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Abstract. We prove that, for a compact metric space X not reduced
to a point, the existence of a bilinear mapping � : C(X) × C(X) →
C(X) satisfying ‖f � g‖ = ‖f‖‖g‖ for all f, g ∈ C(X) is equivalent
to the uncountability of X. This is derived from a bilinear version of
Holsztynski’s theorem [3] on isometries of C(X)-spaces, which is also
proved in the paper.

1. Introduction

A celebrated theorem of W. Holsztynski [3] asserts that, if X and Z
are compact Hausdorff topological spaces, and if T : C(X) → C(Z) is a
linear isometry, then there exist a closed subset Z0 of Z, a continuous sur-
jective mapping ϕ : Z0 → X, and a norm-one element α ∈ C(Z) satisfying
|α(z)| = 1 and T (f)(z) = α(z)f(ϕ(z)) for every (z, f) ∈ Z0 × C(X). As
main result, we prove that, if X,Y, Z are compact Hausdorff topological
spaces, and if � : C(X) × C(Y ) → C(Z) is a bilinear mapping satisfying
‖f � g‖ = ‖f‖‖g‖ for every (f, g) ∈ C(X)× C(Y ), then there exist a closed
subset Z0 of Z, a continuous surjective mapping ϕ : Z0 → X × Y , and a
norm-one element α ∈ C(Z) satisfying |α(z)| = 1 and

(f � g)(z) = α(z)f(πX(ϕ(z))g(πY (ϕ(z))

for every (z, f, g) ∈ Z0 × C(X) × C(Y ), where πX : X × Y → X and
πY : X × Y → Y stand for the natural coordinate projections. We note
that Holsztynski’s original theorem follows from the new bilinear version by
taking the space Y reduced to a point.

We looked for the main result just reviewed in the attempt to deter-
mine those compact Hausdorff topological spaces X such that the Banach
space C(X) is “absolute-valuable”. That a Banach space E is absolute-
valuable means that there exists a bilinear mapping � : E×E → E satisfying
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‖ξ � χ‖ = ‖ξ‖‖χ‖ for all ξ, χ ∈ E. The reader is referred to [1] for a view
of the present status of the theory of such spaces. We derive from the main
result that, if X is a compact Hausdorff topological space such that C(X)
is absolute-valuable, then X must be either reduced to a point or not scat-
tered. Thus we rediscover the fact, first proved in [1], that C(X) is not
absolute-valuable when we take X equal to the one-point compactification
of any infinite discrete space. We also deduce that, in the case that the com-
pact space X is metrizable and not reduced to a point, the Banach space
C(X) is absolute-valuable if and only if X is uncountable.

2. The main result

Throughout this paper K will denote the field of real or complex num-
bers. The field K will remain fixed, and, for a compact Hausdorff topological
space X, C(X) will stand for for the Banach space over K of all K-valued
continuous functions on X. That

Theorem 2.1. Let X,Y, Z be compact Hausdorff topological spaces, and
let � : C(X)× C(Y ) → C(Z) be a bilinear mapping satisfying

‖f � g‖ = ‖f‖‖g‖
for every (f, g) ∈ C(X) × C(Y ). Then there exist a closed subset Z0 of Z,
a continuous surjective mapping ϕ : Z0 → X × Y , and a norm-one element
α ∈ C(Z) satisfying |α(z)| = 1 and

(f � g)(z) = α(z)f(πX(ϕ(z))g(πY (ϕ(z))

for every (z, f, g) ∈ Z0 × C(X) × C(Y ). Here, πX : X × Y → X and
πY : X × Y → Y denote the natural coordinate projections.

Proof. Given a compact Hausdorff topological space K, we denote
by 1K the constant function equal to 1 on K, and, for k in K, we put

Sk := {f ∈ C(K) : ‖f‖ = 1 = |f(k)|}.
Given compact Hausdorff topological spaces K and L, an element k of K,
and a linear isometry T : C(K) → C(L), we put

QT
k := {l ∈ L : T (Sk) ⊆ Sl}.

