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Introduction.

In this pamphlet we develop a non—commutative version of Groebner
bases; we no not establish a general theory of non-commutative Groeb-
ner bases but a very special case, hence the reader may find more gen-
eral frameworks for non—-commutative Groebner bases. See for example
[10, 12].

Our development is justified mainly in our study of K[Xj, ... ,X,], the
quantum polynomial ring in nindeterminates and its cofinite prime ideals.
We will do that in the forthcomming paper [9]. The study of Groebner
bases in this context is similar to the developed on commutative polyno-
mial rings and, in some sense, it may be considered as a simple class-
room exercise. The only difficulties appear when we are proving that
certain families of elements are system of generators; in these cases the
proofs are built using strongly the arithmetic of K[X1, ..., Xy].

We may consider this work as an attempt to unify and collect some re-
sults to be applied in near works.

Let us give a justification of the theory. In algebraic geometry, over an
algebraically closed field, the affine space is parameterize by the polyno-
mial ring K[Xy, ..., X;]; then the study of geometrical objects is realized
through algebraically objects, i.e., ideals in K[Xi,...,X;]. Now to ma-
nipulate ideals a useful tool are Groebner bases. If we introduce some
deformation in the affine space, i. e., we try to study some physical phe-
nomenon as for example heat, then the coordinate ring also reveals this
deformation. The simplest example is provided if we consider the follow-
ing commutation rules for the indeterminates:

)(in = qi,in)(ja 1<i< ] <n, 0+# qij € K. (1)

Thus we obtain the quantum polynomial ring; the justification of this
name can found in [11]. The elements in this new ring are the same than
in K[Xy, ..., Xy], but the multiplication is different; in K,[X;, ... ,X,] the
multiplication is defined using the relationships given in (1).

With this framework the following question arise naturally: is it possi-
ble to develop a arithmetic in K,[Xy, ... ,X,] similar to the arithmetic in
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K[Xi,...,X,]? It is well known that the answer is yes. To develop this
arithmetic we devote the first chapter. The basis to this development
will be a division theorem. In order to establish the uniqueness of the
remainder in the division we need to introduce Groebner bases. Finally
we obtain uniqueness of certain special kinds of Groebner bases to left
ideals.

At this point we remark that the theory has been developed to left ideals,
and that a similar theory may be established to right ideals or even to
two-sided ideals, see [10].

Chapter one finishes with applications of Groebner bases of left ideals.
Let us cite the problem of deciding if an element of K [Xq,... ,X,] be-
longs to a left ideal I and the problem of deciding when two left ideals
are equal.

An extension of this theory is realized in chapter two. We study the appli-
cation of Groebner bases to finitely generated left modules over the ring
R = K¢[Xy,...,Xy]. Itis clear that it is enough to study submodules of
finitely generated free modules. Thus the theory of Groebner bases for
modules runs parallel to the same theory for left ideals of R.

We finish this chapter studying the solutions of systems of equations or

equivalently the syzygies modules. Let us remark thatifgy, ..., gr € R”
is anon-empty family, then a system of generators for Syz(g, . .. , g&) can
be easily built. An special case is obtained if g1, ..., g; is a Groebner

basis for a submodule of R™; in this case the built system of generators
is a Groebner basis for a submodule of R? (even though it is necessary
to define a special monomial order in R? induced by g, ..., g~) This
situation allows us to compute a free resolution of a finitely generated R—
module in knowning a Groebner basis for the relationships module of M,
i.e., the kernel of a finitely generated free presentation of M. This theory
will be used in the paper [9] to compute certain Ext groups.

The following are the references mainly used through this work:
- Adams-Loustaunau [1],

- Becker—-Weispfenning [2],

- Bueso—Castro-Jara [4],

- Castro [5],

- Cox-Little-O’Shea [6],

- Kandri-Rodi-Weispfenning [10].
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Finally we point out that our main reference to orders and admissible
orders was [2], whereas [1] was our reference to Groebner bases of mod-

ules.

We would like to thank the following people their careful reading of ear-
lier versions of this notes: J. L. Bueso, J. M. Garcia, J. Gomez, J. Jodar, L.
Merino, E. Santos.

[9. Quantum Groebner bases] \%






Contents

Introduction.

1 Groebner bases.

1.1. Orders and admissibleorders. . . . . ... ... ... ....

1.2. Monomialorders. . . . . . . . . . . . . ...

1.3. Division algorithm. . . ... ... ... ............

1.4. Groebner bases.

.........................

1.5. Buchberger algorithm. . . ... ... ... ..........

1.6. Application of Groebnerbases. . . ... ... ... .....

2 Groebner bases of modules.

2.1. Division algorithm. . . . . ... ... ... .. ........

2.2. Groebner bases.

2.3. Applications. .
2.4. Syzygy modules

Bibliography.

Index.

.........................

..........................

iii

13
18

21
21
25
28
30

43

45






P. Jara

Chapter 1

Groebner bases.

1.1. Orders and admissible orders.

Let N" be the product of n copies of N. It is well known that N” has struc-
ture of commutative monoid if we consider the addition component-
wise.

Let < be a partial order in N, i. e., a binary relation in N” satisfying the
reflective, anti-symmetric and transitive properties. If < only satisfies
the reflective and transitive properties, we call it a preorder. A partial or-
der is a fotal order if for any «, f € N" we have either « < for § < «; in
the same way we define total preorder.

Let < be a preorder in N, we write a < bto express thata < band a £ b.

Let < be a preorder in N, and S C N be a non—-empty set; an element
a € Sis minimal (resp. maximal) in S if it does not exist § € S such that
f < « (resp. a < ). A preorder < is called artinian (resp. noetherian) if
any non-empty subset S C N has a minimal (resp. maximal) element. A
total artinian order is called a well order.

Let <; and <, be two preorders in N”, we say that <, extends <; if« <;
implies « <, g forany «, § € N".

Let < be a preorder in N”. Let S C N" be a non—-empty subset; a Dickson
basis of S is a finite subset F C S such that for any o € S there exists
B € Fwith 8 < a. A preorder = is said to satisfy the Dickson property if
any non—-empty subset S C N” has a Dickson basis. Orders and preorders
satisfying the Dickson property are studied and characterized in [2].

[9. Quantum Groebner bases] 1
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Let <; and =<, be preorders in N and N2, respectively. We define their
product in N1 17 ag:

a1 <1 f1 and
ap <2 B,

and their lexicographical productin N™ 7 as:

(an,a2) < (1, o) if {

ay <1 ( or
a1 21 01, b1 =1 o1 and ap <2 fo.

We may iterate these products of preorders. If <; and < are total orders,
then their product is a partial order and their lexicographical product is
a total order. We denote by < the product order, in N”, of the usual order
in N and call it the usual order in N".

(01, a2) < (B, fo) i {

A total order < in N" is called admissibleif it satisfies:
(1) 0 < o for any o € N*;
(2) o < pimpliesa+v < §+yforanya, 5,7 € N

Condition (2) may be also expressed as:
(2") a <X fimpliesa+~v <+ yforanyq, 5,7 € N

(1.1.1) Proposition.
Any admissible order in N"* extends the usual order.

To get a proof of this and related facts on admissible orders the reader
may see the book of Becker-Weispfenning, [2].

1.2. Monomial orders.

A noncommutative framework of Groebner bases was early developed,
see Bergman [3], Gateva—-Ivanova [7] or Ufnarovski [13] et al. Also in the
case of differential operators rings it has been studied, see Castro [5],
Pauer [8] et al. The main aim of this part is to be available, with con-
sistent notation, the results we will use.

We may develop the theory in the case of iterated Ore extensions of a field
K, with commutativity relations of the type:

XiXi=q;jXiXj+ 15, 1<j, 0#¢qjeKk,

where r;; € K[Xi, ..., Xj_1]. But this implies to use only very particular
monomial orders. Hence, in order the get a more compact exposition,

2 [Notas de trabajo]
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we drop the terms r; ;. In any case, the general theory is a simple exercise
from the situation we will discuss here, as this is from the commutative
case.

We call R = K([Xj, ... ,X,] the polynomial ring in non commutative in-
determinates satisfying the following relationships:

XXi=q;;XX;, 1<i<j<n 0#£g;€Kk.

Any polynomial F € K([Xy,...,X,] has a uniquely determined expres-
sion in the following form:

where a, € K, for any o € N, are almost all zero and X* = X;" - - - Xj" if
a=(ay,...,aqp).

Given F € K([X1,...,X,] we call any a,X“ in the above expression, with
a, # 0, a term of F, and X“ a monomial. There exists a bijection from
the set of all monomial to the set N”. This bijection provides, given an
admissible order < in N, a total order < in the set of all monomial in
Ky[X1, ... ,Xy] in the following way:

X*=<X’ifa<p

There exists a big difference with the commutative case: now the product
of two monomials is not necessarily a monomial but a term. For that
reason we must extend the above order on monomials to a preorder on
terms as follows:

aX® < bX?if0+a be Kand a < 6.

