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Introduction

The Vidav-Palmer theorem asserts that for a unital Banach (associative) complex
algebra A to admit an involution which turns it into a C*-algebra, it is a necessary
and sufficient condition that A should be a V-algebra, and then the involution is
determined by the formula:

h + ik > h - ik {h,ke H(A)),

the "natural involution of the V-algebra A" (for the concept of V-algebra and the
definition of H(A) see Section 1 of this paper). In view of this theorem, nonassociative
V-algebras are an available model for nonassociative C*-algebras.

The above mentioned theorem of Vidav and Palmer consists of two assertions
with independent proofs:

(a) (ab)* = b*a* (a, be A), "multiplicativity of the natural involution of the
associative V-algebra A".

(b) \\a*a\\ = ||a||2 (a e A), "star-property of the natural involution".

A result of J. Martinez, A. Mojtar and the author (see [10]) proves that the
natural involution of a nonassociative V-algebra A is multiplicative if and only if A is
a noncommutative Jordan algebra (thus determining the widest context in which
assertion (a) is valid in the nonassociative case). So noncommutative Jordan V-
algebras are a good generalization of associative C*-algebras (note in addition their
good algebraic behaviour: power-associativity, existence of an available concept of
inverse for some of their elements, etc.). The purpose of this paper is to continue the
study of noncommutative Jordan V-algebras begun in [10].

The basic tool is the recent theorem of the Vidav-Palmer type due to J. Martinez
[8] and M. A. Youngson ([19] and [20]) showing that the class of (commutative)
Jordan V-algebras is just the one of Jordan C*-algebras. The concept of Jordan C*-
algebra has been formulated by Kaplansky using axioms which we can call "of the
Gelfand-Naimark type" and it has been studied by several authors since the work of
Wright [15] whose main result establishes that real JB-algebras in the sense of
Alfsen, Schultz and Stormer [1] are just the selfadjoint parts of Jordan C*-algebras.

In Section 1 of this paper I give a new proof of the above-mentioned result by
Martinez and Youngson (Theorem 3) and from this and the papers [10], [15] and
[17] we obtain interesting consequences in the theory of V-algebras, especially of
noncommutative Jordan V-algebras (Theorems 8 and 10) which are useful in the
following sections.
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Sections 2, 3 and 4 are independent (only Corollary 25 needs Theorem 14).
In Section 2 unital nonassociative B*-algebras are defined (by requiring exactly

the Gelfand-Naimark axiom) and it is shown (Theorem 14) that such a B*-algebra is
always alternative. Since the multiplicativity of the involution is not assumed, this
result includes in particular a complete nonassociative parallel to assertion (b) in the
Vidav-Palmer theorem: the natural involution of a nonassociative V-algebra satisfies
the star-property if and only if the algebra is alternative (see also Corollary 9). As a
consequence (curiously), assertion (b) of the Vidav-Palmer theorem implies (a).

In Section 3 the bidual of a noncommutative Jordan V-algebra with the Arens
product is studied and it is shown (Theorem 23) that this algebra is a new
noncommutative Jordan V-algebra satisfying every multilinear identity satisfied by
the first. In consequence, the bidual of a Jordan C*-algebra is another Jordan C*-
algebra (Corollary 24).

Section 4 is devoted to proving that the algebraic numerical index (Theorem 26)
and the normed space numerical index (Corollary 33) of a noncommutative Jordan
V-algebra is either 1 or | depending on whether or not A is associative and
commutative.

1. Previous concepts and results

Two terminologies are used in this paper; the first is the one of nonassociative
algebras, for which we refer to [13] in the general case and to [6] in the particular
case of Jordan algebras, and the second is the one of numerical ranges in
nonassociative unital normed algebras.

A unital normed algebra will be a nonassociative real or complex algebra A with
identity / in which a norm is defined, satisfying:

I M < U | a | | ||6|| (a, be A), \\I\\ = 1.

If a is an element of such an algebra A, we define the numerical range of a
(V(A, a) or V(a) when confusion is not possible) by

V(A,a) = {f(a):fs A',\\f\\ = f(I) = \},

which is a nonempty compact convex subset of the scalar field U or C. The numerical
radius of a (v(aj) is defined by

v(a) = sup {\c\: c e V{a)}.

Our first basic result is easily verified.

