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Abstract. We prove that, if A is an absolute-valued ∗-algebra in the
sense of [8], then the normed space of A becomes a trigonometric algebra

(in the meaning of [7]) under the product ∧ defined by x∧y := x∗y−y∗x
2

.
Moreover, we show that, “essentially”, all infinite-dimensional complete
trigonometric algebras derive from absolute-valued ∗-algebras by the
above construction method.

1. Introduction

Given nonzero elements x, y of a real pre-Hilbert space, we define as
usual the angle α := α(x, y) between x and y by the equality cos α := (x|y)

‖x‖‖y‖ .
By a trigonometric algebra we mean a nonzero real pre-Hilbert space B
endowed with a (bilinear) product ∧ : B ×B → B satisfying

‖x ∧ y‖ = ‖x‖‖y‖ sinα

for all x, y ∈ B \ {0}. We note that the above requirement is equivalent to

‖x ∧ y‖2 + (x|y)2 = ‖x‖2‖y‖2.

The motivating example for trigonometric algebras is the Euclidean tridi-
mensional space endowed with the usual vector product. Since for every x
in a trigonometric algebra we have x ∧ x = 0, trigonometric algebras are
anticommutative.

Trigonometric algebras have been introduced recently by P. A. Terekhin [7],
who shows that the dimensions of finite-dimensional trigonometric algebras
are precisely 1, 2, 3, 4, 7, and 8. The existence of complete trigonometric
algebras of arbitrary infinite Hilbertian dimension is implicitly known in [4].
Indeed, we have the following
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Example 1.1. Let H be any infinite-dimensional real Hilbert space.
Take an orthonormal basis U of H, together with an injective mapping
ϑ : U × U → U . Then the mapping (u, v) → ϑ(u,v)−ϑ(v,u)√

2
, from U × U to

H, extends to a product ∧ on H converting H into a trigonometric algebra
(see Remark 1.6 of [4] for details).

The aim of the present paper is to entering the structure of infinite-
dimensional trigonometric algebras, by relating them to the so called “absolute-
valued ∗-algebras”. An absolute value on a real or complex algebra A is
a norm ‖ · ‖ on the vector space of A satisfying

‖xy‖ = ‖x‖‖y‖
for all x, y ∈ A. By an absolute-valued algebra we mean a nonzero real
or complex algebra endowed with an absolute value. Absolute-valued ∗-
algebras are defined as those absolute-valued real algebras A endowed with
an isometric algebra involution ∗ which is different from the identity operator
and satisfies xx∗ = x∗x for every x ∈ A. Absolute-valued ∗-algebras were
introduced in the early paper of K. Urbanik [8], and have been reconsidered
by B. Gleichgewicht [3], Urbanik himself [9], M. L. El-Mallah [1, 2], and
A. Rochdi [5]. The reader is referred to the recent survey paper [6] for a
complete view of the theory of absolute-valued algebras.

To precisely reviewing our results, let us introduce some additional def-
initions. By a super-trigonometric algebra we mean a nonzero real
pre-Hilbert space B endowed with a product ∧ : B ×B → B satisfying

(x ∧ y|u ∧ v) = (x|u)(y|v)− (x|v)(y|u)

for all x, y, u, v ∈ B. Takin (u, v) = (x, y) in the above equality, we obtain

‖x ∧ y‖2 + (x|y)2 = ‖x‖2‖y‖2.

Therefore, super-trigonometric algebras are trigonometric. Following Ur-
banik’s pioneering paper [8], we say that an absolute-valued ∗-algebra A is
regular if the equality 〈(ux, vy)〉 = 〈(uv∗, x∗y)〉 holds for all x, y, u, v ∈ A,
where 〈(x, y)〉 := xy∗+yx∗

2 .
We prove that, if A is an absolute-valued ∗-algebra, then the normed

space of A becomes a trigonometric algebra (say B) under the product ∧
defined by x ∧ y := x∗y−y∗x

2 , and that A is regular if and only if B is super-
trigonometric (Theorem 4.1). Moreover, up to a natural equivalence on
the class of trigonometric algebras (which respects super-trigonometric alge-
bras), all infinite-dimensional complete trigonometric algebras derive from
absolute-valued ∗-algebras by the construction method provided in Theo-
rem 4.1 just reviewed (Theorem 4.2).

