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Abstract. Three different methods, namely maximum en-
tropy, combination of Dirac deltas and two-point Padé ap-
proximants, are used to construct tight model-independent
approximations to the atomic form factor F(k) in terms of
a few quantities related to its inverse Fourier trnsform, i.e.
the one-particle densityρ(r). The accuracy of these approxi-
mations is analyzed in a Hartree-Fock framework. These ex-
trapolation techniques, being completely general and model-
independent, can be applied to other kind of physical sys-
tems, such as solids, molecules or nuclei.

PACS: 02.30H; 02.30M

I Introduction

One of the most relevant magnitudes in the study of atomic
and molecular systems is the electronic charge densityρ(r ).
Its Fourier transform

F (k) =
∫
ρ(r ) exp{i k · r} dr (1)

is the scattering factor (also called form factor or structure
factor), which can be obtained from elastic X-ray and elec-
tron scattering experiments [1–3]. However, these experi-
mental data can only be measured for a finite set of values
of the momentum transferredk with a limited accuracy, due
to the statistical errors. This means that, when computing
the charge density from the inverse Fourier transform

ρ(r ) =
1

(2π)3

∫
F (k) exp{− i k · r} dk , (2)

additional values ofF (k) beyond the limits of experimen-
tal possibilities are required and also the experimental errors
should be taken into account. So, interpolation and extrapo-
lation schemes, including the small and largek-behavior of
the scattering factor, have to be devised (see e.g. [4]).
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For atomic systems it is interesting to work with spher-
ical averages, i.e. the radial distribution function

D(r) = 4πr2ρ(r) ,

beingρ(r) = 1
4π

∫
ρ(r )dΩ, and the isotropic form factor

F (k) =
1

4π

∫
F (k)dΩk (3)

wheredΩk = sinθkdθkdφk. Both quantities are connected
by means of the Fourier-Bessel (or Hankel) transform

F (k) =
∫ ∞

0
D(r)j0(kr)dr = 4π

∫ ∞

0
ρ(r)j0(kr)r2dr (4)

wherej0(kr) = (kr)−1 sin(kr) is the spherical Bessel func-
tion of order zero.
This later expression easily provides the smallk-behavior of
F (k),

F (k) = N +
∞∑
n=1

(−1)nk2n〈r2n〉
(2n + 1)!

(k → 0) (5)

being 〈rm〉 (m = −2,−1, 0, 1, . . .) the moments of the
atomic charge distribution, i.e.

〈rm〉 =
∫
rmρ(r )dr =

∫ ∞

0
rmD(r)dr

= 4π
∫ ∞

0
rm+2ρ(r)dr ≡ 4πµm+2 (6)

andN = 〈r0〉 the number of particles of the system. This
behavior has been used, for example, to study scaling prop-
erties of the structure factor for some atoms [5]. Moreover,
the asymptotic expansion ofF (k), given by [6, 7]

F (k) = 8π
∞∑
n=1

(−1)nn
ρ(2n−1)(0)
k2n+2

(k →∞) (7)

shows its strong influence on the central value of the charge
densityρ(0).

Thakkar and Smith [8] used the above expansions to
obtain accurate expressions for the structure factors and to-
tal scattering intensities from explicitly correlated wavefunc-
tions. The usefulness os such expansions is also shown in
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the present work when constructing approximations to the
atomic form factor. Additionally, the inverse Fourier trans-
form gives the relation

1
2π

∫ ∞

0
k2F (k)dk = πρ(0) (8)

and other sum rules relating the derivatives of the structure
function to the expectation values of the radial densityD(r)
has been obtained [9].

It is also known thatF (k) is a non-negative function,
i.e. F (k) ≥ 0, and numerical evidence of its decreasing
monotonicity (i.e.F ′(k) ≤ 0) has been recently shown [10].
Other interesting properties, including some lower bounds
to F (k), are studied in [11].

The knowledge of accurate form factors of atomic sys-
tems is important because they serve as reference for exper-
imental techniques. Recently, the total inelastic and elastic
intensities forX-ray and high energy electron scattering for
a few ten electron molecules have been calculated by us-
ing configuration interaction wavefunctions. The results are
compared with experiment, and chemical binding and cor-
relation effects are also studied [12].

Generally speaking, due to the complexity ofN -electron
systems, no single approach to the study of form factors
gives a satisfactory answer to several questions. Then, it
is interesting to have tight approximations to these struc-
ture functions because of the relevant role which play in the
connection between momentum and position spaces.