PROPOSITION 1. If A and B are unital normed algebras over the same field and F is
a continuous linear mapping from A into B with norm one (respectively isometric) and
such that F(I) = I, then V(B, F{a)) c V(A, a) [respectively V(B, F(a)) = V(A, a)) for
all a e A.

For each element a of an algebra A, we shall denote by La and Ra the mappings
b -> ab and b -> ba from A into A. Since A is a unital normed algebra we have

IIAJI = IIKJI = IMI (aeA), Lt = Rt = I\
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and denoting by BL(A) the (unital normed associative) algebra of bounded linear
operators on A, we have the following corollary.

COROLLARY 2. For an element a of a unital normed algebra A

(a) V(A, a) = V{BL{A\ La) = V(BL(A), Ra),

(b) ifB is a subalgebra of A with {a, 1} c B, then V{B, a) = V{A, a).

As the author does not know a systematic and easily accessible reference for
numerical ranges in nonassociative unital normed algebras, the previous corollary
becomes a basic tool in order to state in the present case some results well known for
the associative case which can be found in [3] and [4] (perhaps it should be observed
that BL{A) is always associative and that the subalgebra B can be chosen associative
and closed if A is power-associative).

Definitions. An element a of a unital normed complex algebra A will be called
hermitian if V(a) a U. The set of hermitian elements of A will be denoted by H(A).

A W-algebra will be a unital complete normed complex algebra A satisfying
A = H{A) + iH{A) (the sum is automatically topological-direct).

An involution * in a complex vector space X is a mapping from X into X
satisfying

(x + y)* = x* + y*,(cx)* = cx*,{x*)* = x (x, y e X; c e C).

An involution * in a complex algebra A will be called multiplicative if
{ab)* = b*a*{a,beA).

If A is a V-algebra, the mapping

h + ik >h-ik (h,ksH(A))

is a continuous involution on A which we call "natural".
A Jordan C*-algebra in the sense of Kaplansky is a unital complete normed

complex Jordan algebra A with a multiplicative involution * satisfying

\\UJLa*)\\ = IM|3 (aeA)

(where Ua = 2L2
a - La2).

Every Jordan C*-algebra is a Jordan V-algebra whose natural involution is the
previous one (see [19; Theorem 7]). Conversely, in [20; Theorem 8] it is shown that
every Jordan V-algebra with its natural involution is a Jordan C*-algebra, assuming
that this involution is multiplicative. But this assumption is superfluous (see [8;
Theorem IV.5.3]). So a theorem of the Vidav-Palmer type is true for Jordan C*-
algebras. In this section, using the above-mentioned result of [8], we give a new
proof of this theorem and we obtain some consequences. To this end we need some
auxiliary results which have their own interest.

If X is a nonempty set and A is a unital normed algebra, then the set of bounded
functions from X into A is, with pointwise operations and supremum norm, a new
unital normed algebra denoted B(X, A).
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PROPOSITION 3. If A is complete and power-associative and F e B(X, A), then

V(B(X, A), F) = co)j{V(A, F(x)) :xsX}

(co denotes closed convex hull).

Proof. By [3; Theorem 3.4] we have

sup Re V(F) = sup j - log ||exp(rF)||: r > 0

= sup < sup < - log ||exp (rF)(x)|| :xe X\-:r > 0

= sup {sup Re V(F(x)) :xeX}

= sup Re (a> (J { V(F(x)) :xeX}Y

Remark 4. The assertion in Proposition 3 may be obtained without
completeness (use the algebra completion of A and apply Corollary 2) and without
power associativity, for the crucial "exponential formula", which through Corollary 2
we have applied here, may be obtained in general nonassociative case.

THEOREM 5. Let A be a Jordan C*-algebra and let T e BL(A). Then

V(BL(A), T) = co u{ V[A , exp ( - iLJ T(exp (ia)fj : a e Sym (X)J

(Sym (/I) = {a e A : a* = a}).

Proof. For every T G BL{A) let f be the function from Sym (A) into A defined
by the formula

f(a) = exp ( - iLa) T(exp (ia)) ( ae Sym (A)).

