A is uniquely maximal.
(3) A is maximal and unitary.
(4) A is semisimple and maximal.

For finite-dimensional norm-unital real Banach algebras, a similar situation
happens (see Section 5 below). The subalgebra A of the C∗-algebra M2(C)

given by A := {
(

λ µ
0 λ

)
: λ, µ ∈ C} becomes an example of a maximal

norm-unital commutative complex Banach algebra which is not unitary [51,
Example 3].

(b) It follows from (2.1) and Corollaries 2.3, 3.7, and 3.11 that, for a
norm-unital commutative complex Banach algebra A, the following condi-
tions are equivalent:

(1) A is a C∗-algebra (for some involution).
(2) A is strongly uniquely maximal.
(3) A is uniquely maximal.
(4) A is semisimple, unitary, and strongly maximal.

(c) Let G be a nontrivial group, and put A := `1(G). Then A is semisim-
ple and unitary, but is not strongly maximal (see Remark 4.10 below). As a
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consequence, A does not have minimality of the norm (by (2.1) and Corol-
lary 2.2). By choosing G finite (respectively, abelian), the fact just formu-
lated concludes (respectively, complement) the discussion begun in Part (a)
(respectively, (b)) of the present remark. On the other hand, according
to [51, Theorem 18], we can chose G abelian and such that A is maxi-
mal. Therefore, keeping in mind Part (b) of the present remark, we are
provided with examples of maximal unitary norm-unital semisimple com-
mutative complex Banach algebras which are neither strongly maximal nor
uniquely maximal. This concludes the discussion begun in Part (b). Avoid-
ing the abelian case, we can keep in mind the main result in [15] to realize
that there are also choices of G such that A becomes uniquely maximal.
Therefore, unique maximality does not imply strong maximality (much less,
strong unique maximality), and minimality of the equivalent norm does not
imply minimality of the norm (by Corollary 2.2), even in the unitary com-
plete semisimple complex case.

(d) Let X be a normed space, and put A := L(X). Then A has mini-
mality of the norm [9]. Therefore, by (2.1) and Corollary 2.2, the following
conditions are equivalent:

(1) A is strongly uniquely maximal.
(2) A is uniquely maximal.
(3) A is unitary.

Moreover, by Lemma 2.4, A is strongly maximal if (and only if) it is max-
imal. On the other hand, we can choose X complete and complex, and
such that A is maximal but not unitary. Indeed, by [43, Corollary 9.8.6]
and Theorem 6.18 below, this is the case of the complex Banach spaces c0
or `1. It follows that strong maximality does not imply unitarity (much less,
unique maximality), even in the primitive complete complex case.

(e) We do not know whether strong maximality plus unique maximal-
ity implies strong unique maximality, nor whether every strongly uniquely
maximal norm-unital complex Banach algebra is a C∗-algebra. If this last
question had an affirmative answer, then every complex Banach space X
such that L(X) is unitary would be a Hilbert space. Indeed, this would
follow from Part (d) of the present remark, and the fact that complex Ba-
nach spaces such that L(X) is a C∗-algebra are Hilbert spaces [18] (see also
Theorem 6.4 below).

3. Unitary commutative Banach algebras and semisimplicity

By a complex Banach star algebra we mean a complex Banach algebra
endowed with a conjugate-linear algebra involution. Such an algebra is said
to be hermitian if all its self-adjoint elements have real spectrum.

The following lemma is of straightforward verification.

Lemma 3.1. Let A be a Banach star algebra, and let M be a ∗-invariant
closed ideal of A. Then A/M , endowed with the quotient involution, be-
comes a Banach star algebra. Moreover, if the involution of A is continuous
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(respectively, isometric), then so is the quotient involution, and, if A is
hermitian, then so is A/M .

Theorem 3.2. Let A be a unitary semisimple commutative complex Ba-
nach algebra. Then there exists an isometric conjugate-linear algebra invo-
lution ∗ on A satisfying u∗ = u−1 for every u ∈ UA. Moreover, the Banach
star algebra (A, ∗) is hermitian.

Proof. By [2, Theorem 2.3] and its proof, there exists an abelian
group G and a closed ideal M of the complex group algebra `1(G) such that
A = `1(G)/M and π(G) = UA, where π : `1(G) → A denotes the natural
quotient homomorphism. We note that, since G is abelian, the complex Ba-
nach algebra `1(G), endowed with its natural involution ∗, is hermitian [37,
3.6.2 and 9.8.14]. Let y be inM , and let φ be a character of A. Then φ◦π is a
character of `1(G), and y belongs to ker(φ◦π). But, since ker(φ◦π) is a closed
finite-codimensional ideal of `1(G), it is ∗-invariant [16, Corollary 3.3.27],
and hence φ(π(y∗)) = 0. Since φ is an arbitrary character of A, and A is
semisimple, we deduce π(y∗) = 0, i.e., y∗ lies in M . Since y is an arbitrary
element of M , we obtain that M is a ∗-invariant subset of `1(G). Now, since
`1(G) is hermitian, Lemma 3.1 applies, so that the quotient involution (also
denoted by ∗) is isometric, and A, endowed with such an involution, becomes
a hermitian complex Banach star algebra. To conclude the proof, let us show
that u∗ = u−1 for every u ∈ A. If u is in UA, then there exists g in G such
that π(g) = u, and hence u∗ = (π(g))∗ = π(g∗) = π(g−1) = (π(g))−1 = u−1.

Corollary 3.3. There exists a unitary commutative complex Banach
algebra which is not semisimple.

Proof. By [2, Remark 2.9.b], there exists a unitary commutative com-
plex Banach algebra A such that no continuous involution on A takes each
unitary element to its inverse. By Theorem 3.2, such an algebra A cannot
be semisimple.

Corollary 3.4. Let A be a unitary semisimple commutative real Ba-
nach algebra. Then there exists an isometric linear algebra involution ∗ on
A satisfying u∗ = u−1 for every u ∈ UA.

Proof. By [2, Corollary 2.5], the normed complexification C⊗π A is a
unitary commutative Banach algebra. Since C⊗A is semisimple [32, Lemma
5.16, page 80], the proof is concluded by noticing that A is invariant under
the involution on C⊗A given by Theorem 3.2.

Let A be a normed associative algebra. As usual, we denote by rA(·)
the spectral radius, i.e., rA(x) := limn→∞ ‖xn‖

1
n for x ∈ A.

The following corollary refines [20, Theorem 19]. Its proof involves the
folklore fact that, if A is a hermitian commutative complex Banach star
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algebra, then rA(·) is a C∗-seminorm. Indeed, since A is hermitian, the
Gelfand transform G is a ∗-homomorphism, and hence for x ∈ A we have

rA(x)2 = ‖Gx‖2 = ‖(Gx)∗(Gx)‖ = ‖G(x∗x)‖ = rA(x∗x).

Corollary 3.5. Let A be a norm-unital complex Banach algebra. Then
the following assertions are equivalent:

(1) A is isometrically isomorphic to a commutative C∗-algebra.
(2) A is maximal and unitary, and there exists k > 0 such that

‖ · ‖ ≤ krA(·).

Proof. In view of (2.1) and Corollary 2.3, only the implication
(2) ⇒ (1) merits a proof. Assume that (2) holds. Then A is commuta-
tive [10, Corollary 15.7] and semisimple, and hence, by Theorem 3.2, it is
hermitian for some involution. It follows that rA(·) is an equivalent C∗-norm
on A. Since UA ⊆ U(A,rA(·)), and A is maximal, we have UA = U(A,rA(·)).
Finally, since both A and (A, rA(·)) are unitary (the later, by Corollary 2.3),
we deduce ‖ · ‖ = rA(·).

Remark 3.6. According to [51, Theorem 15], the assertion that “maxi-
mal unitary commutative complex Banach algebras are C∗-algebras” would
be true, and its proof could be found in [14] and/or [20]. Nevertheless, we
have looked at those works without finding in them such an assertion, nor
an implicit proof of it. Actually, the statement of [51, Theorem 15] must
contain a severe misprint, because in Section 4 of the paper [51] itself, it
is proved that the unitary complex Banach algebra `1(Z) is maximal, thus
showing that the assertion we are considering is false, even in the semisimple
case. This gives Corollary 3.5 its own interest.

The following corollary provides us with two variants of Corollary 3.5.

Corollary 3.7. Let A be a semisimple strongly maximal norm-unital
complex Banach algebra. Then the following conditions are equivalent:

(1) A is commutative and unitary.
(2) There exists a conjugate-linear algebra involution ∗ on A satisfying

r(x∗x) = r(x)2 for every x ∈ A.
(3) A is isometrically isomorphic to a commutative C∗-algebra.

Proof. (1) ⇒ (2).- By Theorem 3.2.
(2) ⇒ (3).- Since A is semisimple, the assumption (2) implies that

(A, ∗) is a commutative hermitian complex Banach star algebra [1, Corol-
laire 4.2.1]. As a consequence, r(·) is a continuous norm on A converting A
into a norm-unital normed algebra, and satisfying UA ⊆ U(A,rA(·)). Since A
is strongly maximal, we have UA = U(A,rA(·)). On the other hand, since
(A, ∗) is hermitian, exp(ix) lies in U(A,rA(·)) whenever x is a self-adjoint ele-
ment of A. It follows that ‖ exp(irx)‖ = 1 for such an element x and every
r ∈ R, and hence that A is a C∗-algebra (by the Vidav-Palmer theorem [10,
Theorem 38.14]).
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(3) ⇒ (1).- This is clear.

Let A be an algebra. For x in A, we denote by Lx (respectively, Rx)
the operator of left (respectively, right) multiplication by x on A. If A is
normed, then we measure the closeness of A to the commutativity by the
number c(A) := sup{‖xy − yx‖ : x, y ∈ BA}.

Lemma 3.8. Let A be a norm-unital normed associative algebra with
minimality of the equivalent norm, and such that c(A) < 1

4 , and let S be a
bounded subsemigroup of A. Then we have ‖s‖ ≤ 1+4c(A) for every s ∈ S.

Proof. We may assume that 1 lies in S, so that we have

M := sup{‖s‖ : s ∈ S} ≥ 1.

Then, according to the proof of [10, Theorem 4.1], the mapping

x→ ‖x‖1 := sup{‖sx‖ : s ∈ S}
becomes an equivalent norm on the vector space of A such that, denoting
also by ‖ · ‖1 the corresponding operator norm on L(A), we have ‖Ls‖1 ≤ 1
for every s ∈ S. On the other hand, for x ∈ A we have

‖x‖ ≤ ‖x‖1 = ‖Rx(1)‖1 ≤ ‖Rx‖1‖1‖1 = M‖Rx‖1,

and the definition itself of the norm ‖ · ‖1 on A yields the inequality
‖yx‖1 ≤ ‖x‖‖y‖1 for all x, y ∈ A or, equivalently, ‖Rx‖1 ≤ ‖x‖ for ev-
ery x ∈ A. Since the mapping x → ‖Rx‖1 is an equivalent algebra norm
on A, and A has minimality of the equivalent norm, we have ‖Rx‖1 = ‖x‖
for every x ∈ A. Now, note that, since

‖x‖ ≤ ‖x‖1 ≤M‖x‖
for all x ∈ A, we have ‖T‖1 ≤ M‖T‖ for every T ∈ L(A). It follows that,
for s ∈ S, we have

‖s‖ = ‖Rs‖1 ≤ ‖Ls‖1 + ‖Rs − Ls‖1 ≤ 1 +M‖Rs − Ls‖ ≤ 1 +M2c(A),

so M = sup{‖s‖ : s ∈ S} ≤ 1+M2c(A), and so M−1
M2 ≤ c(A). Now, consider

the real-valued function f : t→ t−1
t2

on [1,∞[, and compute its derivative to
realize that f is strictly increasing on [1, 2] and strictly decreasing on [2,∞[.
Then, since f(M) ≤ c(A), and c(A) < 1

4 (by assumption), and 1
4 = f(2), we

deduce that M 6= 2.
Assume that M < 2. Then we have M−1

4 ≤ M−1
M2 ≤ c(A), and hence

M ≤ 1 + 4c(A), as required.
To conclude the proof, it is enough to show that the possibility M > 2

leads to a contradiction. Indeed, if M > 2, then the set

S′ := {1} ∪ {λs : 0 ≤ λ ≤ 2
M
, s ∈ S}

is a bounded subsemigroup of A with 1 ∈ S′ and

M ′ := sup{‖s′‖ : s′ ∈ S′} = 2,
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which is imposible by the first paragraph of the proof.

Corollary 3.9. Let A be a norm-unital normed associative algebra with
minimality of the equivalent norm, and such that c(A) < 1

4 . Then we have
‖ · ‖ ≤ (1 + 4c(A))rA(·).

Proof. It is enough to show that ‖x‖ ≤ 1 + 4c(A) whenever x is an
element of A with rA(x) < 1. Let x be such an element. Then the set
S := {xn : n ∈ N} is a bounded subsemigroup of A. Since x belongs to S,
Lemma 3.8 yields that ‖x‖ ≤ 1 + 4c(A).

The following theorem follows straightforwardly from implications (2.1)
and (2.2), and Corollaries 2.2, 2.3, 3.5, and 3.9.

Theorem 3.10. Let A be a norm-unital complex Banach algebra. Then
the following assertions are equivalent:

(1) A is isometrically isomorphic to a commutative C∗-algebra.
(2) A is uniquely maximal and c(A) < 1

4 .