In this paper, three different methods are used to build up
model-independent approximations to the atomic form fac-
tor: maximum-entropy, linear combinations of Dirac deltas
and two-point Pad́e approximations (Sect. II). All of them
use as basic ingredients to construct the approximations
some quantities related to the one-particle densityρ(r ),
namely some local values (e.g.ρ(n)(0), n = 0, 1, . . .) and/or
some radial expectation values〈rn〉. We show here that this
kind of information in the position space is sufficient to have
a good description of a quantity (likeF (k)) in the whole
range of the momentum space. The accuracy of those ap-
proximations is analyzed in Sect. III within a Hartree-Fock
framework, and the appropriate conclusions are discussed in
the final section.

II Description of the mathematical methods

A Maximum entropy (ME)

Consider the whole set of density functionsf (r) defined
on the interval [0,∞) with the same firstM + 1 moments
{µj}Mj=0. The ME method provides, among all of these den-
sities, the one which maximizes the entropy functional

S[f ] = −
∫ ∞

0
f (r)lnf (r)dr . (9)

In doing so, one has to solve the variational problem

δ

− ∫ ∞

0
f (r)lnf (r)dr +

M∑
j=0

λj

(
µj −

∫ ∞

0
rjf (r)dr

)
= 0 (10)

which solution, to be called ME density, is

fME
M (r) = exp

− M∑
j=0

(λjr
j + δj,0)

 , (11)

whereδj,0 stands for the Kronecker delta. Here the Lagrange
multipliers{λj}Mj=0 have to be computed from the following
non linear system of equations:∫ ∞

0
rjfME

M (r)dr = µj , j = 0, 1, . . . ,M . (12)

Existence conditions for the ME density have been studied
in [13–15]. On the other hand, due to the tightness of the
ME approximations, this method has been widely used in
the literature in a great variety of fields (see e.g. [16–27]).
It is worthy to remark that analytical ME solutions are only
known for the caseM = 1, namely

fME
1 (r) =

(µ0)2

µ1
exp

{
−µ0

µ1
r

}
(13)

where a simple change of variable can be made in order to
replaceµ1 by a moment of arbitrary orderµα (α > 0).

B Linear combinations of Dirac deltas (CDD)

Given a density functionf (r) and a sequence{µj}Mj=0 of its
moments, this method provides approximations constructed
by considering certain linear combinations of Dirac deltas
[28]. To obtain them explicitly, two different cases have to
be considered:

• The numberM + 1 of moments is even (M + 1 = 2m).
Then, the approximation is given by

fem(r) =
m∑
i=1

wiδ(r − ri) (14)

where the weigthswi and the polesri are obtained by
impossing that the firstM +1 moments offem(r) and the
ones off (r) coincide, i.e.
m∑
i=1

wi r
j
i = µj (j = 0, 1, . . . ,M ) . (15)

• The numberM + 1 of moments is odd (M + 1 = 2m+ 1).
Now, the approximation is

fom(r) =
m∑
i=0

wiδ(r − ri) (16)

wherer0 = 0 and the weigthswi and the polesri (i > 0)
are obtained by solving the system of equations
m∑
i=0

wi r
j
i = µj (j = 0, 1, . . . ,M ) . (17)

In spite of the strong non linearity of the systems (15) and
(17), Wheeler and Gordon [29] have developed an efficient
algorithm to compute the weights and positions of the CDD
approximations.
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These authors [29] have considered these functionsfem(r)
andfom(r) to approximate integral transforms off (r)

R(k) =
∫ ∞

0
G(r, k)f (r)dr (18)

by performing the same integral transform onfem(r) and
fom(r). They also studied convergence properties of the ap-
proximations whenm increases, and showed that the kernel
G(r, k) of the transformation strongly determines the char-
acteristics and properties of the resulting functionR(k). For
instance, it is known that kernelsG(r, k) having derivatives
with respect tor (for any fixedk) of constant sign provides
rigorous bounds onR(k).

In fact, the above mentioned convergence and bound-
ing properties are closely related to those of the general-
ized Pad́e approximants (see e.g. [30]). On the other hand,
the approximations (14) and (16) are connected with the
so-called Stieltjes-Chebyshev methods [28] which allows to
obtain bounds on other kind of integrals involving the den-
sity functionf (r) (e.g. the cumulative density [28, 31–33]).

C Two-point Pad́e approximants (TPP)

Pad́e approximants is one of the widely used mathematical
tools in a great variety of fields, ranging from Physics and
Chemistry to Mathematics and other subjects. Because of
that, many convergence and bounding properties of them
have been considered in detail [30].