Let a G Sym(/4). By [19; Theorem 7], a e H{A) and hence La e H(BL(A)) in view of
Corollary 2(a). Applying [3; Lemma 5.2], exp ( — iLJ is isometric and so the equality
||f(fl)|| = ||T(exp(m))|| implies

||fl| = sup{||f(a)||:aeSymO4)} = sup {||T(exp(ifl))||: a e Sym(A)} = \\T\\

(the last equality follows from [16; Corollary 2.4]).
The mapping T -• f is thus a unit preserving linear isometric mapping from

BL(A) into B(Sym (A), A). Applying consecutively Propositions 1 and 3 the result
follows.

We come now to the promised new proof of the Vidav-Palmer theorem for
Jordan C*-algebras ([8] and [20]).
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THEOREM 6. Let A be a Jordan V-algebra. Then A with its natural involution is a
Jordan C*-algebra.

Proof. Let * be the natural involution of A, which is continuous. By [8;
Theorems IV.5.3 and IV.5.16], * is multiplicative and *-Sym(A) (= H{A)) is a JB-
algebra in the sense of [1]. Applying [15; Theorem 2.8] we have an equivalent norm
| • | on A such that {A,*,\ • |) is a Jordan C*-algebra and

|a| = ||a|| (aeSym(A)).

It is now enough to prove that

|a| = ||a|| (a 6/4).

The first step is to prove that

To this end observe that, by [19; Theorem 7], (A,\ • |) and (A,\\ • ||) are V-algebras
with the same hermitian elements. Hence if a = h + ik (h, k e H{A)) we have

sup Re V\. (a) = sup V{. |(/i),

But
sup V^. ,(/i) = sup Vj. n(h)

because both norms are equal on H(A) and [3; Theorem 2.5] applies. Thus

Working now only with the original norm || • ||, let T e BL(A) and aeH(A).
Then, as in the proof of Theorem 5,

||cxp(-iLB)r(exp(te))|| ^ ||T||

and so the mapping T -> exp (— iLa) T(exp (ia)) from BL{A) into A satisfies the
conditions in Proposition 1. Thus

V,. ,,(7) D ^ U { ^ i,(exp(-iLa)T(exp(ia))): a e H(A)}

= c^ u{^[ • ( e x p ( - iLa)T(exp{ia))) : a e

Applying Theorem 5, we have

Vn.n(T)^ ^.,(7) ( T e J B ^ ) ) ,
and

vn. ,,(7) ^ V]. IT) {TEBL(A)).
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By [9; Theorem 3], there is k e U such that

\\a\\ = k\a\ (aeA)

and with a = I we find that k = 1.

Remark 7. In [9] it is assumed that

^.,,(71 = 1;,. ,(7). (TeBL(AJ).

But really the proof only uses the weaker condition

If /4 is an algebra we shall denote by A+ the algebra obtained from the vector
space of A with the product

a.b = {(ab + ba).

THEOREM 8. If A is a V-algebra the following statements are equivalent:

(a) A is a noncommutative Jordan algebra;

(b) the natural involution of A is multiplicative;

(c) the natural involution of A is isometric.

Proof (a)<=>(b) by [10; Theorem IV.4.6]. (c) => (b) is proved in [10; Theorem
V.5.11]. It is enough to prove that (a) => (c): A+ is a (commutative) Jordan V-
algebra with the same natural involution as A. By Theorem 6 and [19; Lemma 4]
this involution is isometric.

Theorems 6 and 8 include the classical Vidav-Palmer theorem ([11; Theorem
3.1]; see also [3; Theorem 6.9]) and also its generalization for alternative algebras
([10; Theorem IV.5.14]).

COROLLARY 9. / / A is an alternative N-algebra, its natural involution (*) is
multiplicative and \\a*a\\ = ||a||2/br all a in A.

Proof Multiplicativity of ihe involution is assured by Theorem 8. To prove the
star-property observe that A+ is a Jordan V-algebra. So Theorem 6 applies and gives
\\Ua{a*)\\ = IMI3- Here Ua(a*) = aa*a. Hence ||a||2 ^ \\a*a\\.

Definition. Let A and B be noncomutative Jordan algebras. A J-homomorphism
from A into B (respectively a J-derivation of A) will be an homomorphism from A +

into J5+ (respectively a derivation of A+).
A linear mapping F between two complex spaces with involution is said to be

symmetric if F(x*) = (F(x))*.