We will apply several times the following result, proved by W. Holsztyn-
ski [3]:

(*) If l is in QT
k , then we have T (f)(l) = T (1K)(l)f(k) for every

f ∈ C(K).
Now, for (x, y) ∈ X × Y we define

Qx,y := {z ∈ Z : Sx � Sy ⊆ Sz},
and organize the proof in several steeps.

Steep (i).- If (x, y) ∈ X × Y and (f, g) ∈ C(X) × C(Y ) are such that
f(x) = 0 or g(y) = 0, then we have (f � g)(z) = 0 for every z ∈ Qx,y. Let
us fix (x, y, g) in X × Y × C(Y ) with g ∈ Sy, consider the linear isometry
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T : C(X) → C(Z) defined by T (h) := h � g, and note that Qx,y ⊆ QT
x .

Assume that f ∈ C(X) satisfies f(x) = 0. Then, by (∗), we have

(f � g)(z) = (T (f))(z) = 0

for every z ∈ QT
x , and in particular (f � g)(z) = 0 for every z ∈ Qx,y. Now,

the restriction that g lies in SY can be removed by keeping in mind that,
since SySy ⊆ Sy, the linear hull of Sy in C(Y ) is a subalgebra of C(Y ),
which is self-adjoint, contains the constants, and separates the points of Y ,
so that the Stone-Weierstrass theorem applies.

Steep (ii).- If (x, y) and (x′, y′) are in X × Y with (x, y) 6= (x′, y′), then
Qx,y ∩ Qx′,y′ = ∅. Let x, x′ ∈ X and y, y′ ∈ Y be such that x 6= x′, and
assume that there exists z ∈ Qx,y ∩ Qx′,y′ . Then, taking (f, g) ∈ Sx × Sy

with f(x′) = 0, we have |(f � g)(z)| = 1 (by the definition of Qx,y) and
(f � g)(z) = 0 (by Steep (i)), a contradiction.

Steep (iii).- For every (x, y) ∈ X ×Y we have Qx,y 6= ∅. Let (x, y) be in
X×Y , and let f1, ..., fn and g1, ..., gn be in Sx and Sy, respectively. Putting
F :=

∑n
i=1 fi(x)fi and G :=

∑n
i=1 gi(y)gi, we have |F (x)| = n = ‖F‖,

|G(y)| = n = ‖G‖, and hence ‖F � G‖ = n2. Therefore there exists z ∈ Z
satisfying

n2 = |(F �G)(z)| =
∣∣ n∑

i,j=1

fi(x)gj(y)(fi � gj)(z)
∣∣.

This implies |(fi�gj)(z)| = 1 for all i, j = 1, ..., n. In this way we have shown
that, denoting by T the unit sphere of K, the family

{(f � g)−1(T) : (f, g) ∈ Sx × Sy}

has the finite intersection property. By the compactness of Z, we have in
fact Qx,y =

⋂
(f,g)∈Sx×Sy

(f � g)−1(T) 6= ∅.
Now, we consider the norm-one element α of C(Z) defined by

α(z) := (1X � 1Y )(z).

Steep (iv).- For (x, y, z) in X × Y × Z with z ∈ Qx,y, we have

(f � g)(z) = α(z)f(x)g(y)

for every (f, g) ∈ C(X) × C(Y ), and |α(z)| = 1. Since (1X ,1Y ) belongs
to Sx × Sy whenever (x, y) is in X × Y , it follows from the definitions of α
and Qx,y that |α(z)| = 1 whenever z is in Qx,y. Now, let us fix (x, y, f, g)
in X × Y × C(X) × C(Y ) with g ∈ Sy, and consider the linear isometries
T : C(X) → C(Z) and R : C(Y ) → C(Z) defined by T (h) := h � g and
R(h) := 1X �h, respectively. Keeping in mind the inclusion Qx,y ⊆ QT

x ∩QR
y ,

and applying (∗), for z ∈ Qx,y we derive

(f � g)(z) = T (f)(z) = T (1X)(z)f(x) = (1X � g)(z)f(x) = R(g)(z)f(x)

= R(1Y )(z)g(y)f(x) = (1X � 1Y )(z)f(x)g(y) = α(z)f(x)g(y).
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The restriction that g lies in Sy can be removed by arguing as in the con-
clusion of the proof of Steep (i).