Corollary 3.11. [14] Let A be a norm-unital commutative complex
Banach algebra. Then A is uniquely maximal if and only if it is isometrically
isomorphic to a commutative C∗-algebra.

4. Noncommutative unitary Banach algebras

The proof of the following proposition involves only minor changes to
that of Theorem 3.2, and hence it is left to the reader.

Proposition 4.1. Let A be a unitary Banach algebra having a faithful
family of finite-dimensional irreducible representations. Then there exists
an isometric conjugate-linear algebra involution ∗ on A satisfying u∗ = u−1

for every u ∈ UA.

We say that a group G is hermitian (respectively, good) if the complex
Banach ∗-algebra `1(G) is hermitian (respectively, if every primitive ideal of
`1(G) is ∗-invariant). We already know that abelian groups are hermitian.
Moreover, hermitian groups are good [37, 9.8.2].

Theorem 4.2. Let A be a unitary semisimple complex Banach algebra
such that the group UA is good. Then there exists an isometric conjugate-
linear algebra involution ∗ on A satisfying u∗ = u−1 for every u ∈ UA.
Moreover, if the group UA is actually hermitian, then the Banach star algebra
(A, ∗) is hermitian.

Proof. By [2, Theorem 2.3] and its proof, there exists a closed ideal
M of the complex Banach algebra `1(UA) such that A = `1(UA)/M and
π(UA) = UA, where π : `1(UA) → A denotes the natural quotient homomor-
phism. Noticing that φ ◦ π is an irreducible representation of `1(UA) when-
ever φ is an irreducible representation of A, and that, since the group UA
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is good, the kernels of irreducible representations of `1(UA) are ∗-invariant,
the proof is concluded by repeating that of Theorem 3.2, with irreducible
representations instead of characters.

Since abelian groups are hermitian, Theorem 4.2 contains Theorem 3.2.

Remark 4.3. Let A be a norm-unital Banach algebra, and let G be
a subgroup of UA such that co(G) = BA. Then, looking at the proof of
[2, Theorem 2.3], we realize that there exists a closed ideal M of `1(G)
such that A = `1(G)/M and π(G) = G, where π : `1(G) → A denotes
the natural quotient homomorphism. Therefore, if in addition A is complex
and semisimple, and if G is good, then we can argue as in the proof of
Theorem 4.2 to obtain that there exists an isometric conjugate-linear algebra
involution ∗ on A satisfying u∗ = u−1 for every u ∈ G.

Let X,Y, U , and V be complex Banach spaces, and let F : X → U and
G : Y → V be bounded linear (respectively, conjugate-linear) operators.
Then there exists a unique bounded linear (respectively, conjugate-linear)
operator F ⊗̂G : X⊗̂πY → U⊗̂πV satisfying (F ⊗̂G)(x⊗y) = F (x)⊗G(y) for
every (x, y) ∈ X×Y (Here, ⊗̂π denotes complete projective tensor product.)
As a consequence, if A and B are complex Banach ∗-algebras whose invo-
lutions are continuous, then A⊗̂πB becomes canonically a complex Banach
∗-algebra.

Lemma 4.4. Let A and B be unital complex Banach algebras, with A
commutative, let X be a complex vector space, and let φ be an irreducible
representation of A⊗̂πB on X. Then there exists a character θ of A, and
an irreducible representation ψ of B on X, satisfying

φ(x⊗ y) = θ(x)ψ(y)

for every (x, y) ∈ A × B. Moreover, if booth A and B are endowed with
continuous conjugate-linear algebra involutions, if (A, ∗) is hermitian, and
if ker(ψ) is ∗-invariant, then ker(φ) is ∗-invariant (relative to the canonical
involution on A⊗̂πB).

Proof. According to [42, Theorem 2.2.6], X can be converted into a
Banach space in such a way that the range of φ is contained in L(X) and
that, regarded as mapping into L(X), φ is continuous. Define mappings
θ : A→ L(X) and ψ : B → L(X) by θ(x) := φ(x⊗1) and ψ(y) := φ(1⊗ y).
Then θ and ψ are nonzero continuous homomorphisms, and we have

φ(x⊗ y) = φ((x⊗ 1)(1⊗ y)) = φ(x⊗ 1)φ(1⊗ y) = θ(x)ψ(y)

for every (x, y) ∈ A × B. Moreover, since A ⊗ 1 is contained in the center
of A⊗̂πB, θ(A) consists of complex miltiples of the identity operator on X
[10, Corollary 25.5], and hence θ can be seen as a character of A. Let z be
in A⊗̂πB. Then there exist sequences xn and yn in A and B, respectively,
satisfying

∑∞
n=1 ‖xi‖‖yi‖ < ∞ and z =

∑∞
n=1 xi ⊗ yi. Therefore we have
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n=1 |θ(xi)|‖yi‖ < ∞, which allows us to define y :=

∑∞
n=1 θ(xi)yi ∈ B

such that

ψ(y) =
∞∑

n=1

θ(xi)ψ(yi) =
∞∑

n=1

φ(xi ⊗ yi) = φ(z).

Since z is arbitrary in A⊗̂πB, the above shows that the range of φ is con-
tained in the range of ψ. This implies that ψ is an irreducible representation
of B.

Assume that booth A and B are endowed with continuous conjugate-
linear algebra involutions, that (A, ∗) is hermitian, and that ker(ψ) is
∗-invariant. Let z =

∑∞
n=1 xi ⊗ yi be in ker(φ) (with (xi, yi) ∈ A × B

and
∑∞

n=1 ‖xi‖‖yi‖ < ∞). Then
∑∞

n=1 θ(xi)yi lies in ker(ψ), and hence we
have

φ(z∗) =
∞∑

n=1

θ(x∗i )ψ(y∗i ) =
∞∑

n=1

θ(xi)ψ(y∗i ) = ψ((
∞∑

n=1

θ(xi)yi)∗) = 0.

Thus ker(φ) is ∗-invariant.

Remark 4.5. Let A, B, and X be as in Lemma 4.4 above. Then in
fact we are provided with a bijective correspondence between the set of all
irreducible representations of A⊗̂πB on X, and the set of all couples of the
form (θ, ψ), where θ is a character of A, and ψ is an irreducible representation
of B on X. Indeed, if (θ, ψ) is such a couple, and if we endow X with a
complete norm in such a way that ψ(B) ⊆ L(X) and that ψ : B → L(X)
becomes continuous, then

θ⊗̂ψ : A⊗̂πB → C⊗̂πL(X) = L(X)

becomes an irreducible representation of A⊗̂πB.

Proposition 4.6. Homomorphic images of good groups are good groups.
The direct product of an abelian group and a good group is a good group.

Proof. Let G be a good group, and let G′ be a homomorphic image
of G. By [37, 1.9.12], there exists a ∗-invariant closed ideal M of `1(G) such
that `1(G′) = `1(G)/M as Banach ∗-algebras. Let π : `1(G) → `1(G′) be
the natural quotient homomorphism. Since primitive ideals of `1(G′) are
ranges under π of primitive ideals of `1(G), and G is a good group, and π is
a ∗-homomorphism, it follows that G′ is a good group.

Now, let G be a good group, and let G′ be an abelian group. By [37,
1.10.14], we have `1(G′×G) = `1(G′)⊗̂π`1(G) as Banach ∗-algebras. On the
other hand, since G′ is abelian, the complex Banach ∗-algebra `1(G′) is her-
mitian and commutative. It follows from the goodness of G and Lemma 4.4
that G′ ×G is a good group.

Corollary 4.7. Let A be a unitary semisimple real Banach algebra
such that the group UA is good. Then there exists an isometric linear algebra
involution ∗ on A satisfying u∗ = u−1 for every u ∈ UA.
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Proof. Put G := {λ ⊗ u : (λ, u) ∈ SC × UA} ⊆ C ⊗π A. Then, since
A is unitary, G is a subgroup of UC⊗πA such that co(G) = BC⊗πA. On the
other hand, G is a homomorphic image of SC × UA. Since UA is good, and
C ⊗ A is semisimple, it follows from Proposition 4.6 and Remark 4.3 that
there exists an isometric linear algebra involution ∗ on C ⊗π A satisfying
u∗ = u−1 for every u ∈ UC⊗πA. Finally note that, since A is unitary, it must
be invariant under such an involution.

There are non-hermitian groups [37, 12.6.24], as well as non-abelian
hermitian groups [37, 12.6.22 and 12.1.19]. However, it seems to be an open
problem whether every group is good. This problem can be equivalently
formulated as follows.

Proposition 4.8. The following assertions are equivalent:

(1) Every group is a good group.
(2) Every unitary semisimple real Banach algebra has an isometric lin-

ear algebra involution sending unitary elements to their inverses.
(3) The same as (2), with primitive instead of semisimple.
(4) Every unitary semisimple complex Banach algebra has an isomet-

ric conjugate-linear algebra involution sending unitary elements to
their inverses.

(5) The same as (4), with primitive instead of semisimple.

Proof. The implications (2) ⇒ (3) and (4) ⇒ (5) are clear.
(1) ⇒ (2).- By Corollary 4.7.
(2) ⇒ (4) (respectively, (3) ⇒ (5)).- Let A be a unitary semisimple

(respectively, primitive) complex Banach algebra. By the assumption (2)
(respectively, (3)), there exists an isometric real-linear algebra involution
∗ on A satisfying u∗ = u−1 for every u ∈ UA. But, keeping in mind the
inclusion SCUA ⊆ UA, we realize that ∗ is actually conjugate-linear.

(5) ⇒ (1).- Assume that Assertion (1) does not hold. Then there exists
a group G, and a primitive ideal M of `1(G) which is not ∗-invariant. Put
A := `1(G)/M . Then, since quotients of unitary Banach algebras are uni-
tary [2, Proposition 2.1], A is a unitary primitive complex Banach algebra.
Moreover, since M is not ∗-invariant, we can argue as in [2, Remark 2.9.(b)]
to realize that there is no continuous conjugate-linear algebra involution on
A sending unitary elements to their inverses. Therefore Assertion (4) fails.

Theorem 4.2, together with Proposition 4.9 immediately below, pro-
vides us with sufficient conditions for a complex Banach algebra to be a
C∗-algebra.

Proposition 4.9. Let A be a strongly maximal norm-unital complex
Banach star algebra whose involution is isometric. Then the following as-
sertions are equivalent:
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(1) A is hermitian and semisimple.
(2) There exists an injective ∗-homomorphism from A to a C∗-algebra.
(3) A is a C∗-algebra.

Proof. (1) ⇒ (2).- By the assumption (1), the mapping x → s(x) :=√
r(x∗x) is a C∗-algebra norm on A [10, Corollary 41.8 and Theorem 41.9].

Therefore the inclusion of A into the completion of (A, s(·)) is an injective
∗-homomorphism from A to a C∗-algebra.

(2) ⇒ (3).- Let φ be the injective ∗-homomorphism φ from A to a C∗-
algebra, whose existence is assumed. Then ‖φ(·)‖ is a C∗-algebra norm
on A satisfying ‖φ(·)‖ ≤ ‖ ·‖ (by [10, Lemma 39.2.(ii)] and the fact that ∗ is
isometric). This implies that ‖φ(·)‖ is continuous and that UA ⊆ U(A,‖φ(·)‖).
Since A is strongly maximal, we have UA = U(A,‖φ(·)‖). This equality implies
that ‖ exp(irx)‖ = 1 whenever r is in R and x is a self-adjoint element of A,
and hence that A is a C∗-algebra (by the Vidav-Palmer theorem).

(3) ⇒ (1).- This is clear.

Remark 4.10. Let G be a group. It is easy to verify that, if an element
of the complex Banach star algebra `1(G) has its numerical range contained
in R, then it is a real multiple of 1. Therefore `1(G) cannot be a C∗-algebra
unless G is reduced to its unit element. On the other hand, there exists an
injective ∗-homomorphism from `1(G) to a C∗-algebra [16, Theorems 3.3.34
and 3.3.36]. It follows from Proposition 4.9 that, if G is nontrivial, then
`1(G) is not strongly maximal.

5. Characterizing real C∗-algebras

Despite real C∗-algebras can be defined by different systems of intrinsic
axioms (see [23] for a summary), we prefer to introduce them as the norm-
closed self-adjoint real subalgebras of (complex) C∗-algebras. The following
proposition becomes a partial generalization of Corollary 3.11 to the real
setting.

Proposition 5.1. Let A be a uniquely maximal norm-unital commu-
tative real Banach algebra. Then A is isometrically isomorphic to a real
C∗-algebra.

Proof. By Corollaries 2.2 and 3.9, we have

(5.1) rA(·) = ‖ · ‖.
On the other hand, by [2, Corollary 2.5], the normed complexification C⊗πA
is a unitary commutative Banach algebra. Since C ⊗π A is semisimple (by
(5.1)), Theorem 3.2 provides us with an involution ∗ converting C ⊗π A
into a hermitian complex Banach algebra in such a way that A becomes
∗-invariant (because A is unitary). Let K stand for the carrier space of
C⊗π A, and let G : C⊗π A→ CC(K) be the Gelfand transform. Then G is
a ∗-homomorphism (because C ⊗π A is hermitian), and hence G(A) is a ∗-
invariant real subalgebra of the C∗-algebra CC(K). Since G|A is an isometry
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(by (5.1)), G(A) is closed in CC(K) (and therefore it is a real C∗-algebra),
and A is isometrically isomorphic G(A).