Now this preorder is compatible with the productin K[Xy, ... , X,]in the
following sense; it satisfies

(1) 1 < bX?forany0 # bX? € K[Xi,...,Xu);

(2) aX® < bX? implies acX*X? < bcXP X" for any 0 # aX®, bX?, cX7 €
Ky[X1, ..., Xul.

We must first to compute the commutativity rules in Kq[Xi,...,X,], in
order to prove that X*X” is a term, and after that show that the relation-
ships in (2) are true.

[9. Quantum Groebner bases] 3
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We call q = (g j)i<j and define
q@? =T] qzjz;ﬁf, a8 e N
i<j
It is clear that we obtain:
XX = q@AxHP o, 3 e N
The arithmetic of q(®?) follows the following relationships:

q(a‘i‘a,:ﬁ"'ﬂl) — q(aHB) . q(aaﬂl) . q(a,:ﬁ) . q(a,HBI)
q_(aaﬂ) — q(_aHB) — q(a7_18)’

?

where the negative exponents are defined using qi_jl.

With these results we have a total order on non-zero monomials and a
total preorder on non-zero terms, associated to an admissible order in
N*. We refer them as a monomial order and a term preorder respectively.

1.3. Division algorithm.

In the following, let < be a fixed, but arbitrary, admissible order in N”
and we consider indifferently either the associated monomial order or
the term preorder on K[Xy,... , Xy].

(1.3.1) Lemma.
Everynon-zero polynomial F € K([X1, ... ,X,] can be written, in a uniquely

i
way, as F= Y}, a,:X*, where

ol - . =al, 0#a,€K,i=1,... ¢

To fix notation let us define some elements associated to a non-zero
polynomial 0 # F € K4[X1, ..., X,] written as in Lemma (1.3.1).

(i) The Newrton diagram of F is:
N(F)={a eN" a, #0};
(ii) If F # 0, the exponent of F is:

exp(F) = max{a € N*: o € N(F)};

4 [Notas de trabajo]
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(iii) The degree of F is:

grad(F) = max{aj + - -+ ap: a = (a1,...,an) € N(F)};

(iv) The leader coefficient of F is: 1c(F) = Gy (F);
(v) The leader term of Fis: 1t(F) = Gy, 5 X*PW);

(vi) The leader monomial of F is: lm(F) = X**(F),

To extend these definitions to any polynomial, we may define for F = 0
in K4[Xy,...,X,] the elements NV (F) = &, It(F) = 0 and I¢(F) = 0.

(1.3.2) Lemma.
Ky[X1,...,Xy] Is an integral domain and if 0 # F, G € Kq[Xy,...,Xy],
then exp(FG) = exp(F) + exp(G).

PROOE Let0 # F,G € Ky[Xy,...,Xy], then It(F),1t(G) # 0 and we
have 1t(FG) = 1t(F) 1t(G). Hence the exponent is exp(F) + exp(G), and the
leader coefficient is lc(F) le(G)q(&PF)exp(G) £ , O

The following result is also immediate.

(1.3.3) Lemma.
Let0 # F, G € KXy, ..., Xy] then the following statements are true:

(1) If F+ G # 0, then exp(F + G) < max{exp(F), exp(G)};

(2) Ifexp(F) < exp(G), then exp(F + G) = exp(G).

Let us introduce some extra terminology. If o!, ..., o € N" is a list of
elements in N”, we define:

Al =N" 4 ol

A% = (N" +a?)\ AL,

Al = (N +af) \ Ui A,

A =N\ Ui Al

We think there is no confusion with the notation o for an element in N”,
as we will not use the powers of elements in N”.

[9. Quantum Groebner bases] 5
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(1.3.4) Lemma. o
Leto!, ..., o' bealist of elements inN", we have that {A', A2 ... A A}
is a partition of N"*.

As a consequence we have the division algorithm in Ky[Xq, ..., Xy)].

(1.3.5) Theorem. (Division algorithm.)
Given an admissible order in N", for any finite list of non zero polynomi-
als

G,...,Ge Kq[Xl,... ,Xn],
we consider the partition of N determined by the list of elements of N"
exp(Gr), ..., exp(Gy).

Then we have that for any 0 # F ¢ K([Xy,...,X,] there exist unique
polynomials Q, ..., Q, R € Ky[Xy,. .., Xy] satisfying the following con-
ditions:

() F=YL, QG+ R;
(2) R=0o0rN(R) C A;

(3) For any index i we have: N'(Q;) exp(G;) C AL

As a consequence, if Q;G; # 0, then exp(Q;G;) < exp(F) and if R # 0, then
exp(R) < exp(F).

PROOE Existence.

We do induction on exp(F). Ifexp(F) = 0, then there are two possibilities:

(i) exp(F) = (0,...,0) € A, for some index i or

(ii) exp(F)=(0,...,0) € A.

(i) In this case exp(F) = v + exp(G;), for some v € N?, then exp(G;) =
(0,...,0) and G; € K. We can take:

Qi = Fi/G;;
R=0

6 [Notas de trabajo]
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(i) In this case exp(F) € A, and we can take:

Q; =0, ifi=1,... ¢
R=F

Let us assume now that the result is true for all the polynomials G with
exp(G) < exp(F). As before, there are two possibilities:

(i) exp(F) € A, for some index i or

(ii) exp(F) € A.

(i) In this case exp(F) = v + exp(G;), for some v € N". If we define H =

X7Gjthen F — llcc((?) X7G; is a polynomial with exponent strictly less than

exponent of F. Applying the induction hypothesis we have:

le(F)
F— lC(H)X“YGl = El: Q.G+ R,

where Q, ..., Q}, R satistying the conditions in the theorem. Then we
have an expression:

F= Z Q;G; + R,

i

where

Q] = Q}'J lf] 7é L

Qi= Qi+ m X
_R

To prove that we have the conditions of the theorem, we observe the fol-
lowing inclusions:

exp(Gy) + N(Q;) S {N(Q)) U {~}} + exp(Gy)

C
= WN(Q) +exp(Gi)) U{7}}) U {7 + exp(Gy)}
C

(i) In this case exp(F) € A, then F — 1t(F) is a polynomial with exponent
strictly less than the exponent of F. Hence by the induction hypothesis

we have:
F-1t(F)=> QGi+R
i

[9. Quantum Groebner bases] 7
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where @, ..., Q}, R satistying the conditions in the theorem. Then we
have the following expression of F:
F=) QGi+R
i
where

R=R +1t(F)

To prove that we have the conditions of the theorem, if R # 0, then since
N(0) = @, we have:

N(R) = N(R +1t(F)) CN(R) U {exp(F)} C A.

{Qi:Q'i, iti=1,... 5

Uniqueness.
Let
F = ZQiGi+R:ZQ,1'Gi+R
i i
be two expressions of F satisfying the conditions of the theorem. Then
we have:
0=> (Q—- Q)G+ (R-R).
i

Let us analyze the exponents of the different summands in this sum:
exp(R—R)e N(R-R) CN(RUN(R) C A.

exp((Q; — Q) Gj) = exp(Q; — Q) + exp(Gy)
CN(Q;— Q) +exp(Gy)
= (N(Q) + exp(Gy)) U (N(Q)) + exp(Gy))

C AL
Now, as Al, ..., Af, A'is a partition of N, each summand must be zero.
So, as K4[Xji,...,Xy] is a domain, we have Q; = Q’i, for any index i, and
R=PR. O
We call Qy, ..., Q; the left quotients and R the left remainder of F rel-
ative to {Gy, ..., G;}. The left remainder R may be also represented by

R|(F;{Gy,...,G¢}),andif there is no confusion simply by R(F; { Gy, . .. , G¢})

In an analogous way we may define right quotients and right remainder
of Frelative to {Gy, ... , G¢}.

8 [Notas de trabajo]
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The ordering of the polynomials Gy, ..., G; is determinant to the com-
putation of the left remainder, i. e., it can be happen that:

R(F;{Gy,...,Gp...,Gj...,G})) £ R(F:{Gy,...,Gj,... .Gy, G}),

if i+ j.

1.4. Groebner bases.

If I'is a left ideal of K[X,... ,Xy], we define

Exp(I) = {exp(F): F € I}.

(1.4.1) Lemma.
Exp(I) is a monoideal of N, i.e., N* + Exp(I) C Exp(I).

Since the usual order in N satisfies the Dickson property, see Becker—
Weispfenning [2], then for any non empty monoideal M there exists a
finite subset {a', ... ,a’} C M such that

M=N'+{ad',... a'}.

In particular this is true for Exp(I) being I any left ideal in K([X1, ... , X,].

(1.4.2) Lemma.