Different generalizations of this technique have been car-
ried out with the aim of improving its powerfulness. Among
them, multipoint Pad́e [34] and Pad́e-type [35] approximants
are specially remarkable. The first one considers information
of the function at several points, while the second allows one
to play with the position of the poles of the approximants.
Recently both generalizations have been joint giving rise to
an extension which algebraic and convergence properties are
studied in [36, 37].

The idea of this last method consists of constructing a
subdiagonal Pad́e approximant to a given functionf (x)

PLM (x) =
pM−1(x)
qM (x)

(19)

where pM−1(x) and qM (x) are polynomials of degree at
mostM −1 andM respectively, such thatPLM (x) satisfies
L constraints atx = 0 and 2M−L atx = ∞. The coefficients
of pM−1(x) andqM (x) are determined from the conditions

PLM (x)− f (x) = O(xL) for x→ 0 (20)

PLM (x)− f (x) = O(xL−2M−1) for x→∞ (21)

in such a way that these unknown coefficients are obtained in
terms of the power series off (x) around 0 and∞. Detailed
properties of these approximations (e.g. existence, unique-
ness, convergence, error bounds. . .) can be found in [36–38].

Fig. 1. Hartree-Fock charge density (ρHF ). and ME approximationsρ1(r),
ρ3(r), ρ4(r) andρ6(r) for the Lithium atom (Z = 3). Atomic units (a.u.)
are used

III Application to atomic form factors

In this section, the three methods of approximation previ-
ously described are jointly applied to study atomic form fac-
tors in terms of local and/or global quantities of the charge
density, namely derivatives at the origin and radial expecta-
tion values, respectively.

To have an idea of the accuracy of the results given
by those techniques, we construct the one-particle density
ρ(r ) of Lithium (nuclear chargeZ = 3), the correspond-
ing form factor (i.e. the Fourier transform of the density)
and the above mentioned derivatives and expectation val-
ues by using the Near-Hartree-Fock atomic wavefunctions
of Clementi and Roetti [39]. Nevertheless, similar calcula-
tions can be performed not only for other atomic systems,
but also for molecules and nuclei, due to the universality of
the methods here involved.

Let us start by applying the ME method to the spherical
averageρ(r). Its momentsµj are related to the radial expec-
tation values〈rj−2〉 as given by (6). We have computed the
ME densityρM compatible with the constraints{µj}Mj=0 for
the Lithium atom.

In Fig. 1, the ME approximationsρ1, ρ3, ρ4 andρ6 are
compared with the Hartree-Fock densityρ(r). In obtaining
ρ1, the analytical solution given by (13) has been consid-
ered. It is observed that (i) solutions depending on a very
small number of moments are accurate for a wide range of
electron-nucleus distancesr, and (ii) increasing the num-
ber of moments one obtains a great improvement in the ac-
curacy of the approximations. Specially remarkable is the
well-behavior of the six-moment approximationρ6.

For the sake of completeness, we have computed the
entropy and the central value of these ME approximations
together with the corresponding Hartree-Fock ones. Their
values are:S1 = −3.709, S3 = −3.756, S4 = −3.757,
S6 = −3.759,SHF = −3.799; ρ1(0) = 12.71, ρ3(0) = 14.39,
ρ4(0) = 14.13, ρ6(0) = 13.61, ρHF (0) = 13.83.

We can obtain approximations toF (k) by computing the
Fourier transform of the aforementioned ME approximations
to ρ(r). Such transforms are compared in Fig. 2, whereFM
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Fig. 2. Hartree-Fock form factor (FHF ). and ME approximationsF1(k),
F3(k), F4(k) andF6(k) for the Lithium atom (Z = 3). Atomic units (a.u.)
are used

denotes the Fourier transform of the ME densityρM . Let
us notice that the functionF1 is not very accurate, specially
for low values ofk. This is, mainly, due to the fact that the
information considered when constructing the approximate
charge densityρME

1 (r) does not include the number of par-
ticles N = 〈r0〉. However, the approximationsF3, F4 and
F6 are much more accurate for the whole range ofk here
considered.

In using the second method (CDD) to study the atomic
form factor F (k), we first realize that this function is the
integral transform ofρ(r) through the kernelG(r, k) =
4πr2j0(kr) as pointed out in (4). In this case, the above men-
tioned monotonicity properties of the kernel do not hold, so
the resulting transforms are not rigorous bounds but approx-
imations onF (k). Let us denote bydM+1 the approximation
computed in terms of the sequence{µj}Mj=0. Then, it is easy
to show that

dM+1(k) =
m∑
i=1

weiG(rei , k) (22)

if M + 1 = 2m (i.e. M + 1 even), and

dM+1(k) =
m∑
i=0

woiG(roi , k) (23)

if M + 1 = 2m + 1 (i.e. M + 1 odd), taking into account
(14)–(16).