A theorem of S. B. Cleveland [13] (see also [45] for an alternative proof)
asserts that the topology of any algebra norm on a C∗-algebra is stronger
than that of the C∗-norm. This result can be easily generalized to real
C∗-algebras, as follows.

Lemma 5.2. Let A be a real C∗-algebra, and let ‖ · ‖1 be an arbitrary
algebra norm on A. Then the topology of ‖ · ‖1 is stronger than that of the
natural norm ‖ · ‖.

Proof. By [42, 4.1.13] and [19, 15.4], the complexification C⊗A can be
endowed with an algebra norm ‖·‖2 extending ‖·‖ and converting C⊗A into
a C∗-algebra. On the other hand the projective tensor product C⊗π(A, ‖·‖1)
becomes a normed complex algebra [10, Proposition 13.3]. By Cleveland’s
theorem, the topology of C⊗π (A, ‖ · ‖1) is stronger than that of ‖ · ‖2. Since
the norm of C⊗π (A, ‖ · ‖1) extends ‖ · ‖1, and ‖ · ‖2 extends ‖ · ‖, the result
follows.

Corollary 5.3. Let A be a real C∗-algebra. Then A has minimality of
the norm.

Proof. Let ‖ · ‖1 be an algebra norm on A such that ‖ · ‖1 ≤ ‖ · ‖. By
Lemma 5.2, ‖ · ‖1 is equivalent to ‖ · ‖. Therefore, for x ∈ A we have

‖x‖2 = ‖x∗x‖ = rA(x∗x) = r(A,‖·‖1)(x
∗x)

≤ ‖x∗x‖1 ≤ ‖x∗‖1‖x‖1 ≤ ‖x∗‖‖x‖1 = ‖x‖‖x‖1,

so ‖x‖ ≤ ‖x‖1, and so ‖x‖ = ‖x‖1.

Every finite-dimensional real C∗-algebra is unitary [2, Remark 2.9]. This
fact, together with Corollaries 2.2 and 5.3, yields the following.

Proposition 5.4. Every finite-dimensional real C∗-algebra is uniquely
maximal.

Remark 5.5. (a) In view of Corollaries 2.2 and 5.3, unital real C∗-
algebras are strongly uniquely maximal if (and only if) they are unitary.
Nevertheless, in general, real C∗-algebras need not be unitary, even if they
are commutative. Indeed, if A denotes the real C∗-algebra CR([0, 1]) (with
involution equal to the identity mapping), then we have UA = {1,−1}.
Thus, a determination of unitary commutative real C∗-algebras would be
interesting in order to be provided with a reasonable converse to Proposi-
tion 5.1.

(b) The proof of Corollary 3.5 actually shows that, if A is a unitary
complex Banach algebra, and if there exits k > 0 such that ‖ · ‖ ≤ krA(·),
then A is bicontinuously isomorphic to a commutative C∗-algebra. Nev-
ertheless, such a result cannot remain true in the real setting, since the



20 J. Becerra, M. Burgos, A. Kaidi, and A. Rodŕıguez.

non-commutative algebra of Hamilton’s quaternions is a finite-dimensional
real C∗-algebra (and hence, by Corollary 2.2 and Proposition 5.4, a unitary
real Banach algebra) with ‖·‖ = r(·). Anyway, we are able to prove that if A
is a unitary commutative real Banach algebra, and if there exits k > 0 such
that ‖ · ‖ ≤ krA(·), then A is bicontinuously isomorphic to a real C∗-algebra.
Indeed, noticing that, in the proof of Proposition 5.1, the stronger assump-
tion that A is uniquely maximal is only applied to show that rA(·) = ‖ · ‖,
it is enough to mimic such a proof with rA(·) ≤ ‖ · ‖ ≤ krA(·) instead of
rA(·) = ‖ · ‖.

(c) In view of paragraphs (a) and (b) of the present remark, the unique
plausible conjecture, concerning a generalization of Corollary 3.5 to the real
case, is that maximal unitary commutative real Banach algebras satisfying
‖·‖ ≤ kr(·), for some k > 0, are isometrically isomorphic to real C∗-algebras.
However, unfortunately, we have been unable to prove or disprove it.

By a quaternionic normed space we mean a left vector space X over
the noncommutative field H of Hamilton’s quaternions, such that the real
vector space underlying X is a normed space under a norm ‖ · ‖ satisfying
‖λx‖ = |λ|‖x‖ for every (λ, x) ∈ H × X. By a quaternionic pre-Hilbert
space we mean a left vector space X over H endowed with a mapping
(·|·) : X ×X → H (called the H-valued inner product of X) which is linear
in its first variable and satisfies for x, y ∈ X the following:

(1) (x|y)∗ = (y|x), where ∗ stands for the standard involution of H.
(2) (x, x) > 0 whenever x 6= 0.

Every quaternionic pre-Hilbert space becomes both a quaternionic normed
space (under the norm ‖x‖ :=

√
(x|x)) and a real pre-Hilbert space (under

the real-valued inner product < x|y >:= <e(x|y), where <eλ := λ+λ∗

2 for
every λ ∈ H). As we show in Lemma 5.6 immediately below, the converse
is also true. Such a lemma is surely well-known, but we have not found an
appropriate reference.

Lemma 5.6. Let X be a quaternionic normed space such that the un-
derlying real normed space is a pre-Hilbert space. Then X is a quaternionic
pre-Hilbert space.

Proof. Let < ·|· > be the real-valued inner product on X satisfying
< x|x >= ‖x‖2 for every x ∈ X, whose existence is assumed. Since the
multiplication by an element λ ∈ SH is a surjective R-linear isometry with
inverse equal to the multiplication by λ∗, for such a λ and all x, y ∈ X we
have

(5.2) < λx|y >=< x|λ∗y > .

Now, let {1, i, j, k} be a canonical basis of H (see for example [10, Definition
14.3]), so that we have

(5.3) i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j,
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and define (·|·) : X ×X → H by

(x|y) :=< x|y > −i < ix|y > −j < jx|y > −k < kx|y > .

Applying (5.2) (with λ = i, j, k) and (5.3), we straightforwardly realize that
(·|·) is an H-valued inner product on X satisfying (x|x) = ‖x‖2 for every
x ∈ X.

Lemma 5.6 just proved allows us to generalize to quaternionic spaces the
celebrated Auerbach theorem:

Corollary 5.7. Let F stand for either R,C, or H, let (X, ‖ · ‖) be a
finite-dimensional normed space over F, and let G be a bounded subgroup
of the group of all bijective linear operators on X. Then there exists an
F-valued inner product (·|·) on X such that all elements of G become isome-
tries on (X, ‖ · ‖1), where ‖x‖1 :=

√
(x|x).

Proof. For x in X, put ‖x‖2 := sup{‖T (x)‖ : T ∈ G}. Then (X, ‖ · ‖2)
becomes a normed space over F, on which all elements of G are isometries.
By Auerbach’s theorem [48, Theorem 9.5.1], there is a real-valued inner
product < ·|· > on X such that all R-linear isometries on (X, ‖ · ‖2) become
also isometries on (X, ‖ · ‖1), where ‖x‖1 :=

√
< x|x >. As a first conse-

quence, all elements of G are isometries on (X, ‖ · ‖1), which concludes the
proof in the case F = R. In the case that F is equal to C or H, note that,
since multiplications by elements of SF are R-linear isometries on (X, ‖ · ‖2),
they are also isometries on (X, ‖ · ‖1), and therefore (X, ‖ · ‖1) is a normed
space over F. Then the proof is concluded by recalling that elements of
G are isometries on (X, ‖ · ‖1), and applying Lemma 5.6 or its well-known
variant for complex spaces.

The following theorem generalizes to the real case the corresponding
result for complex algebras, first proved in [14] (see also [51]). Our proof
can be also useful to clarify the original proof in the complex case.

Theorem 5.8. Let A be a semisimple finite-dimensional maximal norm-
unital real Banach algebra. Then A is (isometrically isomorphic to) a real
C∗-algebra.

Proof. By Wedderburn’s theory, we have A = ⊕n
i=1L(Xi), where, for

i = 1, ..., n, Xi is a left vector space over Fi (= R,C, or H), and L(Xi)
denotes the algebra of all linear operators on Xi. Fix i = 1, ..., n, let ‖ · ‖i be
any norm on Xi converting Xi into a normed space over Fi, and let πi stand
for the projection from A onto L(Xi) corresponding to the decomposition
A = ⊕n

i=1L(Xi). Then πi(UA) is a bounded subgroup of the group of all
bijective linear operators on (Xi, ‖ · ‖i). By Corollary 5.7, there exists an
Fi-valued inner product (·|·)i on Xi such that all elements of πi(UA) become
isometries on (Xi, ||| · |||i), where |||xi|||i :=

√
(xi|xi)i. Now L(Xi), endowed

with the operator norm corresponding to ||| · |||i (also denoted by ||| · |||i),
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becomes a real C∗-algebra. For a =
∑n

i=1 ai ∈ A with ai ∈ L(Xi) for
all i, put |||a||| := max{|||ai|||i : i = 1, ..., n}. It follows that (A, ||| · |||) is
a real C∗-algebra, and that UA ⊆ U(A,|||·|||). Since A is maximal, we have
in fact UA = U(A,|||·|||). Finally, since (A, ||| · |||) is uniquely maximal (by
Proposition 5.4), we deduce ‖ · ‖ = ||| · ||| on A.

It follows from Proposition 5.4, Theorem 5.8, and [2, Remark 2.9] that,
for a finite-dimensional norm-unital real Banach algebra A, the following
conditions are equivalent:

(1) A is a real C∗-algebra (for some involution).
(2) A is uniquely maximal.
(3) A is maximal and unitary.
(4) A is semisimple and maximal.

6. Banach spaces whose algebras of operators are unitary

Let X be a Banach space, and let x and f be in X and X∗, respectively.
We denote by x⊗f the bounded linear operator onX defined by (x⊗f)(y) :=
f(y)x for every y ∈ X.

Lemma 6.1. Let X be a Banach space, and let α be in X∗∗ such that
h⊗ α = T ∗ for some h ∈ X∗ \ {0} and T ∈ L(X). Then α lies in X.

Proof. Take x ∈ X such that h(x) = 1. Then, for every g ∈ X∗ we
have

g(T (x)) = T ∗(g)(x) = [(h⊗ α)(g)](x) = α(g)h(x) = α(g).

Therefore, α = T (x) ∈ X.

We recall that an algebra A of linear operator on a vector space X is
said to be strictly dense if for every k ∈ N and arbitrary vectors x1, ..., xk

and y1, ..., yk where x1, ..., xk are linearly independent, there exists T ∈ A
such that T (xi) = yi for all i = 1, ..., k. The following lemma is proved in
[42, Theorem 2.5.19] for complex spaces and linear algebra isomorphisms,
but it proof works without changes in the case of real spaces, as well as in
that of complex spaces and conjugate-linear algebra isomorphisms. Indeed,
[42, Theorem 2.5.19] is nothing other than an analytic specialization of [24,
IV.9 and IV.11].

Lemma 6.2. Let X and Y be real (respectively, complex) Banach spaces,
let A and B strictly dense Banach algebras of bounded linear operators on
X and Y , respectively, containing finite-rank operators, and let φ be a linear
(respectively, conjugate-linear) algebra isomorphism from A onto B. Then
there exists a bicontinuous linear (respectively, conjugate-linear) bijection
ψ : X → Y such that φ(T ) = ψ ◦ T ◦ ψ−1 for every T ∈ A.

Let X and Y be complex Banach spaces, and let ψ : X → Y be a con-
tinuous conjugate-linear mapping. The transpose ψ∗ of ψ is defined as the
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continuous conjugate-linear mapping from Y ∗ to X∗ defined by ψ∗(g)(x) :=
g(ψ(x)) for every (g, x) ∈ Y ∗ ×X. We note that, if ψ is bijective, then the
equality

(6.1) ψ ◦ (x⊗ f) ◦ ψ−1 = ψ(x)⊗ (ψ−1)∗(f)

holds for every (x, f) ∈ X ×X∗.
The next proposition has a forerunner in [30, Lemma 3]. Indeed, it

is proved there that, if X is a complex Banach space, and if there exists
a linear anti-automorphism φ of L(X), then X is reflexive, and there is a
bicontinuous linear bijection ψ : X → X∗ such that φ(T ) = ψ−1 ◦ T ∗ ◦ψ for
every T ∈ L(X).

Proposition 6.3. Let X be a real (respectively, complex) Banach space.
Then the following conditions are equivalent:

(1) There exists a linear (respectively, conjugate-linear) algebra involu-
tion • on L(X).

(2) X is reflexive, and there is a bicontinuous linear (respectively, conjugate-
linear) bijection ψ : X → X∗ such that ψ∗ = ±ψ (respectively,
ψ∗ = ψ).

When the above conditions are fulfilled, then the mappings • and ψ above
are related by means of the equality T • = ψ−1 ◦ T ∗ ◦ ψ for every T ∈ L(X).