As far as we know, super-trigonometric algebras have been not previ-
ously introduced. They have their own life, so that their structure can be
nicely described (see Proposition 2.1 for details). As a consequence, the
dimensions of finite-dimensional super-trigonometric algebras are precisely
1, 2, and 3 (Corollary 2.3).
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2. Super-trigonometric algebras

Let X be a real vector space. We define the antisymmetric tensor prod-
uct X ⊗a X as the subspace of X ⊗X spanned by the set

{x⊗ y − y ⊗ x : x, y ∈ X}.
For x, y ∈ X, we put x ⊗a y := x⊗y−y⊗x√

2
∈ X ⊗a X. It is easy to see that,

for every real vector space Z and every antisymmetric bilinear mapping
f : X × X → Z, there exists a unique linear mapping Φ : X ⊗a X → Z
satisfying f(x, y) = Φ(x ⊗a y) for all x, y ∈ X. Now, let H be a real pre-
Hilbert space. It is well-known that H⊗H becomes a real pre-Hilbert space
under the inner product (·|·) determined on elementary tensors by

(x⊗ y|u⊗ v) := (x|u)(y|v).

Therefore H ⊗a H is also a real pre-Hilbert space under an inner product
(·|·) satisfying

(x⊗a y|u⊗a v) := (x|u)(y|v)− (x|v)(y|u)

for all x, y, u, v ∈ H. Keeping in mind the above facts, the following result
is of straightforward verification.

Proposition 2.1. Given a real pre-Hilbert space H and a linear isom-
etry Φ from the pre-Hilbertian antisymmetric tensor product H ⊗a H to H,
H becomes a super-trigonometric algebra under the product ∧ defined by
x ∧ y := Φ(x ⊗a y). Moreover, all super-trigonometric algebras can be ob-
tained by the construction method just described.

Corollary 2.2. Every infinite-dimensional real Hilbert space can be
converted into a super-trigonometric algebra under a suitable product.

Proof. Let H be an infinite-dimensional real Hilbert space. Then the
completion H⊗̃H of the pre-Hilbert space H ⊗ H is a Hilbert space with
the same Hilbertian dimension as that of H. Therefore, the closure H⊗̃aH
of H ⊗a H in H⊗̃H is a Hilbert space whose Hilbertian dimension is less
than or equal to that of H. This allows us to find a linear isometry from
H⊗̃aH into H, and to restrict such an isometry to H ⊗a H. Finally, apply
Proposition 2.1.

Corollary 2.3. The dimensions of finite-dimensional super-trigonometric
algebras are precisely 1, 2, and 3.

Proof. We note that, if the dimension of a real vector space X is n ∈ N,
then the dimension of X⊗a X is n(n−1)

2 . It follows from Proposition 2.1 that
a natural number n is the dimension of a super-trigonometric algebra if and
only if n(n−1)

2 ≤ n, if and only if n ≤ 3.

We conclude this the present section with Lemma 2.4 immediately below.
Such a lemma will be useful later.
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Lemma 2.4. Let H be a real pre-Hilbert space endowed with an anticom-
mutative product ∧. Then (H,∧) is a super-trigonimetric algebra if and only
if the equality

(2.1) (x|y)(u|v) + (x ∧ y|u ∧ v) = (v|y)(u|x) + (v ∧ y|u ∧ x)

holds for all x, y, u, v ∈ H.