Let I be a non zero left ideal of KXy, ... ,Xy]. If Ais a finite system of
generators of Exp(I), then any set of polynomials {F,: « € A} C I such
that exp(F,) = o for any o € Ais a systems of generators of I as left ideal.

PROOE. Since Ais finite, we can assume that {F,,: « € A} = {Gy, ..., G;}.
For any 0 # F € I we apply the division algorithm for the sequence
Gy, ..., G;. Hence we have an expression F = > . Q;G; + R. If the remain-
der Ris non-zero, then N'(R) C A. On the other hand, R= F -, Q;G; €
I, so we have exp(R) € Exp(I) = N* + A = U;A!, which is a contradiction.

U

If I'is a left ideal of K[Xy,...,Xy], a Groebner basis of 1 is a finite set of
non zero elements G = {Gy, ... , G} C I satisfying

Exp(I) = N* + {exp(Gy), ... ,exp(Gy)}.

[9. Quantum Groebner bases] 9
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(1.4.3) Corollary.
(1) Every non zero leftideal of K[X1, ... ,X,] has a Groebner basis;

(2) Every Groebner basis of a non zero left ideal is a system of genera-
tors.

(1.4.4) Proposition.
Let I be a non zero left ideal of K4[X1, ... ,Xy.] and G, G’ two Groebner
bases of I, then for any 0 # F € KXy, ..., Xy] we have:

R(F;G) = R(F; Q).

PROOF. Let us assume that, after applying the division algorithm for G
and G/, we have two expressions:

F= Z QiGi+ R= Z Q}-G}-FR’,

GieG G]’.eG’
respectively. If R # R, since R— R € I, then
exp(R— R)) € Exp(I) = ;A" = Uj(A'Y.

But
exp(R—R)eN((R-R)CN(RUN(R)CA=A,

which is a contradiction. O

As a consequence the remainder in the division of an element F by a
Groebner basis G do not depends of the ordering of G.

Now we will try to get a uniquely determined Groebner basis for any non
zero left ideal I. The following Lemma is almost trivial.

(1.4.5) Lemma.
Let I be a non zero left ideal of K([X1,... ,X,] and G = {Gy,... , G} a
Groebner basis of I. Let F € G a polynomial satisfying:

exp(F) € N + {exp(G): F # G € G},
then G \ {F} is a Groebner basis of I.

10 [Notas de trabajo]
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A Groebner basis G of a non zero left ideal I of K (X, ... ,X,] is called
minimal if it satisfies:

(i) le(F) = 1forany F € G;

(ii) exp(F) ¢ N* + {exp(G): F # Ge€ G} forany F € G.

It is very simple to prove the following proposition.

(1.4.6) Proposition.
Every non zero left ideal I of K[Xy, ... ,X,| has a minimal Groebner ba-
Sis.

A non zero left ideal may have different minimal Groebner bases. In or-
der to provide uniqueness we introduce a new kind of Groebner bases. A
Groebner basis G of a non zero left ideal I is called reduced if it satisfies:

(i) lc(F) = 1forany F € G;

(i) M(F)N (N"+{exp(G): F#£ Ge G}) =@.

It is clear that every reduced Groebner basis of a non zero left ideal is a
minimal Groebner basis.

(1.4.7) Theorem.
Every non zero leftideal I of K4[X1, ..., X,] has a unique reduced Groeb-
ner basis.

PROOE If G is a minimal Groebner basis, a polynomial F € G is called
reduced if

N(F)n (N + {exp(G): F# GeG)) = o.

It is obvious that if F € G is reduced, then it is reduced in every minimal
Groebner basis G’ such that F € G’ and

{exp(G): G e G} = {exp(G): Ge G'}.
We define for any F € G the following elements:

F' = R(F,G\ {F});
G = (G\{F}) U{F}.

[9. Quantum Groebner bases] 11
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We claim G’ is also a Groebner basis of I. If exp(F) # exp(F'), then we
obtain from the relations:

F= ) QcG+RF;,G\{F})= > QsG+F
F£GeG F£GeG
and
exp(F) = max{{exp(QeG): F# G € G} U {exp(F)}},
and from the fact that all the exponents are different, that there exists

G € G \ {F} such that exp(F) = exp(QgG), which is a contradiction with
the fact that G is a minimal Groebner basis.

Then we have that G’ is a Groebner basis and also that F’ is reduced. Ap-
plying this process to each polynomial in G, we obtain a reduced Groeb-
ner basis.

In order to prove the uniqueness, if G and G’ are reduced Groebner bases,
then

Exp(I) = N" + Exp(G) = N" + Exp(G').
If F € G then we have the following relations:

exp(F) =v+exp(G), Ge@@, veN,

exp(G) =+ +exp(G), GeG, o € N
so we have exp(F) = v' 4+ v + exp(G). Since G is minimal, theny = 0 = +/.
Then exp(F) = exp(G') and we have the equality:

exp(G) = exp(G).

For any F € G, there exists G € G’ such that exp(F) = exp(G). Then
F — @ has all its terms less than exp(F). Since F — G' € I then we have
R(F — G';G) = 0. Now G and G’ are reduced and exp(G) = exp(G'), then

N(F=G)C A =N"\ Esp(l),

To prove this inclusion let us consider the following development:
N(F — G)n (N" + exp(G))
=N(F - G)n (U{N" +exp(L): Le G})
=U{N(F-G)Nn(N"+exp(L)): Le G}
=UN(F-G)Nn(N*+exp(L): F#LeG}
=N(F—-G)n(N*+ {exp(L): F# L€ G})
C (M(F)n (N"+ {exp(L): F# Le G}))U
N(G)N(N"+{exp(L): G #A#LeG}) =0

Then R(F — G;G) = F— G,and F = G. 0

This uniqueness will be useful to study equality of leftideals in K [Xy, ... , Xy].

12 [Notas de trabajo]
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1.5. Buchberger algorithm.

We are now interested in characterizing and computing Groebner bases.

(1.5.1) Proposition.

Let I be a non zero left ideal of K([X1,... ,X,] and G = {G, ..., G} be
a finite family of polynomials in I. Then the following statements are
equivalent:

(a) G is a Groebner basis of I;

(b) ForanyO0 # F € I we have R(F;G) = 0.
PROOE. (a)=(b). If R(F,G) # 0, then exp(R(F,G)) € Exp(I) N A = &,
which is a contradiction.

(b)=-(a). Let 0 # F € I, by the division algorithm, with respect to G, there
exist Qr, ..., Qp R € Ky[Xq,...,X,] such that:

F = Zi QiGi, and

exp(Gy) + N (Qy) C AL

As a consequence, exp(Q;G;) # exp(Q;G;) if i # j. So exp(F) is the maxi-
mum of the exponents of the summands Q;G;. Therefore there exists an
index i such that

exp(F) = exp(Q;G;) € A C exp(G;) + N,
and exp(F) € {exp(Gy),... ,exp(Gy)} + N O

Since this characterization of Groebner bases involves all the polynomi-
als in the left ideal, it is not very practical. Our goal now is to look for
more practical criterion to characterize Groebner bases.

Using the arithmetical rules in the quantum polynomial ring K [X1, . .. , Xy]
we will define the minimum common multiple of a pair of monomials.
Let X and X” be monomials in K,[X, ... , X,], we define

vi =max{a; fi}, 1<i<n

Lety = (71,...,7n) € N?, then we call X” = mem{X®, X} the minimum
common multiple of X* and X”. We have that X" is really a multiple in
Kq[X1,...,Xy,] of X* and X7; it satisfies:

XV = q @ ¥xrmexe = q~Br-fx1=Fx0

[9. Quantum Groebner bases] 13
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With this baggage we may define the semisyzygies or s—polynomialsin the
ring Ky(X1,...,Xy]. Given 0 # F, G € K([X1,...,Xy], with exp(F) = X
and exp(G) = X”, the s—-polynomial defined by F and G s:

~(ary—a) (By—B)
k! x—ep L T -bg

S(F, G) = 1c(F) 1c(G)

(1.5.2) Lemma.
Leth:1 ¢;X“ F; be an expression, where F; are polynomials in K[Xy, ... , Xy),
¢; € K and o' € N, satisfying:

exp Z c,X" ) <9, where o = eXp(XO‘ ;), for any index i.

Then there exist elements cj; € K such that:

S aXVFr=" cpX T S(FL Fy), and exp(X*7"S(F; Fy)) < 4,

where X" = mem{ X)) xexp(Fi)}

PROOE. Let us assume that exp(F;) = (%, then o + 3! = §. We do the
following development:

chXaF chlc chlc q# Oy,

where we define H; by satisfying the equation % o F) = q#"*) H; We may

complete this development in the following way:
Z CiXaiFi = Z Ci IC(Fi)q(Bi’ai)Hi =
i i

= ¢ 1e(F)q@ ) (Hy — )+ (1 1e(Fy ) g P ) o le(F)q o)) (Hy— H) +
+(ale(F)q? ) + -+ ey le(Fon)g® " D) (Himy — Hy)+
+(Cl IC(Fl)q(ﬁl’al) + -+ Ct IC(Ft)q(ﬂt’at))Ht.