Proof. (1) ⇒ (2).- Let • be the linear (respectively, conjugate-linear)
algebra involution on L(X) whose existence is assumed. Consider the alge-
bras A and B of bounded linear operators on X and X∗, respectively, given
by A := L(X) and B := {T ∗ : T ∈ L(X)}, both endowed with their nat-
ural operator norms, and the linear (respectively, conjugate-linear) algebra
isomorphism φ from A onto B defined by φ(T ) := (T •)∗. By Lemma 6.2,
there exists a bicontinuous linear (respectively, conjugate-linear) bijection
ψ : X → X∗ such that

(6.2) φ(T ) = ψ ◦ T ◦ ψ−1

for every T ∈ A. Let x and f be in X and X∗, respectively. By (6.1)
and (6.2), we have

(6.3) φ(x⊗ f) = ψ(x)⊗ (ψ−1)∗(f).

Since φ(x ⊗ f) belongs to B, it follows from Lemma 6.1 that (ψ−1)∗(f)
lies in X. Since f is arbitrary in X∗, and the range of (ψ−1)∗ is X∗∗, we
realize that X is reflexive. Now, from (6.3) and the definition of φ we derive
(x⊗f)• = (ψ−1)∗(f)⊗ψ(x), and hence x⊗f = (ψ−1)∗(ψ(x))⊗ψ((ψ−1)∗(f))
(because the mapping • is involutive). Since x and f are arbitrary in X
and X∗, respectively, this implies that all elements in X are eigenvectors of
(ψ−1)∗◦ψ, and that all elements of X∗ are eigenvectors of ψ◦(ψ−1)∗, so that
there exists in fact a nonzero real (respectively, complex) number λ satisfying
(ψ−1)∗ ◦ ψ = λIX and ψ ◦ (ψ−1)∗ = λ−1IX∗ , where IX and IX∗ stand for
the identity mapping on X and X∗, respectively. Then, in the real case we
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have λ−1(ψ−1)∗ = λ(ψ−1)∗ = ψ−1, and hence ψ∗ = ±ψ. To conclude the
proof of the present implication, let us consider the complex case. Then we
have λ−1(ψ−1)∗ = λ(ψ−1)∗ = ψ−1, and hence |λ| = 1 and ψ∗ = λψ. Taking
µ ∈ C with µ2 = λ, we have (µψ)∗ = ψ∗µ = λψµ = λµψ = µψ. Since (6.2)
determines ψ up to a nonzero complex multiple, the proof is concluded by
replacing ψ with µψ.

(2) ⇒ (1).- Assume that Condition (2) is fulfilled. Then we straightfor-
wardly realize that the mapping T → T • := ψ−1 ◦T ∗ ◦ψ from L(X) to itself
becomes a linear (respectively, conjugate-linear) algebra involution.

Let X be a Banach space. We put GX := UL(X), and note that the
elements of GX are precisely the surjective linear isometries on X. We say
that X is almost transitive if, for every x ∈ SX , GX(x) is dense in SX . We
say that X is convex-transitive if, for every x ∈ SX , the convex hull of GX(x)
is dense in BX . The weak-operator topology on L(X) (denoted by wop) is
defined as the initial topology on L(X) relative to the family of functionals

(6.4) W := {T → f(T (x)) : (x, f) ∈ X ×X∗}.

Now, let τ be a vector space topology on L(X) stronger than wop. Then,
since BL(X) is wop-closed, it is τ -closed, and hence contains the τ -closed
convex hull of GX . We say that L(X) is τ -unitary if the containment just
pointed out becomes an equality.

Theorem 6.4. Let X be a complex Banach space such that there exists a
conjugate-linear algebra involution • on L(X) satisfying T • = T−1 for every
T ∈ GX . Then the following conditions are equivalent:

(1) L(X) is unitary.
(2) L(X) is wop-unitary.
(3) X is convex-transitive.
(4) X is almost transitive.
(5) X is a Hilbert space.

Proof. (1) ⇒ (2).- Since the weak-operator topology is weaker than
the norm topology.

(2) ⇒ (3).- By the right part of [51, Theorem 5] (see Remark 6.17.(b)
below).

(3) ⇒ (4).- Since X is reflexive (by Proposition 6.3), and reflexive Ba-
nach spaces are Asplund spaces, it follows from the assumption (3) and [5,
Corollary 3.3] that X is almost transitive.

(4) ⇒ (5).- By Proposition 6.3, X is reflexive, and there is a bicontinuous
conjugate-linear bijection ψ : X → X∗ satisfying ψ∗ = ψ and ψ−1 ◦T ∗ ◦ψ =
T−1 for every T ∈ GX . For x, y ∈ X, put (x|y) := ψ(y)(x). It follows
that (·|·) is a continuous nondegenerate hermitian sexquilinear form on X
satisfying

(6.5) (T (x)|T (x)) = (x|x)
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for every x ∈ X. By multiplying (·|·) by a suitable real number if necessary,
we may assume that the continuous nondegenerate hermitian sexquilinear
form (·|·) satisfies (x0|x0) = 1 for some x0 ∈ SX . Then, applying (6.5) and
the assumption (4), we derive ‖x‖2 = (x|x) for every x ∈ X. Therefore X
is a Hilbert space.

(5) ⇒ (1).- By Corollary 2.3.

It follows from Proposition 4.8 and Theorem 6.4 that, if every group is
good, then every complex Banach spaceX such that L(X) is unitary actually
is a Hilbert space. It is also worth mentioning that Theorem 6.4 contains
the fact, already commented in Remark 2.6.(e), that complex Banach spaces
X such that L(X) is a C∗-algebra (for some involution) are Hilbert spaces.

Proposition 6.5. Let H be a real Hilbert space. Then BK(H) is con-
tained in the norm-closed convex hull of GH .

Proof. It is enough to show that BF(H) is contained in co(GH). Let
T =

∑n
i=1 xi⊗yi be in BF(H) (where, for x, y ∈ H, x⊗y denotes the operator

z → (z|y)x). Let H1 stand for the linear hull of {x1, ..., xn, y1, ..., yn}, and
let H2 be the ortogonal of H1 in H. Then T is diagonal relative to the
decomposition H = H1⊕H2, and the restriction of T to H2 is zero. Now, let
A denote the set of those elements in L(H) which are diagonal relative to the
decomposition H = H1⊕H2, and whose restrictions to H2 are real multiples
of the identity operator on H2. Then A is a subalgebra of L(H) isometrically
isomorphic to L(H1)⊕∞ R. Since L(H1) is unitary (by Proposition 5.4), it
follows from [2, Proposition 2.8] that A is unitary. Since T lies in BA, we
deduce that T ∈ co(UA). Finally, note that, since the identity mapping on
H belongs to A, we have UA ⊆ GH .

Let X be a Banach space. The ultraweak-operator topology on L(X)
(denoted by wop) is defined as the initial topology on L(X) relative to the
family of all functionals in the norm-closed linear hull in (L(X))∗ of the set
W defined by (6.4). It is well known that, if X is reflexive, then the Banach
space L(X) can be naturally identified with (X⊗̂πX

∗)∗ (where ⊗̂π denotes
the complete projective tensor product) in such a way that wop becomes
the natural weak∗ topology (i.e., the weak topology on L(X) relative to the
duality with its predual X⊗̂πX

∗) [10, Proposition 42.13].

Corollary 6.6. Let H be a real Hilbert space. Then L(H) is wop-
unitary.

Proof. Keeping in mind Proposition 6.5, and the fact that the ultraweak-
operator topology on L(H) is weaker that the norm topology, we deduce that
the wop-closed convex hull of GH contains BK(H). On the other hand, since
(K(H))∗ = H⊗̂πH, and (H⊗̂πH)∗ = L(H), and the weak∗ topology on
L(H) coincides with wop, we have that BK(H) is wop-dense in BL(H) (by
Goldstine’s theorem).
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Theorem 6.7. Let X be a real Banach space such that there exists a
linear algebra involution • on L(X) satisfying T •0 ◦ T0 6= 0 for some one-
dimensional operator T0 = x0⊗f0 ∈ L(X), and T • = T−1 for every T ∈ GX .
Then the following conditions are equivalent:

(1) L(X) is wop-unitary.
(2) L(X) is wop-unitary.
(3) X is convex-transitive.
(4) X is almost transitive.
(5) X is a Hilbert space.

Proof. (1) ⇒ (2).- Since the weak-operator topology is weaker than
the ultraweak-operator topology.

The implications (2) ⇒ (3) and (3) ⇒ (4) in the present theorem are
the same as the corresponding ones in Theorem 6.4, and are proved in the
same way.

(4) ⇒ (5).- By Proposition 6.3, X is reflexive, and there is a bicontinuous
linear bijection ψ : X → X∗ satisfying ψ∗ = ±ψ and T • = ψ−1 ◦ T ∗ ◦ ψ for
every T ∈ L(X). Assume that ψ∗ = −ψ. Then, for every x ∈ X we have
ψ(x)(x) = 0, and hence

T •0 ◦ T0 = ψ−1 ◦ (x0 ⊗ f0)∗ ◦ ψ ◦ (x0 ⊗ f0) = ψ−1 ◦ (f0 ⊗ x0) ◦ ψ ◦ (x0 ⊗ f0)

= (ψ−1(f0)⊗ ψ∗(x0)) ◦ (x0 ⊗ f0) = ψ(x0)(x0)(ψ−1(f0)⊗ f0) = 0,
which is not possible. Now assume that ψ∗ = ψ. For x, y ∈ X, put
(x|y) := ψ(y)(x). It follows that (·|·) is a continuous nondegenerate sym-
metric bilinear form on X satisfying (T (x)|T (x)) = (x|x) for every x ∈ X.
Then, that X is a Hilbert space follows from the assumption (4) as in the
proof of the implication (4) ⇒ (5) in Theorem 6.4.

(5) ⇒ (1).- By Corollary 6.6.

Corollary 6.8. Let X be a real Banach space such that there exists a
linear algebra involution • on L(X) satisfying T •0 ◦ T0 6= 0 for some one-
dimensional operator T0 = x0⊗f0 ∈ L(X), and T • = T−1 for every T ∈ GX .
If L(X) is unitary, then X is a Hilbert space.

An involution ∗ on an algebra A is said to be proper if x∗x 6= 0 for every
x ∈ A \ {0}. A joint variant of Theorems 6.4 and 6.7 is the following result
in the spirit of [28].

Theorem 6.9. Let X be a real (respectively, complex) Banach space.
Then the following assertions are equivalent:

(1) L(X) is maximal, and there exists a proper linear (respectively,
conjugate-linear) algebra involution • on L(X) such that T • = T−1

for every T ∈ GX .
(2) X is a Hilbert space.

Proof. (1) ⇒ (2).- Let ψ be the linear (respectively, conjugate-linear)
bijection from X to X∗ given by Proposition 6.3 because of the existence
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of the involution • on L(X), and for x, y ∈ X put (x|y) := ψ(y)(x). We
know that (·|·) is a symmetric or antisymmetric bilinear form (respectively,
a hermitian sexquilinear form) on X satisfying

(6.6) (T (x)|y) = (x|T •(y))
for every T ∈ L(X) and all x, y ∈ X, and that for (x, f) ∈ X ×X∗ we have

(6.7) (x⊗ f)• ◦ (x⊗ f) = (x|x)(ψ−1(f)⊗ f).

Now, the assumption that the involution • is proper, together with (6.7),
gives (x|x) 6= 0 for every x ∈ X \ {0} (which implies in the real case that
(·|·) cannot be antisymmetric). It follows from the connectedness of X \ {0}
(the case X = R is trivial) and the continuity of the mapping x → (x|x)
from X to R that, by multiplying (·|·) by a suitable real number if necessary,
there is no loss of generality in assuming that (·|·) is an inner product on X
satisfying (x0|x0) = 1 for some prefixed x0 ∈ SX . Let | · | denote the pre-
Hilbertian norm associated to (·|·). We claim that | · | and ‖·‖ are equivalent
norms on X. Indeed, for every x ∈ X we have

|x|2 = ψ(x)(x) ≤ ‖ψ(x)‖‖x‖ ≤ ‖ψ‖‖x‖2,

and hence | · | ≤
√
‖ψ‖‖ · ‖ on X. Moreover, for x ∈ X we can find f ∈ SX∗

with f(x) = ‖x‖, so that

‖x‖ = f(x) = (x|ψ−1(f)) ≤ |x||ψ−1(f)| ≤ |x|
√
‖ψ‖‖ψ−1(f)‖

≤ |x|
√
‖ψ‖‖ψ−1‖‖f‖ = |x|

√
‖ψ‖‖ψ−1‖,

and therefore ‖ · ‖ ≤
√
‖ψ‖‖ψ−1‖| · | on X. Now that the claim has been

proved, we invoke the assumption that T • = T−1 for every T ∈ GX , together
with (6.6), to realize that GX ⊆ G(X,|·|). In this way, denoting by ||| · ||| the
operator norm on L(X) corresponding to the norm | · | on X, it turn out
that ||| · ||| is an equivalent algebra norm on L(X) converting L(X) into a
norm-unital normed algebra and satisfying UL(X) ⊆ U(L(X),|||·|||). It follows
from the assumption that L(X) is maximal that UL(X) = U(L(X),|||·|||), or
equivalently GX = G(X,|·|). Since (X, | · |) is almost transitive, and x0 belongs
to SX ∩ S(X,|·|), it follows that | · | = ‖ · ‖ on X.

(2) ⇒ (1).- This is well-known. Indeed, the maximality of L(X), for a
Hilbert space X, follows from the almost transitivity of X, together with
[48, Theorem 9.6.3] and [51, Lemma 1 and Theorem 1].