In Fig. 3, a comparison betweenF (k) for Lithium and
theevenapproximationsd6, d8, d10 andd12 is made. All the
approximations oscillate around the Hartree-FockF (k), but
the amplitude of such oscillations decreases when increasing
the number of moments involvedM . A similar conclusion
can be extracted from Fig. 4, where the plotted approxima-
tions are theodd ones, i.e.d7, d9, d11 andd13, for the same
atomic system.

The two previous methods make use of the radial expec-
tation values of the density as basic information for building
up the approximations. In this sense, it is worthy to men-
tion that direct and inverse Hankel transforms have been

Fig. 3. Hartree-Fock form factor (FHF ). and even CDD approximations
d6(k), d8(k), d10(k) andd12(k) for the Lithium atom (Z = 3). Atomic units
(a.u.) are used

Fig. 4. Hartree-Fock form factor (FHF ). and odd CDD approximations
d7(k), d9(k), d11(k) and d13(k) for the Lithium atom (Z = 3). Atomic
units (a.u.) are used

also used to find a solution for the reduced moment problem
[40].

The third method (TPP) involves, as basic data, not only
the aforementioned expectation values but also some of the
first derivatives at the origin of the density. This is so be-
cause the coefficients of the small and largek-expansions of
the form factor are expressed in terms of those quantites, as
shown by (5) and (7).

We have considered here TPP approximants toF (k) of
the formPMM (k2) (see (19)) which make use of the same
number of constraints (i.e.M ) at k = 0 andk = ∞, in such
a way that the conditions to be fulfilled are

PMM (k2)− F (k) = O(k2M ) (k → 0) (24)

PMM (k2)− F (k) = O(k−2(M+1)) (k →∞) (25)

In Fig. 5, the approximationsP22, P33, P44 andP55 to the
form factorF (k) for Lithium are compared with the Hartree-
Fock one. It is apparent that the more information is used
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Fig. 5. Hartree-Fock form factor (FHF ). and TPP approximationsP22(k2),
P33(k2), P44(k2) andP55(k2) for the Lithium atom (Z = 3). Atomic units
(a.u.) are used

the more tight the approximations are. In particular,P44 and
speciallyP55 are very accurate.

As compared with the ME densities, the TPP ones use
much more information for giving a similar accuracy.

Previous works with the Padé approximants applied to
the study of form factors and other density functions are: [8],
where the authors show the improvement of the Padé ap-
proximant [1/1] to F (k) with respect to the truncated series
of (5) and [41] where the studied functions are the Fourier
transform of the one-particle density in momentum space
and the atomic Compton profile.

IV Conclusions

In this work we have presented different approximations to
an experimentally accesible quantity in momentum space,
namely the form factorF (k), in terms of a very limited
number of magnitudes of ordinary space (local and radial
expectation values of the charge density). The procedures
here employed are model independent and give approxima-
tions toF (k) for any value ofk, allowing to compare the
results with the predictions of any model or even with the
experimental data. Other remarkable characteristic of these
approximations, used for the first time in the atomic con-
text, is the property of convergence when the amount of
information considered increases.

Among the three methods, the ME one stands out from
the rest because it produces very tight approximations in
terms of a very scarce information. Conversely, the CDD
needs a great amount of constraints to avoid the oscillating
character of the produced density functions, and so is the
worst one. In spite of this, it should be mentioned that it
provides [28, 31–33] upper and lower bounds on other inte-
gral transforms of the density. The TPP method gives quan-
titatively good results for the whole range ofk (specially
for largek), contrary to the conventional Padé approximants
used in previous works. The use of other generalizations of
Pad́e approximants could be interesting whithin this type of
problems although they would need more information.

Finally, it is clear that the methods here used are com-
pletely general and, then, they can be applied to other kind of
systems, such as solids, molecules or nuclei, where similar
relations between space and momentum magnitudes hold.

Three of the authors (A. Zarzo, J.C. Angulo and J. Antolı́n) wish to ac-
knowledge partial finantial support from DGICYT (Ministerio de Educación
y Ciencia of Spain) under different contracts.
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27. Antoĺın J., Zarzo A., Angulo J.C., Cuchı́J.C.: Int. J. Quantum Chem

61 77 (1996)
28. Corcoran C.T., Langhoff P.W.: J. Math. Phys.18, 651 (1977)
29. Wheeler J.C., Gordon R.G.: The Padé Approximants in Theoretical
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