Now, we define Z0 :=
⋃

(x,y)∈X×Y Qx,y. In view of Steep (ii), for ev-
ery z ∈ Z0 there exists a unique ϕ(z) ∈ X × Y such that z belongs to
QπX(ϕ(z)),πY (ϕ(z)). Moreover, by Steep (iii), the mapping ϕ : Z0 → X × Y
defined in this way is surjective. On the other hand, by Steep (iv), the
norm-one element α ∈ C(Z) satisfies |α(z)| = 1 whenever z lies in Z0, and
the equality

(2.1) (f � g)(z) = α(z)f(πX(ϕ(z))g(πY (ϕ(z))

holds for every (z, f, g) ∈ Z0 × C(X) × C(Y ). Thus, to conclude the proof
of the theorem it is enough to establish the following.

Steep (v).- Z0 is closed in Z, and the mapping ϕ : Z0 → X × Y is
continuous. Let A be a closed subset of X × Y , let z0 be in Z \ ϕ−1(A),
and let a = (x, y) be in A. Since ϕ−1(A) =

⋃
(x,y)∈AQx,y, there exists

(fa, ga) ∈ Sx × Sy such that εa := 1−|(fa�ga)(z0)|
2 > 0. Now, we consider the

open subset Ua of X × Y given by

Ua := {(x′, y′) ∈ X × Y : |fa(x′)ga(y′)| > 1− εa},
and the disjoint open subsets Va and Ga of Z defined by

Va := {z ∈ Z : |(fa � ga)(z)| > 1− εa}
and

Ga := {z ∈ Z : |(fa � ga)(z)| < 1− εa}.
We claim that ϕ−1(Ua) ⊆ Va. Indeed, if z is in Z0 with ϕ(z) = (x′, y′) ∈ Ua,
then, by the sentence containing equality (2.1), and the definition of Ua, we
have

|(fa � ga)(z)| = |fa(x′)ga(y′)| > 1− εa,

which means that z lies in Va, as claimed. On the other hand, since clearly
a lies in Ua, we can move a in A, and apply the compactness of A to find
a1, ..., an ∈ A such that A ⊆

⋃n
i=1 Uai . Then, invoking the claim, we derive

ϕ−1(A) ⊆
⋃n

i=1 Vai , and hence

(∩n
i=1Gai) ∩ ϕ−1(A) ⊆ (∩n

i=1Gai) ∩ (∪n
i=1Vai) = ∅.

In this way
⋂n

i=1Gai becomes a neighbourhood of z0 in Z contained in
Z \ ϕ−1(A). Since z0 is an arbitrary element of Z \ ϕ−1(A), we realize that
ϕ−1(A) is closed in Z. Finally, Since A is an arbitrary closed subset of X×Y
we obtain that Z0 is closed in Z (by noticing that Z0 = ϕ−1(X × Y )) and
that ϕ is continuous.

Taking in Theorem 2.1 the space Y reduced to a point, we immediately
get the following.

Corollary 2.2. [3] Let X,Z be compact Hausdorff topological spaces,
and let T : C(X) → C(Z) be a linear isometry. Then there exist a closed
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subset Z0 of Z, a continuous surjective mapping ϕ : Z0 → X, and a norm-
one element α ∈ C(Z) satisfying |α(z)| = 1 and

T (f)(z) = α(z)f(ϕ(z))

for every (z, f) ∈ Z0 × C(X).

Corollary 2.3. For compact Hausdorff topological spaces X,Z, con-
sider the following conditions:

(1) There exists a continuous surjective mapping from Z to X.
(2) C(X) is linearly isometric to a subspace of C(Z).
(3) There exists a continuous surjective mapping from some closed sub-

set of Z to X.
Then (1) ⇒ (2) ⇒ (3). Moreover, if Z is metrizable, then (2) ⇐⇒ (3).