It follows from the above proof that a real (respectively, complex) Banach
space is isomorphic to a Hilbert space if (and only if) there exists a proper
linear (respectively, conjugate-linear) algebra involution • on L(X). The
real case of this fact is one of the main results in [28].

Let X be a Banach space. Following [29], we define the dual weak-
operator topology on L(X) as the initial topology on L(X) relative to the
family of functionals

W ′ := {T → α(T ∗(f)) : (f, α) ∈ X∗ ×X∗∗},
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and we denote it by w′op. We also consider the topology w′op on L(X), defined
as the initial topology on L(X) relative to the family of all functionals in
the norm-closed linear hull of W ′ in (L(X))∗. Since W ⊆ W ′, we have
wop ≤ w′op and wop ≤ w′op. Moreover, the two inequalities above become
equalities whenever X is reflexive.

Lemma 6.10. Let X be a Banach space such that L(X) is w′op-unitary.
Then, for every f in SX∗, we have

co{T ∗(f) : T ∈ GX} = BX∗ .

Proof. Let f be in SX∗ , let g be in BX∗ , and let −1 < δ < 1. Choose
x ∈ BX with f(x) = δ, and denote by F the operator on X defined by
F (y) := g(y)x. Then there exists a net {Fλ} in the convex hull of UL(X)

converging to F in the dual weak-operator topology. Therefore, {α(F ∗
λ (f))}

converges to α(F ∗(f)) = α(δg) for every α ∈ X∗∗. In other words, {F ∗
λ (f)}

converges to δg in the weak topology of X∗, and hence δg belongs to the
weak-closed convex hull of {T ∗(f) : T ∈ GX}. Letting δ → 1, and keep-
ing in mind that weakly closed convex subsets of X∗ are norm-closed, the
arbitraryness of g in BX∗ yields that

BX∗ ⊆ co{T ∗(f) : T ∈ GX}.

We recall that a complex JB∗-triple is a complex Banach space X with
a continuous triple product {· · ·} : X × X × X → X which is linear and
symmetric in the outer variables, and conjugate-linear in the middle variable,
and satisfies:

(1) For all x in X, the mapping y → {xxy} from X to X is a hermitian
operator on X and has nonnegative spectrum.

(2) The main identity

{ab{xyz}} = {{abx}yz} − {x{bay}z}+ {xy{abz}}

holds for all a, b, x, y, z in X.
(3) ‖{xxx}‖ = ‖x‖3 for every x in X.

Concerning Condition (1) above, we also recall that a bounded linear opera-
tor T on a complex Banach space X is said to be hermitian if
‖ exp(irT )‖ = 1 for every r in R. Following [22], we define real JB∗-triples
as norm-closed real subtriples of complex JB∗-triples. Here, by a subtriple
we mean a subspace which is closed under triple products of its elements.
An element e of a real JB∗-triple is said to be a tripotent if {eee} = e.
Real JBW ∗-triples where first introduced as those real JB∗-triples which
are dual Banach spaces in such a way that the triple product becomes sep-
arately weak∗-continuous (see [22, Definition 4.1 and Theorem 4.4]). Later,
it has been shown in [33] that the requirement of separate w∗-continuity of
the triple product is superabundant.
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The following lemma becomes a generalization of [6, Corollary 2.6] to
the real setting.

Lemma 6.11. Let X be an almost transitive real JBW ∗-triple. Then X
is a Hilbert space.

Proof. Keeping in mind that extreme points of the closed unit ball of
a real JB∗-triple are tripotents [22, Lemma 3.3], the Krein-Milman theorem
and the almost transitivity of X give us that the set of all nonzero tripotents
of X is dense in SX . Since the set of tripotents of X is closed, we derive
that {xxx} = ‖x‖2x for every x ∈ X. Finally, arguing as in the proof of
[47, Lemma 1], we realize that X is a Hilbert space.

Theorem 6.12. Let X be a real Banach space. Then the following as-
sertions are equivalent:

(1) X is a real JB∗-triple, and L(X) is w′op-unitary.
(2) X is a real JB∗-triple, and L(X) is w′op-unitary.
(3) X∗∗ is a real JB∗-triple, and L(X) is w′op-unitary.
(4) X∗∗ is a real JB∗-triple, and L(X) is w′op-unitary.
(5) X is a Hilbert space.

Proof. The implications (1) ⇒ (2) and (3) ⇒ (4) hold because
w′op ≤ w′op, whereas the ones (1) ⇒ (3) and (2) ⇒ (4) follow from the
fact that the bidual of every real JB∗-triple is a real JB∗-triple [22, Lemma
4.2].

(4) ⇒ (5).- Since X∗∗ is a real JBW ∗-triple (by assumption), and BX∗

has extreme points (by the Krein-Milman theorem), it follows from [40,
Corollary 2.1] that X∗∗ has a “minimal tripotent” (see [40] for a definition),
which is a point of Fréchet-differentiability of the norm [4, Lemma 3.1]. This
implies that the norm of X∗∗ is “non rough” (see [5] for a definition). On
the other hand, since L(X) is w′op-unitary (by assumption), Lemma 6.10
applies, giving that X∗ is convex-transitive. It follows from the implication
(4) ⇒ (1) in Theorem 3.2 of [5] and [5, Remark 4.6] that X is reflexive and
almost transitive. By Lemma 6.11, X is a Hilbert space.

(5) ⇒ (1).- Keeping in mind that Hilbert spaces are reflexive, it follows
from the assumption (5) and Corollary 6.6 that L(X) is w′op-unitary. On
the other hand, the fact that real Hilbert spaces are real JB∗-triples is well-
known. Indeed, a possible choice of the triple product {· · ·} is the one given
by {xyz} := (x|y)z+(z|y)x

2 .

Let X be a Banach space. We denote by w′′op the initial topology on
L(X) relative to the family of functionals

W ′′ := {T → Λ(T ∗∗(α)) : (α,Λ) ∈ X∗∗ ×X∗∗∗},
and by w′′op the initial topology on L(X) relative to the family of all function-
als in the norm-closed linear hull of W ′′ in (L(X))∗. We have
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wop ≤ w′op ≤ w′′op and wop ≤ w′op ≤ w′′op, with equalities instead of in-
equalities if X is reflexive.

Lemma 6.13. Let X be a Banach space such that L(X) is w′′op-unitary.
Then, for every α in SX∗∗, we have

co{T ∗∗(α) : T ∈ GX} ⊇ BX .

Proof. Let α be in SX∗∗ , let x be in BX , and let −1 < δ < 1. Choose
f ∈ BX∗ with α(f) = δ, and denote by F the operator on X defined by
F (y) := f(y)x. Then there exists a net {Fλ} in the convex hull of UL(X)

converging to F in the topology w′′op, and hence {Λ(F ∗∗
λ (α))} converges to

Λ(F ∗∗(α)) = Λ(δx) for every Λ ∈ X∗∗∗. Therefore, {F ∗∗
λ (α)} converges to

δx in the weak topology of X∗∗, and hence δx belongs to the weak-closed
convex hull of {T ∗∗(α) : T ∈ GX}. Letting δ → 1, and keeping in mind the
arbitraryness of x in BX , we obtain that

BX ⊆ co{T ∗∗(α) : T ∈ GX}.

Let X be a Banach space. We say that X is L-embedded if there exists
a linear projection p from X∗∗ onto X satisfying

‖α‖ = ‖p(α)‖+ ‖α− p(α)‖
for every α ∈ X∗∗. We note that, in such a case, 1 − 2p is an isometry
on X∗∗. It is known that, if X satisfies the conclusion in Lemma 6.13, and
if there exists a linear projection p from X∗∗ onto X such that 1− 2p is an
isometry, then both X and X∗ are superreflexive and almost transitive (see
the proof of Proposition 2.3 in [8], and [8, Remark 2.6]). Therefore we have
the following.

Corollary 6.14. Let X be an L-embedded Banach space over K such
that L(X) is w′′op-unitary. Then both X and X∗ are superreflexive and almost
transitive.

Theorem 6.15. Let X be a real Banach space. Then the following as-
sertions are equivalent:

(1) X is the predual of a real JBW ∗-triple, and L(X) is w′′op-unitary.
(2) X is the predual of a real JBW ∗-triple, and L(X) is w′′op-unitary.
(3) X is a Hilbert space.

Proof. The implication (1) ⇒ (2) is clear, whereas the one (3) ⇒ (1)
follows from Corollary 6.6 and the already commented fact that real Hilbert
spaces are real JB∗-triples.

(2) ⇒ (3).- Since preduals of real JBW ∗-triples are L-embedded [3,
Proposition 2.2], the assumption (2), together with Corollary 6.14, yields
that X∗ is almost transitive. Then, since X∗ is a JBW ∗-triple (by assump-
tion), Lemma 6.11 applies, so that X∗ (and hence X) is a Hilbert space.
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The following corollary follows straightforwardly from Theorems 6.12
and 6.15.

Corollary 6.16. Let X be a real Banach space such that L(X) is uni-
tary. If X, X∗, or X∗∗ is a real JB∗-triple, then X is a Hilbert space.

Remark 6.17. (a) For a Banach space X over K = R or C, consider the
following conditions:

(1) X is a Hilbert space.
(2) L(X) is unitary.

We already know that, if K = C or X is finite-dimensional, then (1) im-
plies (2) (cf. Corollary 2.3 and Proposition 5.4). It is also known that,
if X is finite-dimensional, then (2) implies (1) (see Part (b) of the present
remark), so that (1) is actually equivalent to (2) in the finite-dimensional
setting. However, the following problems seem to remain still open:

(P1) Does (1) imply (2) when K = R and X is infinite-dimensional?
(P2) Does (2) imply (1) when X is infinite-dimensional?

Partial affirmative answers to (P2) are those given by Corollaries 6.8 and 6.16
(for K = R) and Theorems 6.4 and 6.18 (for K = C). Nevertheless, if the
answer to (P1) were completely negative, then Corollaries 6.8 and 6.16 would
become only characterizations of finite-dimensional real Hilbert spaces, and
the following problem would merit a special consideration:

(P3) Is there an infinite-dimensional real Banach space X such that
L(X) is unitary?

(b) A well-known consequence of Auerbach’s Corollary 5.7 is that
(\) Convex-transitive finite-dimensional real or complex Banach spaces

are Hilbert spaces
(see [48, Theorem 9.7.1 and Proposition 9.6.1]). It follows from (\) and
Lemma 6.10 that, if X is a finite-dimensional real or complex Banach space
such that L(X) is unitary, then X is a Hilbert space. The result just for-
mulated seems to have been stated first in [36]. Our favorite proof consists
of putting together (\) and the general fact that, if X is a real or complex
Banach space such that L(X) is unitary (or merely wop-unitary), then X
is convex transitive [14, Theorem 6.4] (see also [51, Theorem 5]). By the
way, in both [14] and [51] it is claimed that, conversely, if X is a convex-
transitive Banach space, then L(X) is wop-unitary. However, the proof of
such a claim contains a gap which seems to us difficult to overcome. In-
deed, wop-continuous linear functionals on L(X) need not be of the form
T → f(T (x)) for some (x, f) ∈ X × X∗. Since Hilbert spaces are convex-
transitive, our criticism above gives special interest to Corollary 6.6.

(c) Looking at the proof of Lemma 6.10 (respectively, Lemma 6.13),
we realize that its conclusion remains true if the assumption that L(X) is
w′op-unitary (respectively w′′op-unitary) is relaxed to the one that BK(X) is
contained in the w′op- (respectively w′′op-) closed convex hull of GX . Then,
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keeping in mind Proposition 6.5, and arguing as in the proof of Theorem 6.12
(respectively, Theorem 6.15), we realize that, for a real Banach space X, the
following assertions are equivalent:

(1) X is a real JB∗-triple, and BK(X) is contained in the norm-closed
convex hull of GX .

(2) X is a real JB∗-triple, and BK(X) is contained in the w′op-closed
convex hull of GX .

(3) X∗ a real JB∗-triple, and BK(X) is contained in the norm-closed
convex hull of GX .

(4) X∗ is a real JB∗-triple, and BK(X) is contained in the w′′op-closed
convex hull of GX .

(5) X∗∗ is a real JB∗-triple, and BK(X) is contained in the norm-closed
convex hull of GX .

(6) X∗∗ is a real JB∗-triple, and BK(X) is contained in the w′op-closed
convex hull of GX .

(7) X is a Hilbert space.

Some of the new techniques introduced in the present section allow us
to complement the main results of [8]. Indeed, when the arguments of [8]
involve the assumption on a Banach space X that L(X) is unitary, in fact
they only use that such an assumption implies the conclusion in Lemma 6.13,
that such a conclusion implies that of Lemma 6.10, and that the conclusion
of Lemma 6.10 implies that X is convex-transitive [8, Lemma 2.1]. There-
fore, keeping in mind Lemmas 6.10 and 6.13, and looking carefully at the
arguments in [8], we obtain Theorem 6.18 immediately below. For a Banach
space X, we denote by ∆X the open unit ball of X.

Theorem 6.18. Let X be a complex Banach space X. Then the following
assertions are equivalent:

(1) X is a JB∗-triple, and L(X) is unitary.
(2) X is a JB∗-triple, and L(X) is w′op-unitary.
(3) There exists a nonlinear biholomorphic automorphism of ∆X , and

L(X) is unitary.
(4) There exists a nonlinear biholomorphic automorphism of ∆X , and

L(X) is w′op-unitary.
(5) X∗ is a JB∗-triple, and L(X) is unitary.
(6) X∗ is a JB∗-triple, and L(X) is w′′op-unitary.
(7) There exists a nonlinear biholomorphic automorphism of ∆X∗, and

L(X) is unitary.
(8) There exists a nonlinear biholomorphic automorphism of ∆X∗, and

L(X) is w′′op-unitary.
(9) X∗∗ is a JB∗-triple, and L(X) is unitary.