Let us consider now the product X5_7ij(Fj, Fi). We will develop it and
obtain a multiple of H; — Hy.

_ ik
XSy, Fy) =
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(ISP R
_ X5_7]k q T kg - q—X'y’k—ﬁka =
le(Fj) lc(Fr)
(8] ~ik_gi N —(BF H* gk ki
lc(Fj) le(Fy)
(@A) . " ; — (85 A*—gF) T ik k
_ qTqW —B 60—+ )X5—ﬂ’pj_ qT (Y =B%0—") x5 F =
1c(F: le(F
; k
- q @A)+ (= 5 -0 q— (A=A + (=85 -
Ic(F) f 1c(F) ¢

J k
XUE) (g kgt (g sy XY Fie
lc(Fj) le(Fy)

— q @A B+ =B 0=+ (B 0) H]._q—(Bk,vﬂ‘—ﬂkH(vjk—ﬂkﬁ—vjk)ﬂﬁj,aj) H =

— q_ (6]:7]k_/8]) + (’yjk_/gjﬁ_’yjk)

Jk 5 _nik
=q" ) (H; — Hy).
Then we have:
@ X S(E R = Hy - Hy
Now since 3, ¢;1c(F;)q#"@) = 0 as exp(>" C;X*'F; < 6, we have:

3 eXxF =
i

o le(F)q# o) g0 =7 x5 5(Ry By +
e le(F)qPe) 4 o le(F)q@ g~ 97 X3 S(By, ) - -
e 1C(F1)q(ﬁl,a1) NI 1C(Ft_1)q(ﬂH,aH))
"YS(Fy, F).

Therefore we have the first part of the theorem. To get the second part we
take into account that every H; is a monic polynomial with exp(H;) = ¢,
so exp(H; — H;) < ¢ and the result holds. O

q_(,y[717I76_,y[717I)X6_,_Y

(1.5.3) Theorem. (Buchberger)
Let I be a non zero left ideal of K([X1, ... ,Xy| and G a finite system of
generators of I. Then the following statements are equivalent:

(a) G is a Groebner basis of I;

[9. Quantum Groebner bases] 15
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(b) Fixed an ordering in G, for any i # j we have: R(S(G;, Gj); G) = 0.
PROOE. (a)=-(b). It is obvious.
(b)=(a). Let 0 # F € I, then F = ) Q;G; and we have:
exp(F) < max{exp(Q;G;): i=1,...,t}.
We will see that it is possible to reach the equality. Let us call

0 = max{exp(Q;G): i=1,... 1},
5 = exp(QGy).

If exp(F) < 9, we decompose F in the following way:

F=3;QiGi=
= 251':5 QiGi + Z5i<5 QiGi =
= Yo 16(Q0) G+ 5e_s(Qs = 16(Q0) Gi + Ygics QiGi

the two last sums are negligible; its exponent is less than 6. Thereof we
can change > ;i_;1t(Q;) G; by another expression. Using Lemma (1.5.2)

we have: .
ST(Q)G =Y X’ S(Gy, Gy,
§i=4 Jk

with exp(X° _ijS( Gj, Gi)) < ¢. The remainders of the division of S(G;, Gy)
by Gy, ..., G; are null, so we have:

S(Gj, Gy) = Y QiGi,  with Qj € Ko[Xy, ..., Xu),
i

and, by the division algorithm, we have:

exp(QjkiGi) =< exp(S(Gj, Gy)).

Therefore we find an expression of the following type:

F=) QG; withexp(QG;) < 4.
i

Repeating the process as many times as it would be necessary, we get an

expression like
F=) QG
i
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where exp(F) = max{exp(Q;G;j): i =1,...,t}, so exp(F) = exp(Q;G;) for
some index i, i. e.:

exp(F) = exp(Q;G;) = exp(Q;) + exp(Gy) € N" + {exp(Gy), . .. ,exp(G}.
and G is a Groebner basis. O

We are now looking for a method to compute a Groebner basis of any non
zero leftideal I of K4[Xy,... ,Xy].

(1.5.4) Theorem. (Buchberger algorithm.)

Let I be a non zero left ideal of K[X1, ... ,X,] and let {Gy, ... ,G;} be a
system of generators. It is possible to build a Groebner basis of I if we
follow the following steps:

(1) Firstwe define Gy = {Gy, ..., Gt};

(2) Second we define G,4+1 = G, U{R(S(F, G);Gy) # 0: F,G € G} for
anynec N.

Then there exists an index i such that G; = G;; and we have that G; is a
Groebner basis of I.

PROOE Let Gy = {Gy, ..., G}, if R(S(F, G); Gp) = 0 for any pair F, G €
Gop, then we have a Groebner basis. In the contrary, there exist F, G €
Gop such that R(S(F, G);Gy) # 0. If we call G;11 = R(S(F, G);G), then
N(Gy1) C A. If we define:

G(l) - {G17 sy Gt; Gt—|—1}7
then we get a partition

AL AL AL AD)
where A1 U A(D) = A. Hence if R(F;Gy) = 0, for F € Ky[X1,...,Xq],
‘([)hen R(F; G(l)) = 0. If R(S(G;, Gj), Go) = Owe also have R(S(G;, Gj), G(l)) =

If for any F, G € G(;) we have R(S(F, G); G(y)) = 0, then we have a Groeb-
ner basis. In the contrary there exists a new G2 = R(S(F, G); G(1)) # 0.

We define G5y = {Gi, ... , Gry1, Gry2} and have V' (Gpp) € AW,

[9. Quantum Groebner bases] 17
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If in some step we obtain a Groebner basis, the process finishes. In the
contrary we obtain an infinite strictly ascending chain of systems of gen-
erators:

Go C G(l) c---

Associated with this chain we have an strictly ascending chain of monoideals:
N" +exp(Gg) C N" + exp(Gyy) C - -

As a consequence of Dickson’s lemma this chain must stabilize. So there
exists an index n such that

exp(G(n)) +N"' = eXp(G(,,H_l)) + Nn,
and we have:

exp(Gryns1) € exp(Gyy) + N* = N\ A,

but exp(Gzypny1) € A, which is a contradiction. O

In the above process we obtain a system of generators of I which is a
Groebner basis, and perhaps it has too many polynomials. Now we are
going to optimize the process to obtain a Groebner basis. Following The-
orem (1.4.7), it is possible to get a reduced Groebner basis.

1.6. Application of Groebner bases.

(1.6.1) Remark. (Membership problem.)

Let I be a non zero left ideal of K([X,...,X,] and let {F;,... ,F;} be a
system of generators of I; given F € K[Xy,...,X,], the problem is to
determineif F € I.

To solve this problem we compute a Groebner basis G = {Gj, ..., G;} of
I; then we have F € [ ifand only if R(F; G) = 0.

It is possible to obtain an expression of F as a K-linear combination of
the original generators Fy, ..., Fr of I. To do that we only need to take
into account that, by the division algorithm, there exists an expression

F=Q1G + -+ Q:Gy,

where the polynomials G; are s-polynomials obtained from the polyno-
mials Fj, so the desired expression can be computed.
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(1.6.2) Remark. (Equality of ideals.)

Let I; and L, be non zero left ideals of KXy, . .. , X,] with systems of gen-
erators {Fy, ..., Fy} and {Hj, ... , Hy}, respectively. The problem is to de-
termine when I; = b. .

To solve this problem we compute reduced Groebner bases G; and G, of
I and b, respectively. By the uniqueness of reduced Groebner bases we
have I} = L ifand only if G; = G».

Cofinite left ideals.

We study now cofinite leftideals, i. e., leftideals I such that K (X1, ..., Xy] /I
is finitely dimensional K—vector space.

(1.6.3) Remark. (A C-basis of the quotient.)
A method to compute a basis of K[X1, ..., Xy] /L.

Given an element F+1of KXy, ..., Xy /I, withrespect to a given Groeb-
ner basis of I we have a representative R such that /'(R) C N \ Exp(I).
So we can write down R in the following way:

R=>c.X*,
«

where o ¢ N" 4 {exp(G): G € G} = Exp(I) and ¢, € C. Hence we have
that {X?: 3 € N"\ Exp(I)} is a linearly independent system of generators
of K¢[X1, ..., Xy /L

As a byproduct it is possible to determine when a left ideal is cofinite: a
left ideal I is cofinite if and only if the cardinal of N \ Exp(/) is finite.

This result will be extended when we study the Gelfand—Kirillov dimen-
sion of a quotient K[X1,... ,Xy] /L.

As we know a non zero left ideal [ is cofinite if and only if N* \ Exp([) is
finite. We are now looking for a simpler characterization.