The following theorem generalizes a result from Ylinen [18; Theorem 1.1]. The
equivalence of assertion (a) and (b) of our theorem has been proved by Kadison ([7;
see also [12]) in the associative case, and by Wright and Youngson [17] in the
(commutative) Jordan case.
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THEOREM 10. Let A and B be noncommutative Jordan W-algebras and F a linear
bijection from A onto B. The following statements are equivalent:

(a) F is a symmetric J-isomorphism;

(b) F is isometric and F(I) = I;

(c) V{A, a) = V(B, F{a))for every a in A.

Proof, (a) => (b). This is proved by reduction to the commutative case, and
using Theorem 6 and [15; Corollary 1.4].

(b) =*• (c). This follows from Proposition 1.

(c) => (a). We may assume that A and B are commutative. Hence H(A) and H(B)
are JB-algebras. As the norm of a hermitian element of a Jordan V-algebra is equal
to its numerical radius, F(I) = / and F is an isometric linear bijection of H(A) onto
H(B). So by [17; Theorem 4] it follows that F{a2) = {F{a))2 for all a e H{A). Hence F
is a symmetric J-isomorphism.

From the equivalence of assertions (a) and (b) of the above theorem, by
arguments analogous to those in [14; Remark 3.5] or [20; Theorem 11], we obtain
the following.

COROLLARY 11. Let A be a noncommutative Jordan V-algebra and T a mapping
from A into A. The following statements are equivalent:

(a) T = La + iD, where a is a hermitian element of A and D is a symmetric J-
derivation of A;

(b) T is a hermitian element of BL(A).

Remark 12. The above corollary generalizes the analogous results when A is
associative [14] or (commutative) Jordan [20]. Although in the associative case it is
specified that D is an authentic derivation of A, this is a consequence of the main
result in [14; Theorem 3.3] which is obviously false even in the nonassociative
alternative case. Noting that the complex octonions algebra can be structured as an
V-algebra [10; Theorem IV.6.5] it can be seen that the above generalization is the
best possible.

2. Nonassociative B*-algebras

Definition. A nonassociative unital B*-algebra will be a unital complete normed
complex algebra A with an involution * satisfying

/ • = / , \\a*a\\ = \\a\\2 (aeA).

Corollary 9 actually shows that an alternative V-algebra with its (automatically
multiplicative) natural involution is a nonassociative unital B*-algebra. In addition,
as stated in Remark 12, there are alternative V-algebras which are not associative.

Our purpose in this section is to show (answering affirmatively the question
posed in [10]) that, conversely, nonassociative unital B*-algebras are alternative V-
algebras. We begin with a basic but elementary lemma.
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LEMMA 13. Let A be a unital complete normed algebra and let £ (l/n\)r"Fn be a
power series with coefficients Fn in BL(A). Assume the existence of a positive number k
such that the series converges and that, if Gr denotes the sum, then Gr is an
automorphism of A, for \r\ < k (r e U). Then

(a) Fn(ab) = £ (n) Fla)Fn_M>)for all a and b in A,
i = 0 W

(b) in particular if FQ = I and Fx — 0 then F2 is a derivation of A.

Proof. We have Gr(ab) = Gr{a)Gr(b) (\r\ < k;a,be A) and on writing the second
member as a Cauchy product of the corresponding series and identifying coefficients
we obtain (a); (b) is clear.

THEOREM 14. Every nonassociative unital B*-algebra is an alternative V-algebra
whose natural involution agrees with the original one (which is in consequence
multiplicative by Corollary 9).

Proof. Let A be a unital B*-algebra. Then clearly (using an argument analogous
to [3;-Example 5.3]), Sym(/4) cz H(A). So A is a V-algebra whose natural involution

coincides with the original one.
The equality ||a*|| = ||a|| (a e A), which is clear from the definition of unital B*-

algebras, implies in view of Theorem 8 that A is a noncommutative Jordan algebra
with multiplicative involution (up to now everything is in [10]). Let h e H(A). If
r G U, we define

Gr = £«p(.v*)exp (-irLh).

We want to prove that V(Gr(a)) = V{a) {a e A).
ifseU, then

= 11 [exp (irh) + s(exp ( - irLh)(a))*~\ [exp ( - irh) + s exp ( - irLh)(d)\ \ \

(the first equality is true because exp( — irLh) is an isometry, the second one by
definition of unital B*-algebras and the third one is clear).

Computing the first and second right derivatives at s = 0, we have [3; Theorem
2.5]

2 sup Re V(a) = sup V[Gr(a) + (Gr(a))*J .