(10) X∗∗ is a JB∗-triple, and L(X) is w′op-unitary.
(11) There exists a nonlinear biholomorphic automorphism of ∆X∗∗, and

L(X) is unitary.
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(12) There exists a nonlinear biholomorphic automorphism of ∆X∗∗, and
L(X) is w′′op-unitary.

(13) X is a Hilbert space.

7. Nonassociative unitary Banach algebras

Given an algebra A, we denote by A+ the algebra consisting of the vector
space of A and the product x · y := xy+yx

2 . Following [49, p. 141], we define
non-commutative Jordan algebras as those algebras satisfying the “Jordan
identity” (xy)x2 = x(yx2) and the “flexibility” condition (xy)x = x(yx).
Non-commutative Jordan algebras which are commutative are called simply
Jordan algebras. An algebra A is a non-commutative Jordan algebra if and
only if it is flexible and A+ is a Jordan algebra (see again [49, p. 141]).
Let A be a unital non-commutative Jordan algebra, and let x be an element
of A. Following [35], we say that x is invertible in A if there exists y in
A such that the equalities xy = yx = 1 and x2y = yx2 = x hold. If x
is invertible in A, then the element y above is unique, is called the inverse
of x, and is denoted by x−1. Moreover x is invertible in A if and only if
it is invertible in the Jordan algebra A+. This reduces most questions and
results on inverses in non-commutative Jordan algebras to the commutative
case. For this particular case, the reader is referred to [25, Section I.11].

Let A be a normed non-commutative Jordan algebra. Then A is power-
associative [49, p. 141] (i.e., all single-generated subalgebras are associa-
tive), and hence we can consider, as in the associative case, the spectral
radius mapping rA(·) defined by rA(x) := limn→∞ ‖xn‖

1
n for every x ∈ A.

Assume that A is norm-unital. Then unitary elements of A are defined ver-
batim as in the associative case, and the symbol UA will remain to denote
the set of all unitary elements of A. Similarly, the meanings of “unitary”,
“maximal”, “strongly maximal”, “uniquely maximal”, or “strongly uniquely
maximal” for A are translated verbatim from the particular associative case
to the new one, and the implications (2.1) remain true.

Proposition 7.1. Let A be a norm-unital complete normed non-com-
mutative Jordan complex algebra. Then the following assertions are equiva-
lent:

(1) A is isometrically isomorphic to a commutative C∗-algebra.
(2) A is maximal and unitary, and there exists k > 0 such that

‖ · ‖ ≤ krA(·).

Proof. According to [43, Proposition 31], the requirement ‖·‖ ≤ krA(·)
for some k > 0 implies that A is associative. Now apply Corollary 3.5.

The development of a theory of unitary normed non-commutative Jor-
dan algebras, similar to that we know in the particular associative case,
stumble on severe handicaps. Indeed, the set of all unitary elements of
such an algebra need not be multiplicatively closed, and multiplications by
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unitary elements need not be isometries. These pathologies arise even in
the nontrivial simplest cases, as is the one of the unitary complete normed
Jordan algebra A := B+, where B stands for the C∗-algebra of all 2 × 2
complex matrices. Here we have used the convention that, if B is a normed
algebra, then B+ is considered without notice as a new normed algebra un-
der the norm of B. We have also kept in mind that, if B is a norm-unital
normed non-commutative Jordan algebra, then we have clearly UB = UB+ ,
and hence B is unitary if and only if so is B+.

Let A be a norm-unital normed non-commutative Jordan algebra. We
denote by VA the multiplicatively closed subset of A generated by UA, so
that, since BA is multiplicatively closed, we have VA ⊆ BA. We say that A
is weakly unitary if co(VA) = BA.

Proposition 7.2. Let A be a norm-unital normed non-commutative
Jordan algebra. Then we have co(VA+) ⊆ co(VA). Therefore, if A+ is weakly
unitary, then A is weakly unitary.

Proof. Since co(VA) is a convex multiplicatively closed subset of A,
for x, y ∈ co(VA) we have x · y = 1

2(xy + yx) ∈ co(VA). Thus co(VA) is
a multiplicatively closed subset of A+ containing UA. Since UA = UA+ , it
follows that co(VA) contains VA+ .

Proposition 7.3. Let A be a norm-unital normed non-commutative
Jordan algebra. Then the following conditions are equivalent:

(1) A is weakly unitary.
(2) For every continuous norm ||| · ||| on A satisfying

(a) (A, ||| · |||) is a norm-unital normed algebra, and
(b) UA ⊆ U(A,|||·|||),

we have ||| · ||| ≤ ‖ · ‖.
(3) For every equivalent norm ||| · ||| on A satisfying (a) and (b) above,

we have ||| · ||| ≤ ‖ · ‖.
(4) For every continuous norm ||| · ||| on A satisfying (a), (b) above, and

(c) ‖ · ‖ ≤ ||| · |||,
we have ||| · ||| = ‖ · ‖.

Proof. (1) ⇒ (2).- Let ||| · ||| be a continuous norm on A satisfying (a)
and (b). Then B(A,|||·|||) is ‖ · ‖-closed and multiplicatively closed, and hence,
by the assumption (1), we have

BA = co(VA) ⊆ coV(A,|||·|||) ⊆ B(A,|||·|||),

which implies ||| · ||| ≤ ‖ · ‖.
(2) ⇒ (3) ⇒ (4).- These implications are clear.
(4) ⇒ (1).- We follow with minor changes the proof of the implication

(vii) ⇒ (vi) in [2, Theorem 3.8]. Let 0 < ε ≤ 1. Since co [(εBA) ∪ VA] is
an absolutely convex subset of A contained in BA and containing εBA, the
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Minkowski functional of co [(εBA)∪VA] (say ||| · |||ε) is a norm on A satisfying

(7.1) ε||| · |||ε ≤ ‖ · ‖ ≤ ||| · |||ε
and

(7.2) {a ∈ A : |||a|||ε < 1} ⊆ co [(εBA) ∪ VA] ⊆ {a ∈ A : |||a|||ε ≤ 1} .
On the other hand, since (εBA) ∪ VA is multiplicatively closed, and the
convex hull of a multiplicatively closed subset is multiplicatively closed, we
deduce that ||| · |||ε actually becomes an algebra norm on A (argue as in [10,
Proposition 1.9]), and hence the inequality 1 ≤ |||1|||ε holds. Now, if u is in
UA, then, by the right inclusion in (7.2), we have

1 ≤ |||1|||ε = |||uu−1|||ε ≤ |||u|||ε|||u−1|||ε ≤ 1.1 = 1 ,

and hence |||1|||ε = |||u|||ε = |||u−1|||ε = 1. Therefore the normed algebra
(A, ||| · |||ε) is norm-unital, and the inclusion UA ⊆ U(A,|||·|||ε) holds. Since ||| · |||ε
is a continuous norm on A with ‖ · ‖ ≤ ||| · |||ε (by (7.1)), it follows from the
assumption (4) that ||| · |||ε = ‖ · ‖. Let x be in A with ‖x‖ < 1. If follows
from the left inclusion in (7.2) that x belongs to co [(εBA) ∪ VA]. Since
co [(εBA) ∪ VA] is contained in εBA + co (VA), there exists y in co (VA) such
that ‖x − y‖ ≤ ε. The arbitrariness of ε ∈]0, 1] and x ∈ int(BA), yields
int(BA) ⊆ co (VA). Therefore we have co VA = BA, that is A is weakly
unitary.

Remark 7.4. Let A be a norm-unital normed non-commutative Jordan
algebra. It follows from the equivalence (1) ⇔ (3) in Proposition 7.3 (respec-
tively, from the definitions of maximality, strong maximality, unique maxi-
mality, or strong unique maximality) that, if A+ is weakly unitary (respec-
tively, maximal, strongly maximal, uniquely maximal, or strongly uniquely
maximal), then A is weakly unitary (respectively, maximal, strongly maxi-
mal, uniquely maximal, or strongly uniquely maximal). Note that the part
of the above assertion concerning unitarity has been previously proved in
Proposition 7.2 without involving Proposition 7.3.

The following corollary follows from Proposition 7.3 in the same way as
Corollary 2.2 follows from Proposition 2.1.

Corollary 7.5. Let A be a norm-unital normed non-commutative Jor-
dan algebra. Then we have:

(1) A is uniquely maximal if and only if it is weakly unitary and has
minimality of the equivalent norm.

(2) A is strongly uniquely maximal if and only if it is weakly unitary
and has minimality of the norm.

Alternative algebras are defined as those algebras A satisfying the “left
alternative law” x2y = x(xy) and the “right alternative law” yx2 = (yx)x.
We note for later reference that the left alternative law can be written as

(7.3) Lx2 = L2
x,
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and hence, by linearization, as

(7.4) Lx·y = Lx · Ly.

By Artin’s theorem [49, p. 29], an algebra A is alternative (if and) only if, for
all x, y ∈ A, the subalgebra of A generated by {x, y} is associative. Artin’s
theorem implies that alternative algebras are non-commutative Jordan alge-
bras, and that the inverse y of an invertible element x in a unital alternative
algebra is characterized by the familiar condition xy = yx = 1. Moreover,
if A is a unital alternative algebra, and if x, y are invertible elements of A,
then xy is invertible with

(7.5) (xy)−1 = y−1x−1,

and Lx (respectively, Rx) is a bijective operator on A with L−1
x = Lx−1

(respectively, R−1
x = Rx−1) [54, pp. 204-205]. These facts lead straightfor-

wardly to the following.

Lemma 7.6. Let A be a norm-unital normed alternative algebra. Then
UA is a multiplicative closed subset of A. Moreover, for every u ∈ UA, the
operators Lu and Ru are surjective isometries on A.

It follows from the first conclusion in Lemma 7.6 that a normed alterna-
tive algebra is unitary if (and only if) it is weakly unitary. Therefore, keeping
in mind the last conclusion in Proposition 7.2, we deduce the following.

Corollary 7.7. Let A be a norm-unital normed alternative algebra.
Then A is unitary (equivalently, A+ is unitary) if and only if A+ is weakly
unitary.

The following theorem is a variant of Theorem 2.5 in the setting of
alternative algebras.

Theorem 7.8. Let A be a norm-unital normed alternative algebra such
that A+ has minimality of the equivalent norm, and let M be a closed ideal
of A. Then, for every u ∈M we have ‖u‖ = sup{‖uv‖ : v ∈ BM}.

Proof. Let π : A→ A/M be the natural quotient homomorphism, and
consider the equivalent vector space norms ‖ · ‖1 and ‖ · ‖2 on A defined
by ‖x‖1 := ‖x‖ + ‖π(x)‖ and ‖x‖2 := ‖Lx‖1. It follows from (7.4), that
(A+, ‖ · ‖2) is a norm-unital normed algebra. Moreover, as in the proof of
Theorem 2.5, we have ‖·‖2 ≤ ‖·‖. Since A+ has minimality of the equivalent
norm, we deduce that ‖ · ‖2 = ‖ · ‖. Now the proof is concluded by repeating
verbatim the corresponding part of the argument in the associative case (see
again the proof of Theorem 2.5).

By a non-commutative JB∗-algebra we mean a complete normed non-
commutative Jordan complex algebra (say A) endowed with a conjugate-
linear algebra involution ∗ satisfying ‖Ux(x∗)‖ = ‖x‖3 for every x in A.
Here, for x ∈ A, Ux stands for the mapping y → x(xy + yx) − x2y from A
to A. Non-commutative JB∗-algebras which are commutative are simply
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called JB∗-algebras. If A is a non-commutative JB∗-algebra, then it follows
from the equality Ux(y) = 2x · (x · y)− x2 · y (which is true for all x, y ∈ A)
that A+ becomes naturally a JB∗-algebra. This fact allows us to reduce
much questions and results concerning non-commutative JB∗-algebras to
the commutative case.

Lemma 7.9. [11, Proposition 4.3] Let A be a unital non-commutative
JB∗-algebra. Then unitary elements of A are precisely those invertible ele-
ments u in A satisfying u−1 = u∗.

Proposition 7.10. Let A be a unital non-commutative JB∗-algebra.
Then A is unitary and strongly uniquely maximal.

Proof. That A is unitary follows from Lemma 7.9 and [52]. Then, that
A is strongly uniquely maximal follows from Corollary 7.5 and the fact that
A has minimality of the norm [41, Proposition 11].

Theorem 7.11. Every weakly unitary norm-unital closed subalgebra of
a non-commutative JB∗-algebra is a non-commutative JB∗-algebra.

Proof. Let A be a non-commutative JB∗-algebra, and let B be a
weakly unitary norm-unital closed subalgebra of A. It is enough to show
that B is ∗-invariant. To this end, note that the unit (say 1) of B is a
norm-one idempotent of A, and hence, by [26, Lemma 2.2], we have 1∗ = 1.
Therefore, keeping in mind [34, p. 188], the set C := {x ∈ A : x1 = 1x = x}
becomes a closed ∗-invariant subalgebra of A which contains B, and whose
unit is 1. Thus, replacing A with C if necessary, we may assume that 1 is
in fact a unit for A. Then we have UB ⊆ UA, so UB is a a ∗-invariant subset
of A (by Lemma 7.9), and so VB is also ∗-invariant. Since ∗ is continuous,
and BB = co(VB), we deduce that B is ∗-invariant, as required.