(1.6.4) Proposition. (Characterization of cofinite left ideals.)
Let I be a non zero left ideal of K(X1, ... ,X,| and G a reduced Groebner
basis of I. Then the following statements are equivalent:

(a) I is cofinite;
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(b) For any indeterminate X; there exists G; € G and v; € N such that
lt(Gj) = lel
PROOE (a)=(b). Since I is cofinite, given X; there exists v; € N such
that X" is the leader term of a polynomial in I. Hence (0, ... ,v;,...,0) €
Exp(I) = exp(G) + N". Let us call o/ = exp(G;) for any G; € G. There exist
je{1,...,t} and v € N" such that

(0,,]/“,0):a]+7,

then o, = 0 = v, if h # i. Therefore exp(Gj) = (0..., p;, ... ,0) for some
pi € N, i. e, Im(G;j) = X]" for some m € N.

(b)=-(a). Let us consider o € N" \ Exp(I). By the hypothesis, for any
X; there exists G; such that 1t(G;) = X;". If o; > v;, then we have an
expression of the following type:

a=(0,...,v4...,0)+ (a1,... ,0; = V... ,ap) € exp(G)) + N" C Exp([),

which is a contradiction, so for any index i we have «; < v;. As a conse-
quence there exist finitely many elements o« € N\ Exp(I) and I is cofinite.
U
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Chapter 2

Groebner bases of modules.

The theory of Groebner bases for modules may be reduced to the theory
of Groebner bases for polynomial rings, see Adams—Loustaunau [1]. Let
us introduce here some notation and results on this theory. Their proofs
are easily from similar proofs in the case of polynomial rings, hence most
of them will be omitted.

2.1. Division algorithm.

Let us represent K,[Xj, ..., Xy] by R, and consider M the free R-module
ofranks,i.e, M = R%. If {ey, ... , es} is a R-basis of R, then every element
of R’ can be uniquely written as:

N
> Rie;,
i=1

where R; € Rfor anyindexi =1, ... ,s. Given an admissible order in N"
or equivalently a monomial order in R, every element R; may be written
uniquely as a sum of multiples of monomials
L
R; = Z CijMija with exp(Mﬂ) Il eXp(Miti); 0# Cij € K
J=1
Joining both results we obtain an expression:

s t;
Z Z cijMijei

i=1 j=1
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As a consequence, it is natural to consider the elements c;;M;;e; as the
atoms of RS, where Mjjis a monomial of Rand ey, ..., e is a basis of RS.
We call these elements termsin R°. We call a monomial in R® an expres-
sion X“e;, « € N". They may be parameterize by the set N* x {1,...,s};
we will denote this set by N?, their elements are represented by («, i), be-
inga e N*andie {1,...,s}.If s=1, then N} = N,

For any admissible order in N” we obtain two orders in N?; they are the
lexicographical and reverse lexicographical order of the admissible order
given in N” and the usual orderin {1, ... , s}, and call them the associated
TOP, “term over position”, and POT, “position over term”, orders.

TOP:

() < (5.)) if{‘“ﬂ"r

a=fandi<j

POT:

o < it {500

i=janda < f3
The POT and TOP orders satisfies the following properties:

(1) They are total orders in N;

(2) There exists an action of N over N7 defined by:

N XNy 5N, 6o (8,) = (a+ 6,1,
We denote 0(«, (5, 1)) = a + (3, i) . This action satisfies:

(@ 0+# a e N*and (4,i) € N} implies (3, 1) < (a+ 3,1);
(b) (81, i) < (B2, ip) implies (a+f1, 1) < (a+p2, ip) forany (31, 1),
(ﬂz, lg) S N? and o € N%;

As a consequence (0,7) < («,i)foranyie {1,... ,r}and o € N*. A
total order in N7 satisfying these properties is called an admissible
order in N{ and associate to it we have a monomial order in R°®.

An admissible order in N7 is lying over an admissible order in N” if,
in addition, it satisfies:
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(c) a! < o? in N implies (a! + 3,i) < (o + 3,i) in N for any
(8,9 € Ny,

In fact we will only consider admissible orders in N lying over a fixed,
but arbitrary admissible order in N”; we call them only admissible orders
in N\

(2.1.1) Lemma.

For any admissible order in N we have that the POT and the TOP are
admissible orders in N7 .

There exists a map
log: {non zero terms in R°} — N¢, log(aX“e;) = (o, €).
This map satisfies the following property:
log((bX?)(aX®e;)) = log(bX®) + log(aX“e;)
We may define then a preorder in the set of all non zero terms
aX®e; < bX? ejif log(aX"e;) < log(bX® ej).

This preorder satisfies the following properties:

(1) Itis a total preorder;

(2) e; = aX“e;forany0 #ac K,a e N*andie {1,...,s};

(3) aX“e; < bX’e; implies cX"aX“e; < cX"bX’e; for any non-zero
aX“e;, bX"ej, cX7;

(4) aX* < bX’ implies aX*cX"e; = bX”cXe; for any non—zero aX®,
bX?, cX7e;.

(2.1.2) Lemma.
Let x € R® be a non zero element, then x may be written, in a uniquely
way, as:

X = Z“(af,ij)Xa]eif’ 0# agi) €K, j=1,....t (o i) == (o' i),
=1

where (¢/, ij) € NZ.
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Then we may define for any 0 # x € R°® the following elements:

(i) The Newton diagram of x is:
N(x) = {(a, i) € N§: a5y # 0};
(ii) If x # 0, the exponent of x is:
exp(x) = max{(e, i) € N{: (o, i) € N(F)};
(iii) The leader coefficient of xis: 1¢c(X) = uyp(x);
(iv) The leader term of xis: 1t(X) = Geyxp(x) X €;, Where exp(x) = (o, i);

(v) The leader monomial of x is: lm(x) = X%e;, where exp(x) = («, ).

As in the polynomial case we define V' (0) = &, 1¢(0) = 0 and 1t(x) = 0.

(2.1.3) Proposition.
Let0 # x, X' € R®and 0 # F € R, then the following statements holds:

(1) exp(Fx) = exp(F) + exp(x);
(2) If x+ X' # 0, then exp(x + X') < max{exp(x), exp(x'};
(3) Ifexp(x) < exp(x'), then exp(x + x') = exp(x).

Given alist (o, 71), ..., (ay, ir) of elements in N?, we define

Al = N? + (Oél, il),
AZ= (N7 + (o2, 1)) \ AL,

Al = (NY + (', ir) \ Uics A,

A =N\ Ui Al

(2.1.4) Lemma.
With the above notation, for any list (o}, iy), ... , (o, iy) of elements in N}
we have that Al, ... , A’, A is a partition of N

(2.1.5) Theorem. (Division algorithm in R%)

Given an admissible order in N}, for any list my, ... , m; of non zero ele-
ments in R® we consider the list exp(m,), ... , exp(m;) of elements in N{*.
then for any 0 # m € R’ there exist polynomials Qy, ..., Q; € R and
r € R®, uniquely determined, satisfying the following statements:
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(1) m=32iy Qmi+ 15
2) r=0o0rN(r) CA;
(3) For any index i we have N'(Q;) + exp(m;) C A’

As a consequence, if Q;m; # 0, then exp(Q;m;) < exp(m), andr # 0
implies exp(r) < exp(m).

The polynomials Qy, ..., Q; are called the quotients of m with respect to
my, ..., my, and r is called the remainder . We represent this remainder
by r(m; {my,..., mg}).

2.2. Groebner bases.

Let us consider in N a fixed, but arbitrary, admissible order. For any non
zero submodule N C R’ we define

Exp(N) = {exp(n): 0# n € N}.
A non-empty subset Y C NY is called stableif it satisfies:

N'+YCY

(2.2.1) Lemma.
For any non zero submodule N of R® the set Exp(N) is stable.

PROOE Given n € Nand o € N?. We have X*n € N and exp(X®n) =
exp(X®) + exp(n) = o + exp(n). Hence Exp(N) is stable. O

(2.2.2) Proposition.
For any non zero submodule N of R® there exist finitely many elements

(al, 1), ..., (o, ir) € Exp(N) such that

Exp(N) = N + {(a!, d1),..., (o', i)}

PROOE Wecall Y; = {a € N*: (a, i) € Exp(N)}. Since each Y; is an non
empty subset of N”, it has a Dickson basis with respect to the usual order
inN". Leta™, ..., " a Dickson basis of Y;. Then the set

Y ={(a",i),... (% i) i=1,...,s}

[9. Quantum Groebner bases] 25



P. Jara

is a Dickson basis with respect to either TOP or POT order induced in N}
by the usual order in N”. In particular we obtain:

Exp(N) =N"+Y.

O
Let N C R’ be a non zero submodule. We call a Groebner basis of N any
non empty subset {m,, ... , m;} C Nsuch that N"+{exp(m,),... ,exp(m;)} =
Exp(N).