Proof. (1) ⇒ (2).- If there exists a continuous surjective mapping
θ : Z → X, then the mapping h → h ◦ θ from C(X) to C(Z) is a lin-
ear isometry.

(2) ⇒ (3).- By Corollary 2.2.
If Z0 is any metrizable closed subset of Z, then C(Z0) is linearly iso-

metric to a subspace of C(Z) (indeed, by the Borsuk-Kakutani theorem [2,
Theorem 1.21], there is in fact a norm-one linear operator S : C(Z0) → C(Z)
satisfying S(f)|Z0

= f for every f ∈ C(Z0)). Now, assume that Z is metriz-
able, and that there exists a continuous surjective mapping from a closed
subset Z0 of Z to X. Then, since C(X) is linearly isometric to a subspace
of C(Z0) (by (1) ⇒ (2)), it follows that C(X) is linearly isometric to a
subspace of C(Z).

Remark 2.4. (a) Even if Z is metrizable, the implication (1) ⇒ (2) in
Corollary 2.3 above is not reversible. Many counterexamples can be exhib-
ited by keeping in mind the Banach-Mazur theorem that C(X) is linearly
isometric to C(Z) whenever the compact spaces X and Z are metrizable and
Z is uncountable. Thus, putting X := {0, 1} and Z := [0, 1], Condition (2)
in Corollary 2.3 is fulfilled, whereas clearly Condition (1) does not hold. In
this case, an elementary embedding C(X) ↪→ C(Z) is the one assigning to
each function from {0, 1} to K its unique affine extension to [0, 1].

(b) Without the assumption of metrizability of Z, the implication
(2) ⇒ (3) in Corollary 2.3 is also not reversible. Indeed, taking Z := β(N)
(the Stone-Čech compactification of the integers) and X := β(N) \ N, Con-
dition (3) is fulfilled in an obvious way, but Condition (2) does not hold.
Indeed, the norm of C(Z) is determined by the family of all point evalua-
tions on the set N, whereas the norm of C(X) cannot be determined by any
countable subset of the closed unit ball of its dual (see the second paragraph
after Proposition II.4.16 of [4]).

Corollary 2.5. For compact Hausdorff topological spaces X,Y, Z, con-
sider the following conditions:
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(1) There exists a continuous surjective mapping from Z to X × Y .
(2) C(X × Y ) is linearly isometric to a subspace of C(Z).
(3) There exists a bilinear mapping � : C(X)×C(Y ) → C(Z) satisfying

‖f � g‖ = ‖f‖‖g‖ for every (f, g) ∈ C(X)× C(Y ).
(4) There exists a continuous surjective mapping from some closed sub-

set of Z to X × Y .
Then (1) ⇒ (2) ⇒ (3) ⇒ (4). Moreover, if Z is metrizable, then in fact
(2) ⇐⇒ (3) ⇐⇒ (4).

Proof. (1) ⇒ (2).- By Corollary 2.3.
(2) ⇒ (3).- For (f, g) ∈ C(X) × C(Y ), define f ⊗ g ∈ C(X × Y ) by

(f ⊗ g)(x, y) := f(x)g(y). If there exists a linear isometry

φ : C(X × Y ) → C(Z),

then the mapping � : C(X)× C(Y ) → C(Z) defined by f � g := φ(f ⊗ g) is
bilinear and satisfies ‖f � g‖ = ‖f‖‖g‖ for every (f, g) ∈ C(X)× C(Y ).

(3) ⇒ (4).- By Theorem 2.1.
In the case that Z is metrizable, the implication (4) ⇒ (2) follows from

Corollary 2.3.

Remark 2.6. We note that, when in Corollary 2.5 above we take Y
reduced to a point, then Conditions (2) and (3) assert the same, and Corol-
lary 2.5 becomes Corollary 2.3. Therefore, by Remark 2.4, none of the im-
plications (1) ⇒ (2) (even if Z is metrizable) and (3) ⇒ (4) in Corollary 2.5
is reversible.