Note that, in the above proof, the assumption that B is weakly unitary
can be relaxed to the one that B is equal to the closed linear hull of VB.

By an alternative C∗-algebra we mean a complete normed alternative
complex algebra (say A) with a conjugate-linear algebra-involution ∗ sat-
isfying ‖x∗x‖ = ‖x‖2 for every x in A. Since, for elements x, y in an
alternative algebra, the equality Ux(y) = xyx holds, it is not difficult to
realize that alternative C∗-algebras become particular examples of non-
commutative JB∗-algebras. In fact alternative C∗-algebras are precisely
those non-commutative JB∗-algebras which are alternative [38, Proposi-
tion 1.3]. The following theorem generalizes and refines [20, Theorem 6].

Theorem 7.12. Let A be a norm-unital normed finite-dimensional al-
ternative complex algebra such that A is equal to the linear hull of UA.
Then there exists a conjugate-linear algebra involution ∗ on A satisfying
u∗ = u−1 for every u ∈ UA. Moreover, endowed with such an involution, A is
∗-isomorphic to an alternative C∗-algebra. If in addition A is maximal, then
A is in fact an alternative C∗-algebra.
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Proof. By Lemma 7.6 and Corollary 5.7, there exists an inner product
(·|·) on A such that Lu belongs to G(A,(·|·)) whenever u is in UA. Then, for
u ∈ UA, we have L∗u = L−1

u = Lu−1 , where, for T ∈ L(A), T ∗ denotes the
adjoint of T relative to (·|·). Therefore, if λ1, ..., λn ∈ C and u1, ..., un ∈ UA

are such that
∑n

k=1 λkuk = 0, then we have

L∑n
k=1 λku−1

k
=

n∑
k=1

λkLu−1
k

=
n∑

k=1

λkL
∗
uk

= (
n∑

k=1

λkLuk
)∗ = (L∑n

k=1 λkuk
)∗ = 0,

and hence
∑n

k=1 λku
−1
k = 0. It follows that

x =
n∑

k=1

λkuk → x∗ :=
n∑

k=1

λku
−1
k

(with λ1, ..., λn ∈ C and u1, ..., un ∈ UA) is a well-defined mapping from A
to A, which, in view of (7.5), becomes a conjugate-linear algebra involution
on A satisfying

(7.6) L∗x = Lx∗

for every x ∈ A, and

(7.7) u∗ = u−1

whenever u lies in UA. Let ‖ · ‖1 and ‖ · ‖2 be the vector space norms on
A defined by ‖x‖1 :=

√
(x|x) and ‖x‖2 := ‖Lx‖1. It follows from (7.4)

and (7.6) that the mapping x → Lx is an isometric ∗-homomorphism from
(A+, ∗, ‖ · ‖2) to L((A, ‖ · ‖1))+. Therefore, since L((A, ‖ · ‖1)) is a C∗-
algebra, (A+, ∗, ‖ · ‖2) is a JB∗-algebra. Since ∗ is an algebra involution
on A, it follows from [44, Theorem 1] that (A, ∗, ‖ · ‖2) is an alternative
C∗-algebra.

Assume that A is maximal. Then, since UA ⊆ U(A,‖·‖2) (by (7.7) and
Lemma 7.9), we have UA = U(A,‖·‖2). Since (A, ‖ · ‖2) is uniquely maximal
(by Proposition 7.10), we have in fact ‖ · ‖ = ‖ · ‖2.

The following lemma is a byproduct of the proof of [12, Theorem 2.11].

Lemma 7.13. Let X be a finite-dimensional complex vector space, and
let g be a nondegenerate symmetric bilinear form on X. Then, given an
arbitrary inner product < ·|· > on X, we have:

(1) There exists a unique bijective conjugate-linear mapping σ : X → X
satisfying g(x, y) =< x|σ(y) > for all x, y ∈ X.

(2) The bijective linear operator F := σ2 on (X,< ·|· >) is positive,
and hence the mapping (·|·) : X ×X → C, defined by

(x|y) :=< F
1
2 (x)|y >,
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is an inner product on X.
(3) The mapping ∗ := F− 1

2 ◦ σ is an isometric conjugate-linear involu-
tion on (X, (·|·)) satisfying g(x, y) = (x|y∗) for all x, y ∈ X.

Let X be a finite-dimensional vector space, and let g be a nondegenerate
symmetric bilinear form g on X. For T in the algebra L(X) of all linear
operators on X, we denote by T ] the unique element in L(X) satisfying
g(T (x), y) = g(x, T ](y)) for all x, y ∈ X, and we recall that the mapping
T → T ] is a linear algebra involution on L(X).

Corollary 7.14. Let X be a finite-dimensional complex Banach space,
and let g be a nondegenerate symmetric bilinear form on X. Then there ex-
ists an inner product (·|·) on X, and an isometric conjugate-linear involution
∗ on (X, (·|·)) satisfying:

(1) g(x, y) = (x|y∗) for all x, y ∈ X.
(2) GX ∩ G]

X ⊆ G(X,(·|·)), where G]
X := {T ] : T ∈ GX}.

Proof. By Corollary 5.7, there exists an inner product < ·|· > on X
such that GX ⊆ G(X,<·|·>). Let σ, F , (·|·), and ∗ be the mappings corre-
sponding to < ·|· > via Lemma 7.13. Then, by that lemma, (·|·) is an inner
product on X, and ∗ is an isometric conjugate-linear involution on (X, (·|·))
satisfying condition (1) in the present corollary. Let T be in GX ∩G]

X . Then,
since T belongs to G(X,<·|·>), we have

< x|T−1(σ(y)) >=< T (x)|σ(y) >= g(T (x), y)

= g(x, T ](y)) =< x|σ(T ](y)) >

for all x, y ∈ X, and hence T−1 ◦ σ = σ ◦ T ]. Since GX ∩ G]
X is a ]-invariant

group of bijective operators on X, it follows

T ◦ F = T ◦ σ2 = σ ◦ (T−1)] ◦ σ = σ ◦ (T ])−1 ◦ σ = σ2 ◦ (T ])] = F ◦ T,

and hence T ◦ F
1
2 = F

1
2 ◦ T (because F

1
2 is a limit of polynomials in F ).

Finally, applying again that T belongs to G(X,<·|·>), we have

(T (x)|T (x)) =< F
1
2 (T (x))|T (x) >

=< T (F
1
2 (x))|T (x) >=< F

1
2 (x)|x >= (x|x)

for every x ∈ X, and hence T belongs to G(X,(·,|·)).

Up to isomorphisms, there exists a unique simple finite-dimensional al-
ternative nonassociative complex algebra, which will be denoted by C. We
refer the reader to [49] for the fact just quoted, as well as for the remaining
properties of C needed in our argument.

Proposition 7.15. Let ‖ · ‖ be a vector space norm on C. Then there
exists a vector space norm ||| · ||| on C, and a vector space involution ∗ on C,
satisfying:

(1) (C+, ||| · |||, ∗) is a JB∗-algebra.
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(2) u∗ = u−1 whenever u is in C such that Lu and Ru are isometries
on (C, ‖ · ‖).

Proof. There exists a unique linear algebra involution τ on C such that
x + τ(x) ∈ C1 and xτ(x) = τ(x)x ∈ C1 for every x ∈ C. Therefore, if for
x ∈ C we put x + τ(x) = 2t(x)1 and xτ(x) = n(x)1, with t(x) and n(x) in
C, then the mappings t(·) and n(·) are linear and quadratic, respectively,
and we have

(7.8) x2 − 2t(x)x+ n(x)1 = 0.

On the other hand, an element x ∈ C is invertible if and only if n(x) 6= 0,
and, if this is the case, then

(7.9) x−1 = n(x)−1τ(x).

Moreover, the mapping g : (x, y) → t(xy) becomes a nondegenerate sym-
metric bilinear form on C satisfying

(7.10) g(xy, z) = g(x, yz)

and

(7.11) g(τ(x), y) = g(x, τ(y))

for all x, y, z ∈ C.
Define a vector space norm ‖ · ‖1 on C by

(7.12) ‖x‖1 := ‖x‖+ ‖τ(x)‖.
Then, applying Corollary 7.14, we find an inner product (·|·) on C, and an
isometric conjugate-linear vector space involution ∗ on (C, (·|·)) satisfying:

(7.13) g(x, y) = (x|y∗)
for all x, y ∈ C, and

(7.14) G(C,‖·‖1) ∩ G
]
(C,‖·‖1) ⊆ G(C,(·|·)).

We note that, by (7.13), for T in L(C), we have

(7.15) T • = ∗ ◦ T ] ◦ ∗,
where T • denotes the adjoint of T relative to (·|·). Now, applying (7.11),
(7.12), (7.14), and (7.15), we obtain that τ commutes with ∗, and hence
that C1 (equal to the range of 1 + τ) is ∗-invariant. Therefore, since ∗ is
isometric on (C, (·|·)), we have 1∗ = γ1 for some γ ∈ SC. But, since

1 = t(1) = g(1,1) = (1|1∗) = γ(1|1)

(by (7.13)), we have in fact γ = 1, and hence

(7.16) 1∗ = 1.

Put U := {u ∈ C : {Lu, Ru} ⊆ G(C,‖·‖)}. We claim that U is τ -invariant.
To prove the claim, let us take u in U . Then Lu is a surjective linear isometry
on a suitable complex Banach space, and satisfies L 2

u−2t(u)Lu+n(u) = 0 (by
(7.8) and (7.3)). This implies that |n(u)| = 1 (because n(u) is the product
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of the elements in the spectrum of Lu). Therefore, since τ(u) = n(u)u−1

(by (7.9)), and U is closed by passing to inverses and by multiplication of
its elements by unimodular numbers, it follows that τ(u) lies in U . Now
that the claim has been proved, it follows from (7.12) that Lu and Ru lie in
G(C,‖·‖1) whenever u belongs to U . Then, applying (7.10), (7.14), and (7.15),
we obtain that L−1

u = ∗ ◦ Ru ◦ ∗ whenever u belongs to U , and hence, by
(7.16), that u−1 = Lu−1(1) = L−1

u (1) = (∗ ◦ Ru ◦ ∗)(1) = u∗. This proves
condition (2) in the statement.

Let x and y be in C. Then, since xτ(x) = n(x)1, we have t(xτ(x)) =
n(x). This allows us to linearize (7.8) to obtain

x · y − t(x)y − t(y)x+
t(xτ(y)) + t(yτ(x))

2
1 = 0.

Keeping in mind the definition of g, and invoking (7.11), (7.13), and (7.16),
the equality above reads as

(7.17) x · y = (x|1)y + (y|1)x− (x|τ(y)∗)1.

Replacing in (7.17) x and y with y∗ and x∗, respectively, keeping in mind
that ∗ is an isometric conjugate-linear involution on (C, (·, ·)), and applying
(7.16), we realize that (x · y)∗ = y∗ · x∗. Thus, ∗ is an algebra involution on
C+. Put σ := ∗ ◦ τ . Since τ is an isometry on (C, (·|·)) (by (7.11), (7.12),
and (7.14)), and commutes with ∗, σ becomes an isometric conjugate-linear
vector space involution on (C, (·|·)). Therefore C becomes a JB∗-triple under
the triple product

{xzy} := (x|z)y + (y|z)x− (x|σ(y))σ(z),

and a suitable norm |||·||| satisfying |||xyz||| ≤ |||x||||||y||||||z||| for all x, y, z ∈ C, and
|||x|||2 = (x|x) whenever x is in C with σ(x) = x [50, Example 20.36]. Since
x · y = {x1y} (by (7.17)), and (1|1) = 1, it follows that |||x · y||| ≤ |||x||||||y|||
for all x, y,∈ C. Thus, ||| · ||| is an algebra norm on C+. On the other hand, a
straightforward computation, involving (7.17), shows that Ux(x∗) = {xxx},
so that we have |||Ux(x∗)||| = |||x|||3 for every x ∈ C. In this way, the proof of
condition (1) in the statement is concluded.

Theorem 7.16. Let A be a semisimple finite-dimensional norm-unital
normed complex alternative algebra such that A+ is maximal. Then A is
(isometrically isomorphic to) an alternative C∗-algebra.