Hence

sup Re V(a) = sup Re V(Gr(a)).

Thus we have proved that

V(a) = V(Gr{a)) (aeA, r eR) .
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As Go = / and r ->• Gr is continuous, we may assume that there exists a positive
number k such that, for \r\ < k, Gr is invertible in BL(A). Thus, for \r\ < k, Gr is a
linear bijection satisfying V(Gr(aj) = V(a). By Theorem 10, Gr is a symmetric J-
automorphism.

If ]T (l/n!)r"Fn is the power series development of Gr, we have Fo = / , F{ = 0,
F2 = Ll — Lhi. By the previous lemma, L2 — Lh2 is a symmetric J-derivation of /I. By
Corollary 11 we have L\ - L,,2 e iH (BL{AJ) and by [3; Theorem 2.6],
sp(Lj* — L/|2) <= ilR. We have also sp(LJ c U and sp(L,,2) <= R. And as Lh and L,,2
commute

sp(L2-L,,2) c sp(L2)-sp(L,,2) = (sp(Lh))
2-sp(Lh2) c R.

So sp(L2 —L,,2) = {0}. Then by the Sinclair theorem (see [4; Theorem 26.2]) or,
alternatively, by the Vidav lemma [3; Corollary 5.11] and Bohnenblust-Karlin
theorem [3; Theorem 4.1] we have L2 — L,,2 = 0. Since for any element b of a
noncommutative Jordan algebra the identity Rl — Rb2 = Lj — Lb2 holds (see [13;
p. 142]), we have also Rl — R,,2 = 0, and A is alternative.

As in [3; Theorem 7.7], an easy consequence of the previous theorem and
Corollary 9 is the following.

COROLLARY 15. If A is a nonassociative unital B*-algebra and M is a proper
closed two-sided ideal of A, then M is selfadjoint and A/M with the quotient involution
is a nonassociative B*-algebra.

If a is an element of an algebra A, then La
+ denotes the mapping b -• b .a from A

into A, where " . " is the product of A + .

THEOREM 16. Let A be a unital complete normed complex algebra with an
involution * satisfying

(a*)2 = (a2)* , \\a*a\\ = \\a*\\ \\a\\

for all a in A. Then A is a nonassociative B*-algebra.

Proof. If T e L[A) (the associative algebra of not necessarily bounded linear
maps from A into A), we define T* e L(A) by T*(a) = (T(a*))* for all a in A. Then
T -> T* is an involution on L(A) satisfying (7^ T2)* = TfT$. Hence
sp{L(A), T*) = sp (L(A),T) for all T e L(A). The assumption (a*)2 = {a2)* for all
ae A (equivalent to the multiplicativity of * in v4+) is also equivalent to (Lfl

+)* = La.
for all a 6 A. Since BL{A) is a full subalgebra of L(A)

As a consequence, if h is an hermitian element of A,

Let a G Sym(X). As in the proof of [3; Theorem 7.2], a = h + irl with h G H{A)
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and reR. Then L+ = L^ + irl and La
+ = L^-irl. Hence sp(Lfl

+) c U + ir and
sp(Lfl

+) <= U — ir, which implies that r = 0.
We have shown that Sym(X) c H(A). Hence A (and also A+) is a V-algebra

whose natural involution agrees with the original one, which is multiplicative in A +

by assumption. Then by Theorem 8, * is isometric. Hence ||a*a|| = ||a||2 for all a. e A
and A is a nonassociative B*-algebra, as required.

Remark 17. As asserted in Theorem 14, the assumption of multiplicativity of the
involution in the Gelfand-Naimark axioms is too strong and may be reduced to the
apparently weaker /* = / . This is because the proof that every unital associative B*-
algebra is a V-algebra only uses this last fact, the multiplicativity of the natural
involution of associative V-algebras being automatic (a result of Palmer [11],
contained in Theorem 8).

In the same way, in the definition of Jordan C*-algebras, the multiplicativity of
involution may be replaced by /* = / .

3. The second conjugate space of a V-algebra

Definitions and notation. If X is a normed space and F is a continuous bilinear
mapping from X x X into X, then FT (: X" x X" -> X") will denote the third Arens
transpose of F [2]. Denoting by FR the mapping (x,y) -» F(y, x) from X xX into X,
we recall that F is called Arens-regular if FTR = FRT. The second conjugate space A"
of a unital normed algebra A is considered as a new unital normed algebra with the
product FT (where F stands for the product in A); A will be said to be Arens-regular if
its product is Arens-regular.