Proof. Let x, y, u, v be in H. Assume that (H,∧) is a super-trigonimetric
algebra. Then, subtracting the equality (v∧y|u∧x) = (v|u)(y|x)−(v|x)(y|u)
from the one (x ∧ y|u ∧ v) = (x|u)(y|v)− (x|v)(y|u), we obtain (2.1). Con-
versely, assume that (2.1) holds. Interchanging the rolls of y and v in (2.1),
we obtain

(2.2) (x|v)(u|y) + (x ∧ v|u ∧ y) = (y|v)(u|x) + (y ∧ v|u ∧ x),

and, replacing in (2.1) (x, y, u, v) with (u, v, y, x), we also obtain

(2.3) (u|v)(y|x) + (u ∧ v|y ∧ x) = (x|v)(y|u) + (x ∧ v|y ∧ u).

Subtracting (2.3) from the equality obtained by summing (2.1) and (2.2),
we get

(x ∧ y|u ∧ v) = (x|u)(y|v)− (x|v)(y|u),

and hence (H,∧) is a super-trigonimetric algebra.

3. Revisiting absolute-valued ∗-algebras

Throughout this section, A will denote an absolute-valued ∗-algebra.
The following result summarizes Lemmas 1, 2, and 3 of Urbanik’s pa-

per [8]. The idea of such a summary is taken from Gleichgewicht’s note [3].

Proposition 3.1. Self-adjoint elements of A commute with skew ele-
ments of A. Moreover, there exists an idempotent e ∈ A such that the
equality x∗x = ‖x‖2e holds for every x ∈ A.

The following corollary is also known in [8]

Corollary 3.2. The absolute value of A comes from an inner product
(·|·). Moreover, if h is a self-adjoint element of A, and if k is a skew element
of A, we have (h|k) = 0.

Proof. Since Proposition 3.2 shows ostensibly that the square of the
norm of A is a quadratic function, the first assertion in the corollary seems
to us obvious. On the other hand, for elements h and k self-adjoint and
skew, respectively, in A, Proposition 3.2 gives

‖h + k‖2e = (h + k)∗(h + k) = (h− k)(h + k)

= h2 − k2 = h∗h + k∗k = (‖h‖2 + ‖k‖2)e,

so ‖h + k‖2 = ‖h‖2 + ‖k‖2, and so (h|k) = 0.
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Corollary 3.3. Let e be the idempotent in A given by Proposition 3.1.
Then we have (xy|e) = (x|y∗) for all x, y ∈ A. Moreover, if for x ∈ A we
put xσ := 2(x|e)e− x, then ∗ and σ coincide on A2 := lin{xy : x, y ∈ A}.

Proof. Let x, y be in A with ‖y‖ = 1. Since the operator of right
multiplication on A by y is a linear isometry, we have (xy|y∗y) = (x|y∗).
But, by Proposition 3.1, y∗y = e.

Linearizing the equality xx∗ = ‖x‖2e in Proposition 3.1, we get
xy∗ + yx∗ = 2(x|y)e for all x, y ∈ A. Then, replacing y with y∗, we de-
rive (xy)∗ = 2(x|y∗)e − xy. Finally, since (x|y∗) = (xy|e) (by the first
paragraph in the proof), we obtain (xy)∗ = (xy)σ.

The last conclusion in Corollary 3.3 can be also deduced by putting
together [3, Theorem] and the proof of [9, Theorem 5].

Remark 3.4. In [8, pp. 249-250], Urbanik introduces the so-called
∗-product of A as the bilinear mapping 〈(·, ·)〉 : A × A → A defined by
〈(x, y)〉 := xy∗+yx∗

2 , and comments that “it imitates an inner product”. It
is worth mentioning that, in view of the equality xy∗ + yx∗ = 2(x|y)e in
the proof of Corollary 3.3, the ∗-product of A is essentially the inner prod-
uct of A. Therefore, the regularity of A (as defined in the introduction) is
equivalent to the equality (ux|vy) = (uv∗|x∗y) for all x, y, u, v ∈ A.

It was proved by El-Mallah [1] that the commutant of e in A is a subal-
gebra of A, and that such a subalgebra is infinite-dimensional whenever so
is A. The following corollary refines both facts.