A more illuminating example that (4) does not imply (3) is the following.
Take Z := β(N) × β(N) and X = Y := β(N) \ N. Then, since X × Y is a
closed subset of Z, Condition (4) is fulfilled in an obvious way. However, if
Condition (3) were satisfied, then, fixing a norm-one element g of C(Y ), the
mapping f → f � g from C(X) to C(Z) would be a linear isometry. But,
since the norm of C(Z) is determined by the countable family of all point
evaluations on the set N× N (because the inclusion N× N ↪→ β(N)× β(N)
extends to a continuous surjective mapping from β(N×N) to β(N)×β(N)),
the existence of such an isometry is impossible (see Remark 2.4.(b)).

Without the assumption of metrizability of Z, we do not know if the
implication (2) ⇒ (3) in Corollary 2.5 is reversible.

3. Absolute-valuable C(X)-spaces

A Banach space E is said to be absolute-valuable if there exists a
bilinear mapping � : E×E → E satisfying ‖ξ �χ‖ = ‖ξ‖‖χ‖ for all ξ, χ ∈ E.
Let X be a metrizable compact space. It follows from Corollary 2.5 that
C(X) is absolute-valuable if and only if there exists a continuous surjective
mapping from some closed subset of X to X × X. In this section we will
prove that in fact the absolute valuableness of C(X) can be settled in terms
of the cardinality of X. To this end, we need some elementary lemmas of
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pure topology. We feel that such lemmas are well-known, but we give their
proofs for the sake of completeness. As usual, for every topological space
X, we define the derived set X ′ of X as the set of all accumulation points
of X.

Lemma 3.1. Let X and Y be topological spaces, and let ϕ : X → Y be
a continuous surjective mapping. Assume that X is compact and that Y is
Hausdorff. Then Y ′ ⊆ ϕ(X ′).

Proof. For every point z in a topological space, we denote by V(z) the
set of all neighbourhoods of z. Let y be in Y ′. Then, since ϕ is surjective, for
every V ∈ V(y) there exists xV ∈ X such that ϕ(xV ) ∈ V \{y}. Considering
in V(y) the order given by the inverse inclusion, the compactness of X
provides us with a cluster point x ∈ X of the net {xV }V ∈V(y). Since ϕ is
continuous, ϕ(x) is a cluster point of the net {ϕ(xV )}V ∈V(y). Since clearly
{ϕ(xV )}V ∈V(y) converges to y, and Y is Hausdorff, it follows that ϕ(x) = y.
Since x is different from xV for every V ∈ V(y), and is a cluster point of the
net {xV }V ∈V(y), it lies in X ′.

Lemma 3.2. Let X and Y be topological spaces, let ϕ : X → Y be a
continuous mapping, and let {Xλ}λ∈Λ be a decreasing net of closed subsets
of X. Assume that X is compact and that Y is Hausdorff. Then we have⋂

λ∈Λ ϕ(Xλ) = ϕ(
⋂

λ∈ΛXλ).

Proof. Let y be in
⋂

λ∈Λ ϕ(Xλ). Then, for λ ∈ Λ there exists xλ ∈ Xλ

with ϕ(xλ) = y. Taking a cluster point x of the net {xλ}λ∈Λ in X, and
keeping in mind that {Xλ}λ∈Λ is a decreasing net of closed subsets of X, we
obtain that x belongs to

⋂
λ∈ΛXλ. Since ϕ(x) = y, it follows that y lies in

ϕ(
⋂

λ∈ΛXλ).

Given a topological space X and an ordinal α, we apply transfinite
induction to define the α-derived set X(α) of X. Indeed, we put X(0) := X,
X(α+1) := (X(α))′, and X(α) :=

⋂
β<αX

(β) when α is a limit ordinal.

Lemma 3.3. Let X and Y be topological spaces, let ϕ : X → Y be a
continuous surjective mapping, and let α be an ordinal. Assume that X is
compact and that Y is Hausdorff. Then Y (α) ⊆ ϕ(X(α)).