Let X be a complex normed space with continuous involution *. For fe X' we
define / * by /*(x) = /(x*) for all x e X. Then / - > / * is a continuous involution on
X' which we shall call the "transpose" of the one on X and which is isometric if the
given one is isometric.

If F is a continuous bilinear mapping from X x X into X, then F* will denote the
mapping (x, y) -> (F(x*, y*))* from XxX into X and, analogously, FT* will denote
the mapping (u, v) -* (FT(u*, v*))* from X" x X" into X" where, now, the involution
* is the second transpose of the given one.

With this notation we have the following lemma, whose proof is routine.

LEMMA 18. Fr* = F*T.

COROLLARY 19. Let A be a unital normed algebra with multiplicative continuous
involution *. Then the second transposed involution is multiplicative on A" if and only if
A is Arens-regular.

Proof. Let F be the product of A. The multiplicativity of * is written F* = FR.
By Lemma 18, FT* = FRT and so FRT = FTR (the Arens-regularity of A) is equivalent
to FT* = FTR (the multiplicativity of * in A").

If A is an Arens-regular unital normed algebra, the product of A" is separately
weak-star-continuous in its variables. This fact and the weak-star-density of A in A"
lead to the next lemma.
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LEMMA 20. If A is an Arens-regular unital normed algebra, then A" satisfies any
multilinear identity satisfied by A.

PROPOSITION 21. Let A be a unital normed algebra and G e A". Then

V(A",G) = {G(f):feA',\\f\\ = / ( / ) = 1}"

(where ~ denotes topological closure).

Proof An analysis of the proof for the analogous associative result [3; Theorem
12.2] shows that associativity is not used.

PROPOSITION 22. / / A is a V-algebra, then A" is a V-algebra with natural
involution the second transpose of the natural one of A.

Proof If * denotes indiscriminately the natural involution of A and the first
and second transposed ones, it is enough to prove that *-Sym(A") c= H(A"). Let
Ge*-Sym(/4") and feA' with | | / | | = / ( / ) = 1. Then clearly / e *-Sym {A'). So
G ( / ) G U. Proposition 21 completes the proof.

THEOREM 23. Let A be a noncommutative Jordan V-algebra. Then A" is a
V-algebra satisfying any multilinear identity satisfied by A. In particular A" is a
noncommutative Jordan W-algebra.

Proof. By Theorem 8 the natural involution of A is multiplicative and isometric.
By Proposition 22, A" is a V-algebra whose natural involution (the second transpose)
will be isometric too. Again by Theorem 8 the natural involution of A" is
multiplicative. By Corollary 19, A is Arens-regular and Lemma 20 completes the
proof.

COROLLARY 24. The bidual of a Jordan C*-algebra A, with involution the second
transpose of the involution of A, is a new Jordan C*-algebra.

Proof By [19; Theorem 7], A is a Jordan V-algebra whose natural involution is
the original one. Now apply Theorem 23, Proposition 22 and Theorem 6.

COROLLARY 25. The bidual of a nonassociative unital B*-algebra, with the second
transpose involution, is a nonassociative unital B*-algebra.

Proof Use Theorem 14, Theorem 23, Proposition 22 and Corollary 9.

4. The numerical index of a noncommutative Jordan V-algebra

Definition. The numerical index, n(A), of a unital normed algebra A is defined by
the formula

n{A) = inf{v{a):aeA, \\a\\ = 1}.
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THEOREM 26. The numerical index of a noncommutative Jordan V -algebra A is 1
or % depending on whether or not A is associative and commutative.

The proof of this theorem needs some preliminary results. Some of them
(Lemmas 27 and 28 and Proposition 29) are essentially part of the classical theory of
Banach algebras but it may be that they are not well-known.

LEMMA 27. Let a and b be elements of an (associative) Banach algebra A. Then

r(a + b) *: max(\\a\\,\\b\\) + y/\\a~b\\

(where r is the spectral radius).