Corollary 3.5. Let C denote the commutant of e in A. Then C con-
tains A2. Therefore C is an ideal of A, and A is linearly isometric to a
subspace of C.

Proof. Let x be in A2. Put y := x+x∗

2 and z := x−x∗

2 . By Corollary 3.3,
we have y = x+xσ

2 = (x|e)e. Since x = y + z, and z is a skew element of
A, and skew elements of A commute with e (by Proposition 3.1), it follows
that x lies in C. Now that we know that C contains A2, the fact that C is
an ideal of A becomes obvious. Moreover, the mapping φ : A → A2 ⊆ C
defined by φ(x) := ex is a linear isometry.

It follows from Corollary 3.5 that e commutes with all elements of A
whenever A2 is dense in A. As a consequence, if A is finite-dimensional,
then e commutes with all elements of A [1, Corollary 4.2].

Remark 3.6. Let C, Asa, and Ask stand for the commutant of e in A,
the set of all self-adjoint elements of A, and the set of all skew elements of
A, respectively. The argument in the proof of Corollary 3.5 shows that the
set {x ∈ A : x∗ = xσ} is contained in C. On the other hand, by [1, Lemma
3.3], C is contained in Re ⊕ Ask. Since the direct sum A = Asa ⊕ Ask is
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ortogonal (by Corollary 3.2), it follows

{x ∈ A : x∗ = xσ} = C = Re⊕Ask.

Applying again Proposition 3.1, we derive that ∗ coincides with σ (on A) if
and only if A = Re⊕Ask, if and only if e commutes with all elements of A.

In [2], El-Mallah proves a remarkable converse to Corollary 3.5. Indeed,
if an absolute-valued algebra C has a non-zero idempotent e which commutes
with all elements of C, then the norm of C derives from an inner product
(·|·), and the operator ∗ on C defined by x∗ := 2(x|e)e − x becomes an
(isometric) algebra involution on C satisfying xx∗ = x∗x for every x ∈ C.

To conclude the present section, let us emphasize that Urbanik [8] com-
pletely describes all complete regular absolute-valued ∗-algebras. A conse-
quence of such a description is the following result.

Proposition 3.7. Every infinite-dimensional real Hilbert space can be
endowed with a product and an involution converting it into a regular absolute-
valued ∗-algebra.

4. Infinite-dimensional Terekhin’s trigonometric algebras

Theorem 4.1. Let A be an absolute-valued ∗-algebra. Then the normed
space of A becomes a trigonometric algebra (say B) under the product

x5 y :=
x∗y − y∗x

2
.

Moreover, the absolute-valued ∗-algebra A is regular if and only if the trigono-
metric algebra B is in fact super-trigonometric.

Proof. By Corollary 3.2, the absolute value of A derives from an inner
product (·|·). Moreover, by Corollary 3.3, for x, y in A we have

4‖x5 y‖2 = ‖x∗y − y∗x‖2 = ‖(y∗x)∗ − y∗x‖2 = ‖(y∗x)σ − y∗x‖2

= 4‖(y∗x|e)e− y∗x‖2 = 4(‖y∗x‖2 − (y∗x|e)2)
= 4(‖y∗‖2‖x‖2 − (y∗|x∗)2) = 4(‖x‖2‖y‖2 − (x|y)2),

and hence B is a trigonometric algebra.
Let x, y, u, v be in A. Applying again Corollary 3.3, we have

x∗y =
x∗y + (x∗y)∗

2
+

x∗y − y∗x

2

=
x∗y + (x∗y)σ

2
+ x5 y = (x∗y|e)e + x5 y,

and hence

(4.1) x∗y = (x|y)e + x5 y.