(2.2.3) Lemma.
LetN C R® be a non zero submodule, any Groebner basis of N is a system
of generator.

PROOE Given m € Nand G = {my, ... , m;} be a Groebner basis, by the
division algorithm, we have:

m=Qim +---,Qimy+r.

If r # 0, then N(r) € A = Nf \ UL_; A’ = N \ Exp(N). On the other hand,
since r € N, then exp(r) = Exp(N); which is a contradiction. O

(2.2.4) Corollary.
Any non zero submodule of R® has a Groebner basis.

(2.2.5) Proposition.
Let N C R’ be a non zero submodule and G and G' Groebner bases of N,
then for any m € R® we have:

r(m;G) = r(m;G).

PROOE. Let 0 # m € RS, by the division algorithm we have:

m = Z Qim; + r(m;G) = Z Qimj+ r(m;G)

m;eG ijG'

If r(m;G) # r(m;G), then x = r(m;G) — r(m;G') € N, hence exp(x) €
Exp(N). On the other hand, we have:

exp(x) € N(x) CN(r(m;G)) UN (r(m;G') C A = A7 = N \ Exp(N),
which is a contradiction. O

We will introduce some special Groebner bases in order to prove their
uniqueness.
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(2.2.6) Lemma.

Let N C R® be a non zero submodule and G a Groebner basis. If x €¢ G
satisfies: exp(x) € N + {exp(m): x # m € G}, then G \ {x} is a Groebner
basis of N.

Let N C R*be a non zero submodule and G a Groebner basis of N, we say
that G is minimal if it satisfies:

(i) le(m) = 1forany m € G;
(ii) exp(x) ¢ N" 4 {exp(m): x # m € G} forany x € G.

(2.2.7) Proposition.
Any non zero submodule of R® has a minimal Groebner basis.

Let N C R® be a non zero submodule and G a Groebner basis, we say that
G is reduced is it satisfies:

(i) le(m) = 1forany m € G;
(i) M(x) "N"* + {exp(m): x# me G} # @foranyx € G.

(2.2.8) Proposition.
Any non zero submodule of R® has a reduced Groebner basis.

Groebner bases may be easily characterized as follows:

(2.2.9) Proposition.
LetN C R® be a non zero submodule and G C N a finite family, then the
following statements are equivalent:

(a) G is a Groebner basis;
(b) r(m;G) =0 forany0 # m € N;

(c) For any m € N there exists an expression m = ZmieG Q;m; such
that exp(m) = max{exp(Q;m;): m; € G}.

Given terms X®e; and X° ej in R® we define their minimum common mul-
tiple as X7§;5¢;, where X7 is the minimum common multiple of X* and

X?inR.
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Let m, n € R, the s—polynomial or semisyzygy of m and nis defined as:

-.—1
Yle(m)

1

_ _(/8:7_/8) _/8 P
m—q X7 5”1(:(11)

S(m, n) = q~ (@YW X125 n,

being exp(m) = («, i) and exp(n) = (5, j)-

(2.2.10) Theorem. (Buchberger theorem)
LetN C R® be a non zero submodule and G = {my, ... , m;} a finite sys-
tem of generators of N, then the following statements are equivalent:

(a) G is a Groebner basis of N;
(b) For any i # j we have r(S(m;, m;); G) = 0.
(2.2.11) Theorem. (Buchberger algorithm)

Let N C R’ be a non zero submodule and {m,, ... , m;} a system of gen-
erators. A Groebner basis of N can be reached as follows:

Go = {my, ..., m};

Gne1 = G, U{r(S(m,n): m,nc G}

Then there exists an index n such that G, = Gy, in this case G, is a
Groebner basis of N.

2.3. Applications.

(2.3.1) Remark. (Membership problem.)

Let N C R® be a non zero submodule and {n,, ..., n;} a system of gen-
erators, given m € RS, the problem is to decide if m € N. To solve this
problem we compute a Groebner basis G = {m;, ..., m;} of N then we

have m € N if and only if r(m; G) = 0.

In addition, since the elements m; are R-linear combination of {ny, ... , n;},
it is possible to obtain an expression

m=Qim +- -+ Qny
in the case in which m € N.
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(2.3.2) Remark. (Equality of submodules.)

Let N; and N; be non zero submodules of R® with systems of generators
{m,...,n;} and {hy, ..., hi} respectively. The problem is to determine
when N; = Ns.

To solve this problem we compute reduced Groebner bases G; and G, of
N; and N, respectively. By the uniqueness of reduced Groebner bases we
have N; = Ny ifand only if G; = Go.

(2.3.3) Remark. (Cofinite submodules.)

Asin the case of ideals, a K-basis of R*/N is indexed in the set N7\ Exp(N).
In addition, a finiteness criterion can be done: for any indeterminate X;
and any index i there exists a m € N such that lm(m) = Xj”ei for some
neN.

More applications.
Let us consider R = K([Xy,...,X,] and new indeterminates Y3, ..., Y.
LetN C R[Vy,. .., V]! be a submodule, we are interested in an elimina-

tion theorem in order to determine a Groebner basis of N N R when a
Groebner basis of N is known.

(2.3.4) Theorem.
Let G be a Groebner basis of N C R[Y1, ..., Yy|" with respect to a TOP
monomial order and the lexicographical order inR[Yy, ... , Yy, being Y;’s

bigger than X;’s. Then G N R’ is a Groebner basis of N N R’

PROOE. We always have the inclusion G N R € N N R On the other
hand, given 0 # m € NN R/, there exists g € G such that Im(g) di-
vides Im(m). Since m has only indeterminates Xj, ... , X;, then the same
holds for Im(m), the coordinate of g in which appears Im(g), and since
the monomial order is TOP, in the coordinates of g only appear indeter-
minates Xi, ..., X,. As a consequence g € G N R’. O

As a direct application let us show how to compute a Groebner basis of
an intersection of submodules.

(2.3.5) Proposition. (Intersection of submodules.)

Let Ny and N, be non-zero submodules of R® with generators fi, ..., fj
andg, ..., gk respectively. Let Y a new indeterminate, commuting with
R, and let us define

L= R(Yfla 7th7 (1 - Y)gla 7(1 - Y)gk) - R[Y]sa
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thenN; "N, = LN RS,

PROOE Let m € N; NNy, then m= Ym+ (1 — Y)m € LNR’. Conversely,
letme LNR, thenm=3";Yfi+> (1 — Y)g;. If we evaluate Y in 1 then
we obtain rm =}, f; € Ny; and evaluating in 0 then m =}, g; € N».

U

(2.3.6) Remark. (Annihilator of an element.)

As a consequence, to get a Groebner basis of Ny NN it is enough to com-
pute a Groebner basis G of L in R[Y]* with respect to a TOP monomial
order in which Y is biggest that each X; lexicographically. Then a Groeb-
ner basis of N; NN, is G N R,

Another useful application involve the computation of the annihilator of
elements in R®.

(2.3.7) Proposition.
Let N be a non—zero submodule of aR®* and 0 # m € R®, then

(N:m)={QecR: Qme NNnRmj}.

PROOE. Easy. 0

(2.3.8) Remark.

As a consequence to compute a system of generator of (N : m) itis enough
to compute a system of generator of N N Rm and divide each element by
m. Hence the quotients produce a system of generators of (N : m). In-
deed,let Q € (N: m) and x, ... , x; a system of generators of N N Rm; let
x;i=Hm, Hie R, i=1,..., 1. Wemay write Qm =), Cix; = > ; C;H;m,
being C; € R. Atleast one of the coordinates of m is non-zero as mis non
zero. Hence Q = ) ; C;H; as Ris a domain.

2.4. Syzygy modules.

Let us consider a linear map f: R — R™. Then, fixed bases {ey, ..., e}
inR’and {1, ..., I} in R™ respectively, f is determined by a matrix with
coefficients in R. Let

m
f(ei):Zaijlj, i=1,...,t
=1
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ap - Aim
then the matrix of fis A(f) =
arp -+ Amm

We call the kernel of A(f) the syzygy module of f, and represent it by
Syz(f). Hence we have:

Syz(f) = {(b;); € R (b;)i(a;j);j = 0}

byay, + -+ ban =0
: (2.1)
byaym+ -+ bragn =0

i.e., Syz(f) is the set of all solutions to the system of linear equations (2.1).

The problem, we are interested, is to determine a system of generators of
Syz(f)-

First case.