Proof. Obviously we may suppose A to be complex and unital. Then the
assertion is equivalent to

for all cesp(a + b). Since this inequality is evident if \c\ ^ max(||a||, ||6||), let us
suppose that \c\ > max(||a||, \\b\\). Then cl-a and cl-b are invertible and

a)"1!! < (ICI-IMI)- 1 , IKci-b)-1]] ^ (\c\-\\b\\y

Hence
\\((cl-a){cl-b))-l\\ - 2

Since (cl — a)(cl — b) — c(cl — (a + b)) = ab, and c(cl — (a + b)) is singular
(cesp(a + b)\), the distance from c(cl-(a + b)) to (cl-a)(cl-b), which equals ||o6||,
must be equal to or greater than \\((cl — a)(cl — bj)~l\\~l; this and the last inequality
complete the proof.

LEMMA 28. Let A be a Jordan C*-algebra. Then

for all a in A.

Proof. The reduction to A = B+, with B an associative B*-algebra, is a
consequence of [15; Corollary 2.2] (the associative product of B will be noted by
juxtaposition while " . " will denote the product of B+). Then, by Lemma 27,

\\b*b + bb*\\ ^ \\b\\2

for all b e B, which, with notation of B+, is
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PROPOSITION 29. Let A be a noncommutative Jordan V-algebra. Then

for all a in A.

Proof. The first inequality is clear. For the second one, by multiplication by a
unimodular number which does not affect the result, we may suppose that
v{a) = max Re V(a). Let h = (j){a + a*). Then

(v{a))2 ^ \\h\\2 = \\h2\\ = (l/4)\\a2 + a*2 +

where . denotes the product of A+ which, by Theorem 6, is a Jordan C*-algebra. A
consequence of Lemma 28 is

Hence

(v(a))2

ii+>/ii?ii>/ii?if+iMk/iRIi+NI2)

(i/4)dia2n+iMiyii^li+iMiyirt+IMI2)

and this completes the proof.

LEMMA 30. Let A be a unital normed noncommutative Jordan algebra. The
following statements are equivalent:

(a) there exists k > 0 such that \\a\\ ^ kr(a)for all a in A;

(b) there exists r > 0 such that \\a\\2 ^ r||a2||/br all a in A.

Proof. The algebra A is power-associative and hence an associative argument is
valid.

PROPOSITION 31. If the equivalent statements of Lemma 30 are verified and A is
complete and complex, then A is associative and commutative.

Proof. Let D be a continuous J-derivation of A and let z e C. Then exp(zD) is a
J-automorphism and, using (a),

||exp(zD)(a)|| ^ kr(exp(zD)(a)) = kr(a) ^ k\\a\\

for all a in A. Hence ||exp(zD)|| ^ k. By Liouville's theorem, D = O.If a, be A, then
La-Ra and [La, Rft] are continuous J-derivations of A (see [13; p. 146]); hence both
equal zero. So A is associative and commutative.
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Proof of Theorem 26. Let A be the noncommutative Jordan V-algebra under
consideration. By the first inequality in Proposition 29, n(A) ^ j . So, to prove the
theorem, it is enough to show that if n(A) > \ then A is associative and commutative
and then it is known that n(A) — 1.

If n(A) > j , by the second inequality of Proposition 29

n(A)\\a\\

for all a in A. Then, by Proposition 31, A is associative and commutative.

COROLLARY 32. / / A is a V-algebra with n(A) = 1, then A is associative and
commutative.

Proof. For all a in A, n(A) = 1 o v(a) = ||a||. But, if * denotes the natural
involution of A, the equality v(a*) = v{a) is clear. Then * is isometric. By Theorem 8,
A is a noncommutative Jordan algebra. Theorem 26 completes the proof.

The following corollary is a generalization of a result from Huruya [5].

COROLLARY 33. Let A be a noncommutative Jordan V-algebra. Then the
numerical index of BL(A) is 1 or j depending on whether or not A is associative and
commutative.

Proof. Clearly A may be supposed to be commutative and so, applying
consecutively Theorems 6 and 5, we obtain

V(T) = ™

which implies

v{T) = sup | v(exp ( - iLa) T(exp {ia))): a e H{A)

> n(A)sup{| |exp(-*LJT(expM)| | :aeH(A)} = n(A)\\T\\

for all T in BL(A). Thus n(BL(A)) ^ n{A) and, since the opposite inequality is valid
for any unital normed algebra A, we have n(BL(A)) = n(A). Theorem 26 completes
the proof.
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