Proof. By [49, Theorem 3.12], we have A = ⊕n
i=1Ai, where, for

i = 1, ..., n, either Ai = L(Xi) for some complex vector space Xi, or
Ai = C. In the first case, we know that there exists an involution ∗i

and a norm ||| · |||i on Ai such that (Ai, ||| · |||i, ∗i) becomes a C∗-algebra
in such a way that πi(UA) ⊆ U(Ai,|||·|||i), where πi stands for the projec-
tion from A onto Ai corresponding to the decomposition A = ⊕n

i=1Ai

(see the proof of Theorem 5.8). In any case, for u ∈ UA and xi ∈ Ai,
we have πi(u)xi = uxi and xiπi(u) = xiu, and hence, by Lemma 7.6,
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‖πi(u)xi‖ = ‖xi‖ and ‖xiπi(u)‖ = ‖xi‖. It follows from Proposition 7.15
that, in the second case, there exists an involution ∗i and a norm ||| · |||i
on Ai such that (A+

i , ||| · |||i, ∗i) becomes a JB∗-algebra in such a way that
πi(UA) ⊆ U(A+

i ,|||·|||i). For a =
∑n

i=1 ai ∈ A with ai ∈ Ai for all i, put
|||a||| := max{|||ai|||i : i = 1, ..., n}, and a∗ :=

∑n
i=1 a

∗i
i . It follows that

(A+, ||| · |||, ∗) is a JB∗-algebra, and that UA+ = UA ⊆ U(A+,|||·|||). Since
A+ is maximal, we have in fact UA+ = U(A+,|||·|||). Since (A+, ||| · |||) is uniquely
maximal (by Proposition 7.10), we deduce ‖ · ‖ = ||| · ||| on A. Now ‖ · ‖ is
an algebra norm on A converting A+ into a JB∗-algebra, so that, by [46,
Corollary 1.2], A is an alternative C∗-algebra.

8. Real non-commutative JB∗-algebras

By a real non-commutative JB∗-algebra we mean a closed ∗-invariant
real subalgebra of a (complex) non-commutative JB∗-algebra. If B is a
non-commutative JB∗-algebra, and if τ is an involutive conjugate-linear
∗-automorphism of B, then the set A := {x ∈ B : τ(x) = x} is a closed
∗-invariant real subalgebra of B, and hence a real non-commutative JB∗-
algebra. Note that, in this case, we have B = A ⊕ iA, and therefore B is
algebraically isomorphic to the complexification C⊗A of A.

Lemma 8.1. Let A be a real non-commutative JB∗-algebra. Then there
exists a non-commutative JB∗-algebra B, and an involutive conjugate-linear
∗-automorphism τ of B, such that A = {x ∈ B : τ(x) = x}.

Proof. Let C be a non-commutative JB∗-algebra containing A as a
closed ∗-invariant real subalgebra. Let C stand for a set-copy of C with
operations and norm defined by x + y := x+ y, x y := xy, λx := λx
(where, for λ ∈ C, λ means the conjugate of λ), x ∗ := x∗, and ‖x‖ := ‖x‖.
Then C is a non-commutative JB∗-algebra, and hence D := C ⊕∞ C is a
non-commutative JB∗-algebra. Moreover, the mapping τ : (x, y) → (y, x)
becomes an involutive conjugate-linear ∗-automorphism of D, and A can
be identified with the closed ∗-invariant real subalgebra of D given by
{(x, x) : x ∈ A}. Now, B := A + iA is a closed ∗- and τ -invariant sub-
algebra of D, and we have A = {x ∈ B : τ(x) = x}.

For a non-commutative Jordan algebra A, let (x, y) → Ux,y be the unique
symmetric bilinear mapping from A × A to L(A) satisfying Ux,x = Ux for
every x ∈ A. It is well-known that, if A is a non-commutative JB∗-algebra,
then A becomes a JB∗-triple under its own norm and the triple product
{· · ·} defined by {xyz} := Ux,z(y∗) (see [11] and [53]). Therefore, real non-
commutative JB∗-algebras are real JB∗-triples in a natural way. These
facts will be applied without notice in what follows (mainly, in the proof of
Proposition 8.3 below). The following lemma follows from Lemma 8.1 and
[11, Proposition 4.3 and Lemma 4.1].
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Lemma 8.2. Let A be a unital real non-commutative JB∗-algebra. Then
UA is closed in A, and every element of UA is an extreme point of BA.

It is well-known that C∗-algebras whose Banach space is reflexive are
finite-dimensional. This fact is no longer true when non-commutative JB∗-
algebras replace C∗-algebras. Anyway, non-commutative JB∗-algebras whose
Banach space is reflexive have a unit, and are in fact Hilbertizable (i.e.,
their Banach spaces are isomorphic to Hilbert spaces) [39, Theorem 3.5].
It follows from Lemma 8.1 that real non-commutative JB∗-algebras whose
Banach space is reflexive have a unit, and are Hilbertizable.

Proposition 8.3. Let A be a Hilbertizable real non-commutative JB∗-
algebra. Then the extreme points of BA are precisely the unitary elements
of A.

Proof. By Lemma 8.2, unitary elements of A are extreme points of
BA. Le u be an extreme point of BA. Consider the non-commutative JB∗-
algebra B, and the involutive conjugate-linear ∗-automorphism τ of B, given
by Lemma 8.1. By the proof of [22, Lemma 3.3], u is a “complex extreme
point” of BB, so u is an extreme point of BB (by [11, Lemma 4.1]), and so,
since B is Hilbertizable, u is a denting point of BB (by [7, Theorem 4.1]).
Since BB = co(UB) (by Proposition 7.10), it follows from [2, Lemma 4.2]
and Lemma 8.2 that u belongs to UB. Therefore u lies in UB ∩A = UA.

Corollary 8.4. Let A be a Hilbertizable real non-commutative JB∗-
algebra. Then A is unitary.

Proof. By the Krein-Milman theorem and Proposition 8.3, the convex
hull of UA is weak-dense in BA. But weak-closed convex subsets of A are
norm-closed.

It is known that the topology of any algebra norm on a JB∗-algebra is
stronger than that of the JB∗-norm [41, Theorem 10]. Keeping in mind
this result and Lemma 8.1, we can argue as in the proof of Lemma 5.2 to
obtain the following.

Lemma 8.5. Let A be a real non-commutative JB∗-algebra, and let ‖ ·‖1

be an arbitrary algebra norm on A. Then the topology of ‖ · ‖1 is stronger
than that of the natural norm ‖ · ‖.

By a real alternative C∗-algebra we mean a closed ∗-invariant real sub-
algebra of a (complex) alternative C∗-algebra. Since real alternative C∗-
algebras are real non-commutative JB∗-algebras, we can argue as in the
proof of Corollary 5.3 (applying Lemma 8.5 instead of Lemma 5.2) to ob-
tain the following.

Corollary 8.6. Let A be a real alternative C∗-algebra. Then A has
minimality of the norm.
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Now, putting together Corollaries 7.5, 8.4, and 8.6, we derive the follow-
ing.

Corollary 8.7. Let A be a finite-dimensional real alternative C∗-algebra.
Then A is uniquely maximal.

In Corollary 8.7 just formulated, we could have relaxed the requirement
that A is finite-dimensional to the one that A is Hilbertizable. However,
such a relaxing is only apparent. Indeed, it follows from Lemma 8.1 and
[27, Remark 7.3] that real alternative C∗-algebras whose Banach space is
reflexive are finite-dimensional.

The tensor product of two non-commutative Jordan algebras need not
be a non-commutative Jordan algebra. Indeed, if M2(F) ⊗ A is flexible,
for an algebra A over a field F, then A is associative. Anyway, the ten-
sor product B⊗A is an alternative (respectively, non-commutative Jordan)
algebra whenever B is an associative commutative algebra, an A is an alter-
native (respectively, non-commutative Jordan) algebra. Moreover, as in the
associative case, we have the following.

Proposition 8.8. Let B be a norm-unital normed associative commu-
tative algebra, an let A be a norm-unital normed non-commutative Jordan
algebra, both over the same fiel K = R or C. If A and B are unitary, then
the projective tensor product B ⊗π A is a unitary normed non-commutative
Jordan algebra. If A is the closed linear hull of UA, and if B is the closed
linear hull of UB, then B ⊗π A is the closed linear hull of UB⊗πA.

In particular, we have the following.

Corollary 8.9. Let A be a norm-unital normed non-commutative Jor-
dan real algebra. If A is unitary, then the normed complexification C⊗π A
of A is unitary. If A is the closed linear hull of UA, then C ⊗π A is the
closed linear hull of UC⊗πA.

Now we are ready to prove the main result in this section.

Theorem 8.10. Let A be a norm-unital normed finite-dimensional al-
ternative real algebra such that A is equal to the linear hull of UA. Then
there exists a linear algebra involution ∗ on A satisfying u∗ = u−1 for every
u ∈ UA. Moreover, endowed with such an involution, A is ∗-isomorphic to
a real alternative C∗-algebra. If in addition A is maximal, then A is in fact
a real alternative C∗-algebra.

Proof. By Corollary 8.9 and Theorem 7.12, there exists a norm ||| · |||
and an involution ∗ on C ⊗ A, such that (C ⊗ A, ||| · |||, ∗) is an alternative
C∗-algebra, and u∗ = u−1 for every u ∈ UC⊗πA. This last property of ∗
implies that A is ∗-invariant, and hence that (A, ||| · |||, ∗) is a real alternative
C∗-algebra.

Assume that A is maximal. Then, since UA ⊆ U(A,|||·|||), we have
UA = U(A,|||·|||). Since (A, ||| · |||) is uniquely maximal (by Corollary 8.7), we
have in fact ‖ · ‖ = ||| · ||| on A.
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Let A be a nonassociative algebra. Then maximal modular left ideals of
A are defined verbatim as in the associative case, and primitive ideals of A
are defined as the cores of maximal modular left ideals of A. Here, by the
core of a given subspace X of A we mean the largest ideal of A contained
in X. According to [10, Definition 24.11], the notion of primitive ideal just
introduced agrees with the familiar one when A is associative. The radical
of A is defined as the intersection of all primitive ideals of A, and A is said
to be primitive (respectively, semisimple) if zero is a primitive ideal of A
(respectively, if the radical of A is equal to zero). If A is complete normed,
then, as in the associative case, maximal modular left ideals of A are closed,
and hence primitive ideals of A are closed either.

In the case of non-commutative Jordan algebras, the notions of radical,
primitivity, and semisimplicity, introduced above, are not subtle enough to
allow the development of a satisfactory structure theory, and therefore they
have been suitably refined in the literature (see [35], [21], and [17]). Nev-
ertheless, in the particular case of alternative algebras, such refinements are
unnecessary [54, Theorem 10.4.5]. Moreover, primitive alternative algebras
are either associative or unital simple eight-dimensional over their centers
[54, Theorem 10.1.1]. It follows from the Gelfand-Mazur theorem that prim-
itive alternative normed algebras are either associative or finite-dimensional.

Proposition 8.11 immediately below complement Proposition 4.8. Among
other facts, its proof involves the one that, as in the associative case [2,
Proposition 2.1], quotients of unitary normed non-commutative Jordan al-
gebras are unitary.

Proposition 8.11. The following assertions are equivalent:
(1) Every group is a good group.
(2) Every unitary semisimple complete normed real alternative algebra

has an isometric linear algebra involution sending unitary elements
to their inverses.

(3) The same as (2), with primitive instead of semisimple
(4) Every unitary semisimple complete normed complex alternative al-

gebra has an isometric conjugate-linear algebra involution sending
unitary elements to their inverses.

(5) The same as (4), with primitive instead of semisimple.

Proof. (1) ⇒ (3) (respectively, (1) ⇒ (5)) .- Since primitive alternative
normed algebras are associative or finite-dimensional, this implication fol-
lows from Theorem 8.10 (respectively, Theorem 7.12) and Proposition 4.8.
When Theorems 7.12 and 8.10 are applied, note that, as in the associa-
tive case [2, Remark 2.9.(c)], continuous involutions on unitary normed
non-commutative Jordan algebras, sending unitaries to their inverses, are
isometries.

(3) ⇒ (2) (respectively, (5) ⇒ (4)).- Let A be a unitary semisim-
ple complete normed real (respectively, complex) alternative algebra. Let
{λu}u∈UA

be a family of real (respectively, complex) numbers satisfying
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u∈UA

|λu| < ∞ and
∑

u∈UA
λuu = 0. In view of the assumption (3),

(respectively, (5)), for each primitive ideal P of A we have∑
u∈UA

λuu
−1+P =

∑
u∈UA

λu(u+P )−1 =
∑

u∈UA

λu(u+P )∗ = (
∑

u∈UA

λuu+P )∗ = 0,

and hence
∑

u∈UA
λuu

−1 = 0 by semisimplicity. Now, according to [2,
Lemma 2.2], given x ∈ A and ε > 0, there exists a family {λu}u∈UA

of
real (respectively, complex) numbers satisfying

∑
u∈UA

|λu| < ‖x‖ + ε and∑
u∈UA

λuu = x. It follows that

x =
∑

u∈UA

λuu→ x∗ :=
∑

u∈UA

λuu
−1

is a well-defined mapping from A to A, which actually becomes an isomet-
ric linear (respectively, conjugate-linear) algebra involution on A satisfying
u∗ = u−1 for every u ∈ UA.

(2) ⇒ (1) and (4) ⇒ (1).- These implications follow from Proposi-
tion 4.8.
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revisited. In Recent Progress in Functional Analysis, Proceedings of the Inter-
national Functional Analysis Meeting on the Occasion of the 70th Birthday of
Professor Manuel Valdivia Valencia, Spain, July 3-7, 2000 (Ed. K. D. Bierstedt,
J. Bonet, M. Maestre, and J. Schmets), 379-408, North Holland Math. Studies
189, Elsevier, Amsterdam 2001.

[28] S. KAKUTANI and G. W. MACKEY, Two characterizations of real Hilbert
space. Ann. of Math. 45 (1944), 50-58.

[29] N. J. KALTON, Spaces of compact operators. Math. Ann. 208 (1974), 267-278.
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[45] A. RODRÍGUEZ, Automatic continuity with application to C∗-algebras. Math.
Proc. Cambridge Phil. Soc. 107 (1990), 345-347.
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