Let us consider f: R — R defined by

fle)=cX¥, 0£cek, o'eN', i=1,... .t

(2.4.1) Proposition. L i
Foranyi# je {1,...,t} wedefine X;; = mcm{X" , X} = X", then

{q @ el gy e 1< i< j<
is a system of generators of Syz(cho‘l, cee ctX"[) .
PROOE. First we prove that each element is a syzygy:

q_(ai"yij_ai)X'yij_aiCiXai B q—(ozj,’yij—aj)X'yij_ajCanj =X _-X"=0

To prove that it is a system of generators, let (Hy, ... , Hy) € Syz(chC‘1 e, XY,

then

H1C1Xal +---+ Htctxat =0
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For any o € N" the coefficient of X* must be zero, hence we may assume
that each H; has the following form: H; = c;.Xﬁl, being either ¢; = 0 or
B4+ ol = a.
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Letc;, ..., c; the only non-zero coefficients and assume that 3 b

(3% then we have:

Z?:l Hie;

= 25:1 C;'Xﬁl_ei

= Z]s':l C;'jX”Blj €j;

_ C’- —(y12_ah ""—YIZ)X&—YIZX’VIZ_O‘H e +---

+c’ q_(“Y
—|—Cll Cizq_(,YZ?)_aiz,a_,.YZ?))_i_(aiz ;’723_0/2)X0£—")/23 q
2

l i i 12
— ¢ ¢;,q ("= aR amalt) o *g

+, c,-zq—(v % a—7")+(a®,a-a’2) ya—y

= ¢ Czlq 72—l a—y")+(al 42 —all) ya—y

s—1s__ S—IS) s—1s s—1s

b O (U NP CAl

ls 1
12 g~ (a1 412 ’1)

a's—1 a—y
Is—1

X' -alt e;

: 1

[

~(a2yB-a2) 23

i X _a28i2
s

-+ ¢ X7 e

—(ah 7712_0/1) X’ylz—ail e
Cl'l 141

23 ;
23 q~ (al2,y QZ)X’Y a2,
12 12

_ Cilq—(vlz,a—vm)-i-(a“ a—all) ya—y"?

i . .
(o'l 412 _al1) i —(a®2,412-a®2) 12_ i
q— y12_all q v E—a® ,,
2 X e, + o X e;,
— (2 0—712)+(all ,a—all) 12q- (a2 412 _al2)
+ Cll'lcilq v 5a—y )+l a—all) ya—y C—X’Y
i
23 23 i i 23 g— (2,723 —a2)
e ,— +(a2,a—a”) ya—y= 4 .
+c;.2612q (v 7)+( ) X o x> ei,
is
-+ C;sXB €, . .
et (6’,- e, q~ e al aal) xa—®
1
23 23 23 (@272 —al2)
+C;-20i2(1_(7 a—72)+(a’2 0,0 ) 3= )‘lc—lzxv ei,
i
-+ C/ X seis
—1
- ((Cl quala of )4 "‘CI ,Cis_ 1q(a51a a81)>
sfls s 1s s—1s (a SN ls*als) s—1s is
(v T a—y I T T eyt g a—o .
( )X o X + ¢ X e;,

q—(a a=a) L ya=a® | ¢ xo- as)

((Cl ¢y q' (@ha—a™) ...y ¢, Cis_lq(aikl’o‘_o‘isfl))

€i;

<

+ C;-sXﬂis e,-s

+ (C;l Cilq ol a—a'™ 1) I C;'s,lCisflq(als_l’a_als_l) I C;'SCisq(ais’a_ais)>

i i i
—(a,a—a S)L.Xa—ase
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The sum in the parenthesis is zero as

HiaX® + -+ Hie X =0

Hj, CiIXOfil +oee Hic; X" = 0 |

X 6 X 4t 6 X0, X

(C;d Cilq(ah aa—all) T Cliscl'sq(ais’a_ais)> X — 0

and C/l'l Ciy q(ail ,a—ail) 4+t Cliscisq(ais’a_ais) —0 -

Second case.

Let us consider f: R! — R defined by

f(e,-):Gi, 0£G;eR, i=1,...,t,
being {Gi, ... , G} a Groebner basis in R and lc¢(G;) = 1 for any index i.
Letlm(G;) = X*,i=1,...,t.

In this case we call X?" the minimum common multiple of X' and x*’
and define the s-polynomials of G’ and G;, i < j, as usual:

1

S(Gi, Gy) = q~ (@' x el G; - g @t =g,

Since { G, ..., G;} is a Groebner basis, by the division algorithm there
exists an expression of S(G;, G;) as follows:

S(Gi, Gj) = Y51 QijnGn,  Qyn € R )
Im(S(Gy, Gj)) = max{lm(Q;;nGy): 1 < h <t} < X"

Hence we define new elements

t
O R ) ij_ i (d AT ij_
si=q @ TX e — q (=) x1 “lej—ZQijhehGRt
h=1

Itis clear that s;; is a syzygy of Gy, ... , Gy as

. Py . . . . . . . . t
q @@= =o', - q—(@]ﬁ]—a])X’Y]—a]Gj — Z QijnGp =0
h=1
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(2.4.2) Theorem.
The family {s;;: 1 < i < j < t} is asystem of generators of Syz(Gy, . .. , Gy).

PROOE. Let h = Y | Hie; € Syz(Gy, ... , G;) which is not generated by
the set {s;;: 1 < i< j< t}. We may take h such that

X% = max{lm(H;G;: 1 < i< t}is minimal
Letuscall S={ie {1,...,t}: Im(H;G;) = X*}andforanyiec {1,...,t}

we define

o [H ifig S;
L Hy — lm(Hl) ifieS.

Let us call Im(H;) = c,-Xﬁi, 0 # c; € K, i € S. Since his a syzygy it satisfies:
Y ax'x' =0, flial=a.
€S

Hence

Z C,-Xﬁiei € SyZ(XO‘i: ies).
€S
As a consequence

i€S l<]
ijes

being Q;; € R. Each coordinate in the left part is homogeneous and sat-
isfies 4’ + o/ = a. Then we may consider each Q;; homogeneous and a

K-multiple of X2=7"_ Therefore we obtain:

h=Yi,= ZzeSCzX el+Zz 1H/el

=2 i<j Qz]( o= xrt-ale, — q (a]’Vj_a])XVJ_O‘]e]) +Y1 Hle;
,jes

=2 jj Qsit Y Hiei+ 32 i<j Qij(X ket Qijnen)-
i,je s ,je s
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If we define
t t t
p=> _Pie;=) Hie+ > Qi Qynen)
i=1 i=1 i< ] h=1
i,je s
then p € Syz(Gy, ... , G¢) and itis notan R-linear combination of {s;: 1 <

i < j < t}. Wereach to a contradiction if we prove that
max{lm(P;G;): 1 <i<j< it} <X
Forany /e {1,...,t} we have:
Im(P;Gy)
1 1
=Im(H X" =37, <j Qi QiiX™)
i,je s
1 1
= max{lm(H;X"),Im(3> ; _ j Q;j Qi X™ )}
i,je s
We have lm(H;XO‘l) < xo' by the definition of Hj. Also, by construction,
Q;j is a K-multiple of X7 then
I ) ij -
Im(QQyX™) = Im(QyS(Gi, G)) =< lm(X* " X7") = X

As a consequence Im(P;G;) < X, which is a contradiction with the elec-
tion of . O

Third case.

Let us consider f: R® — R defined by
fle)=F, 0#F€R, j=1,...,s.
In this case we compute a Groebner basis for the left ideal of R gener-

ates by Fy, ..., F;. Let {Gj, ..., G} such a Groebner basis in R, we may
assume l¢(G;j) = 1 for any index i.

There exist expressions
Gi:Z]s':lAiij, i=1,...,¢, AijERand
Fi=Y!,B;G;, j=1,....s, BjeR
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Ay - Ags By1--- By
Now we may define matrices A = | : |andB=| : :
An e Ass B -+ By
and obtain matrix identities
G Aqp - Agg F F Bi1--- Byy G
= : : : and = : : :
Gt Atl Ats Fs Fs le"' Bst Gt

If we consider the linear map g: R — R defined by
g(ei):G,-, i=1,...,¢,

and compute a system of generators {gi, ..., g} of Syz(Gy,..., G}, us-
ing the second case. To get a system of generators of Syz(Fy, ... , Fs) we
proceed as follows:

Let h € Syz(Gy,...,Gy), if h = YL, Hie;, we have the following matrix
equation:

G Ao A\ (B
0= (Hl Ht) = (Hl Ht)
Gt Atl te Ats Fs
Ay - Ass
Hence (Hy---H;) | : | isasyzygyfor Fy, ..., Fi.
Atl o Ag
On the other hand, let us consider the following expression:
Fl Fl Fl Fl Gl
(=BAY |+ |=|:|-BA| :|=|:]|-B|:]=0
Fs FS Fs FS Gt
Hence the rows f, . .., f; of the matrix 1; — BA are syzygies for Fi, ... , Fi.
(2.4.3) Theorem.

With the above notation the family {4, ... , gA fi, ... , fs} is a system of
generators of Syz(F, . .. , Fs).