Proof. We argue by transfinite induction on α. The case α = 0 is clear.
Assume that the inclusion Y (α) ⊆ ϕ(X(α)) is true for some ordinal α.

Then, putting Z := ϕ−1(Y (α))
⋂
X(α) and ψ := ϕ|Z : Z → Y (α), we can

apply Lemma 3.1, with (Z, Y (α), ψ) instead of (X,Y, ϕ), to derive that
Y (α+1) ⊆ ϕ(Z ′). Since Z ⊆ X(α), we obtain Y (α+1) ⊆ ϕ(X(α+1)).

Now assume that α is a limit ordinal, and that the inclusion
Y (β) ⊆ ϕ(X(β)) holds for every ordinal β < α. Applying Lemma 3.2 we
have Y (α) =

⋂
β<α Y

(β) ⊆
⋂

β<α ϕ(X(β)) = ϕ(
⋂

β<αX
(β)) = ϕ(X(α)).
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Lemma 3.4. Let X and Y be topological spaces, and let α be an ordinal.
Then X(α) × Y ⊆ (X × Y )(α).

Proof. Straightforward by transfinite induction on α.

We recall that a topological space X is said to be scattered if for every
nonempty closed subset Y of X we have Y \ Y ′ 6= ∅.

Theorem 3.5. For a compact Hausdorff topological space X, consider
the following conditions:

(1) There exists a continuous surjective mapping from X to X ×X.
(2) C(X ×X) is linearly isometric to a subspace of C(X).
(3) C(X) is absolute-valuable.
(4) There exists a continuous surjective mapping from some closed sub-

set of X to X ×X.
(5) X is either reduced to a point or non scattered.
(6) X is either reduced to a point or uncountable.

Then (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (6). Moreover, if X is metrizable,
then (2) ⇐⇒ (3) ⇐⇒ (4) ⇐⇒ (5) ⇐⇒ (6).

Proof. (1) ⇒ (2) ⇒ (3) ⇒ (4).- By Corollary 2.5.
(4) ⇒ (5).- Assume that X is scattered, and that there exist a closed

subset X0 of X and a continuous surjective mapping ϕ : X0 → X × X.
Since X is scattered and compact, there is an ordinal α such that X(α) is
finite and nonempty (see for example [5, 8.6.8]). Denote by n and m the
cardinal numbers of X(α) and X, respectively. Since X(α) × X ⊆ ϕ(X(α)

0 )
(by Lemmas 3.3 and 3.4), we have nm ≤ n. This implies m = 1.

(5) ⇒ (6).- Since countable compact Hausdorff spaces are scattered.
If X is uncountable and metrizable, then, by the Banach-Mazur theorem

(see Remark 2.4.(a)), C(X×X) is linearly isometric to a subspace of C(X).

Remark 3.6. Even if X is metrizable, the implication (1) ⇒ (2) in The-
orem 3.5 is not reversible. Indeed, taking X = [0, 1] ∪ {2}, Condition (2)
is satisfied (by the Banach-Mazur theorem), whereas a connectedness argu-
ment shows that Condition (1) is not fulfilled.

Without the assumption of metrizability of X, the implication (5) ⇒ (6)
is also not reversible. Indeed, if X denotes the one-point compactification
of an uncountable discrete space, then X is scattered.

Without the assumption of metrizability of X, we do not know about
the reversibility of any of the implications (2) ⇒ (3) ⇒ (4) ⇒ (5).

Given an infinite set Γ, we denote by c(Γ) the vector space over K of
all functions from Γ to K having a limit along the filter of all co-finite
subsets of Γ, endowed with the sup norm. Since c(Γ) is linearly isometric
to the space of all K-valued continuous functions on the scattered compact
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Hausdorff topological space consisting of the one-point compactification of
the discrete space Γ, we derive from Theorem 3.5 the following.

Corollary 3.7. [1] Let Γ be an infinite set. Then c(Γ) is not absolute-
valuable.
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