Replacing in (4.1) (x, y) with (u∗, v∗), we obtain

(4.2) uv∗ = (u|v)e + u∗ 5 v∗.
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Since A 5 A consists of skew elements of A, and self-adjoint elements are
ortogonal to skew elements (by Corollary 3.2), it follows from (4.1) and (4.2)
that

(4.3) (uv∗|x∗y) = (x|y)(u|v) + (x5 y|u∗ 5 v∗),

and, replacing in (4.3) (v, x) with (x∗, v∗), also

(4.4) (ux|vy) = (v∗|y)(u|x∗) + (v∗ 5 y|u∗ 5 x).

Keeping in mind Remark 3.4, it follows from (4.3) and (4.4) that the absolute-
valued ∗-algebra A is regular if and only if we have

(x|y)(u|v) + (x5 y|u∗ 5 v∗) = (v∗|y)(u|x∗) + (v∗ 5 y|u∗ 5 x),

or equivalently (by replacing (u, v) with (u∗, v∗))

(4.5) (x|y)(u|v) + (x5 y|u5 v) = (v|y)(u|x) + (v 5 y|u5 x).

But, by Lemma 2.4, the equality (4.5) is equivalent to the fact that B is a
super-trigonometric algebra

In the particular case that A is equal to either C, H (the algebra of
Hamilton’s quaternions), or O (the algebra of Cayley numbers), and ∗ is
the standard involution on A, the first assertion in Theorem 4.1 is due
to Terekhin (see [7, part 2 of the proof of the theorem]). We note that
Corollary 2.2 follows from Urbanik’s Proposition 3.7 and Theorem 4.1.

Theorem 4.1 provides us with a method to build trigonometric algebras.
More trigonometric algebras can be obtained from a given one (say B), by
taking any (possibly non surjective) linear isometry ϕ from

B2 := lin{x ∧ y : x, y ∈ B}
to B, an then by replacing the product of B by the one 4 defined by
x 4 y := ϕ(x ∧ y). The new trigonometric algebras obtained in this way
will be called isotone algebras of the given one B. It is easy to see that
the isotony just defined becomes an equivalence relation on the class of all
trigonometric algebras, and that isotone algebras of a super-trigonometric
algebra are super-trigonometric. We also note that every trigonometric (re-
spectively, super-trigonometric) algebra can be seen as a dense subalgebra
of a complete trigonometric (respectively, super-trigonometric) algebra.

Theorem 4.2. Let B be a complete infinite-dimensional trigonometric
algebra. Then there exists an absolute-valued ∗-algebra A such that B is
isotone to the trigonometric algebra obtained from A by the construction
method given in Theorem 4.1.

Proof. Fix a norm-one element e ∈ B. Since B is complete and infinite-
dimensional, there exists a linear isometry φ from B to the orthogonal
complement of Re. Now, consider the isometric involutive linear opera-
tor ∗ and the product (x, y) → xy on B defined by x∗ := 2(x|e)e − x and
xy := φ(x∗ ∧ y) + (x∗|y)e, respectively. We claim that the normed space
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of B endowed with the involution and product just defined becomes an
absolute-valued ∗-algebra (say A). Indeed, for x, y in A we have

‖xy‖2 = ‖φ(x∗ ∧ y)‖2 + (x∗|y)2 = ‖x∗ ∧ y‖2 + (x∗|y)2

= ‖x∗‖2‖y‖2 = ‖x‖2‖y‖2.

Moreover, since B is an anticommutative algebra, and ∗ is an involutive
operator, we get

x∗x = ‖x‖2 = ‖x∗‖2 = xx∗

for every x ∈ A, and

(xy)∗ = (φ(x∗ ∧ y) + (x∗|y)e)∗ = −φ(x∗ ∧ y) + (x∗|y)e

= φ(y ∧ x∗) + (y|x∗)e = y∗x∗

for all x, y ∈ A. Now that the claim is proved, consider the trigono-
metric algebra (D,5) obtained from A by the construction method given
in Theorem 4.1. Then, after a straightforward computation, we obtain
x 5 y = φ(x ∧ y) for all x, y ∈ B. It follows that D is an isotone of B.

We note that Urbanik’s Proposition 3.7 follows from Corollary 2.2 and
Theorems 4.2 and 4.1.
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