PROOF. Given h € Syz(Fi, ..., Fs), h=3_;_; Hjej, we have

Fl Gl
OZ(Hl,...,Hs) :(HI,...,HS)B
F Gy
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Hence (Hi,. .., Hs)B € Syz(Gy,. .. , Gy). As a consequence

81
(Hy,... ,H)B=(Qy,..., Q)| :
8i
and
81
(Hy,... ,H)BA=(Qy,...,Q) | : |A
8

Then we have:
(Hy,...,Hy)=(Hy,... ,Hs) — (Hy,... ,Hy)BA+ (Hy,... ,Hs)BA
= (Hy,...,Hs)(1s— BA) — (H,... ,Hs)BA
h 81
:Hl,...,Hs) +(Q1,...,Ql) A
fs 8
and the result follows. O

Four case.

Let us consider f: R — R™ defined by

f(ei):gi7 O%gIERm izl:"'at)
being {g1, ..., &} a Groebner basis in R™ and lc(g;) = 1 for any index i.
Let Im(g;) = X"lldl. = x(\d) i — 1 ... t and define XVl](Sdidj the mini-
mum common multiple of Im(g;) and Im(g;). the s—polynomial of g; and
gjis:
S(gi &) = @@ X0" 5 4 g - q @D X0 5 g
Since {g1, - - - , &} isa Groebner basis, in the division of §(g;, gj) we obtain:

S(8:,8) = She1 Qijngh. Qin€R
Im(S8(g;, 8)) = max{lm(Q;ngn): 1 < h <t}

and define
t
(AT —g) i (e~ — gy ol —
si=q T 61— q (@ =) x a8 — Y Qijnen;
h=1
itis clear that s;; € Syz(g1,. .. , &)-
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(2.4.4) Proposition. o
The set {q~(@'"=a") x77~a Odyd;ed, —q_(a]WJ_O‘J)XV]_O‘](SdidJ.edJ.: 1<i<j<

t} is a system of generators of Syz(X(ai’di): 1<i<i).

PROOE It is clear that each element is that set is a syzygy, as if d; # d;,
then 5d,-d,- = 0, and if d; = d}, then

q_(a’,vy—a’)ml]_aled. - q_(“]’w_“])X’Vl]_a]edi = X‘Y”edi - XVijedi = 0.

1

On the other hand, let h = (H,, ... , Hy) Syz(X(©"4); 1 < i < t}. We have:
X Iy 4+ HX g, = 0

We may assume that every H; is homogeneous and it has the following
form: Hl-ciXﬂi. Since {1,. .., Im} is a R-basis, if we consider the d; , ...,
dj, such that I, = --- = Iy, , then we obtain a syzygy of I/ CLN Cha Y
Applying the first case we have that Z]s-zl Hije;, is generated by

{q—(alj,vjh—alj)x'y]h—alfeij _ q—(aihﬁjh—aih)X'th_aih e, 1<j<h< s}.

We may repeat the process and finally we get the result. O

As a consequence we obtain

(2.4.5) Theorem.
With the above notation we have that {s;: 1 < i < j < t} is a system of
generators of Syz(gi, ... , §t) -

Fifth case.

Let us consider f: R® — R™ defined by

fle)=fi, 0£fcR™ j=1,...,s
In this case we compute a Groebner basis for the submodule of R gen-

erates by fi, ..., fs. Let {g1,..., &} such a Groebner basis. As usual we
may assume that lm(g;) = 1 for any index i.

There exist matrices A = (A;);; and B = (Bj;);; with coefficient in R such
that

g Arr e Ags h h Byy - By g
=] s i emd [i]=] ]
8t Apn - Ags fs fs Bs -+ Byt 8t
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Let xi, ..., x; be a system of generators of Syz(g, . .. , &), then, as in the
third case, for any index j we have that x;A is a syzygy of fi, ..., fs. Also
the rows yy, ..., ys of the matrix 1 — BA are sysygies.

(2.4.6) Theorem.

With the above notation the set {x14,... , XA, »,...,Ys}t is a system of
generators of Syz(fi, ... , fs)-

Groebner bases for syzygies.

(2.4.7) Proposition. (Schreyer-1980)
Letg, ..., & € R! and < be a monomial order in R'. We define a new
order on monomial in R® as follows:

. [Im(X°g) < lm(XPg;) or

Q. B p. l I

Xiei < Xoejif {lm(Xagi) =1m(X°g) andj < i
Then < is a monomial order in R®.

PROOE. It is clear that < is a total order on monomials in R®. To prove
that it is a monomial order we proceed as follows:

(1) Given 0 # « € N" and (3, i) € N?, then Im(X*X"g;) = Im(X”g;, hence
(6,1) < (a+p, D).

(2) Given o € N" and (31, i) < (52, i2) € N7, then

(2-a) Ifim(X? g; ) < Im(X* g;,), thenIm(X°X? g; ) < Im(X*X*"g, ). There-
fore (a+ B, i) < (o + 3%, ).

2-b) If In(X? g; ) = Im(X%'g;,), then Im(X°X? g;) = lm(X*X? g; ) and
ip < iy, therefore (a + 81, 41) < (o + 52, bp).

(3) Given o < [ € N", for any index i we have Im(X®g;) < lm(X?g;).
Therefore («, i) < (3, 7). O

The monomial order defined in the above Proposition is called the mono-
mial order inducedby g1, . .. , g in R°.

(2.4.8) Theorem.

LetG = {gi,..., 8} be a Groebner basis in R™, then the system of gen-
erators {s;;: 1 < i < j< t} ofSyz(g,... &), defined in Theorem (2.4.5)
is a Groebner basis of Syz(g, . . . , g) with respect to the monomial order
inR! induced by gy, ..., g In addition we have:

Im(s;;) = X“Vij_aiei, 1<i<j<t Dbeinglm(g;) = xe',
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PROOF. First we prove that Im(s;j) = Xx7"=2"e; Since

i

_O‘]gj:X’V,

ij_ai ij

Im(X7" 7% g;) = lm(X”

and i < j, then we have x'= ej < XVU_O‘le,-. Let X® a monomial in a
summand Q;jey,, then we have:

Im(X*gp,) < Im(S(gs ) < Im(X1"~'g).

Hence X“¢;, < X“Yij_aiei.

Second we prove that in fact we obtain a Groebner basis. Let h € Syz(gi, ... , &)
defined by h = 31, Hje, H; € Rand let 1t(Hy) = ¢, X, then lm(h) =
X?'e; for some index i. We define

S={le{l,...,t): Im(X"g) = Im(X*'g)}

For any [ € Swe have [ > i. We define a new element in R? as follows:

1
W= X% e
] I
leS

Since h is a syzygy then ), chO‘l lt(g;) = 0. Hence I is a syzygy of
{lt(gy): 1 € S}, infactitis a syzygy of {lt(g1), ... ,1t(g:)}. We obtain that //
is generated by the set

th_ 1 h _lh

{q—(a’,v”’—al)xv e — q (@ —a”) %

Ih

—"g: Lhes, 1< h)

lh h
~“ep), Qm € R

Since Im(FK') = lm(h) = Xaiei, this term appears in the right side in the
expression of /. We obtain this term using the leader terms of Qy;, hence
we have:

Let h/ = Zlh thq_(O‘lﬂ/lh_al)X’)/lh_Oélel _ q_(ah,’ylh—ah)Xy

ciX*'e; = Zhlt(Qih)Xvih_aiei, o
heS, h>i X =Im(t(QpX —)
Therefore, there exists a summand, hence an index ki, such that lm(s;h) =

XVihaiei. As a consequence Im(s;;) divides Im(h), hence {s;;: 1 <i<j< 1t}
is a Groebner basis. O
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Groebner basis, 9
Groebner basis of N, 26

leader coefficient of F, 5
leader coefficient of x, 24
leader monomial of F, 5
leader monomial of x, 24
leader term of F, 5
leader term of x, 24

left quotient, 8
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lexicographical product of orders,
2
lying over order, 22

maximal element, 1

minimal element, 1

minimal Groebner basis, 11

minimal Groebner basis of N, 27

minimum common multiple in R,
13

minimum common multiple in R¥,
27

monoideal, 9

monomial in Kq[Xy,...,Xy,],3

monomial in a module, 22

monomial order, 4

monomial order in RS, 22

monomial order induced by .. .,
40

Newton diagram of F, 4
Newton diagram of x, 24
noetherian order, 1

partial order, 1

position over term order, 22
POT order, 22

preorder, 1

product of orders, 2

quotient, 8
quotient of m, 25

reduced Groebner basis, 11
reduced Groebner basis of N, 27
remainder, 8

remainder of m, 25

s—polynomial, 14
s—polynomial of m and n, 28
semisyzygy, 14

semisyzygy of m and n, 28
stable subset of N{, 25

46
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syzygy module, 31

termin Ky[Xy,... ,X,], 3
term in a module, 22

term over position order, 22
term preorder, 4

term preorder in R¥, 23
TOP order, 22

total order, 1

total preorder, 1

usual order in N, 2

well order, 1

[Notas de trabajo]



