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Abstract. The Maximum-Entropy formalism is used to
obtain approximations to the spherically averaged charge
and momentum densities. The only information required
is the first few radial expectation values. Analytical and
numerical approximations to the central values of the
densities are calculated. Moreover, the unused or un-
known radial expectation values are estimated by means
of the moments of these Maximum-Entropy densities. As
illustration, the accuracy of these approximations are nu-
merically studied in a Hartree-Fock framework. This
method is complementary to the one which makes use of
the Stieltjes-Chebyshev inequalities and leads to the least
biased approximate densities compatible with the in-
formation we use.

PACS: 31.10.#z; 31.15.#q

1. Introduction

The one-particle densities of a N-fermion system in posi-
tion and momentum spaces, o (r) and c(p) respectively, are
basic ingredients in the study of many physical properties
from a Density Functional Theory perspective, which is
nowadays one of the fundamental theories of matter [1].

One of the most important ways of obtaining experi-
mental information on such densities is the measurement
of Compton profiles [2—4],
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specially by means of photon-photon or photon-electron
coincidence experiments [5—7], high resolution Compton
scattering [8], angular correlation of positron annihila-
tion radiation [9], (e, 2e) coincidence spectroscopy [10]
and magnetic Compton scattering experiments [11].

However, the main problem is that the Compton pro-
file J(q) can only be measured up to some finite value of
the momentum transferred q

.!9
which depends on the

type of experiment. So, the computation of quantities such
as expectation values of the momentum density c(p) from
experimental Compton profiles involves extrapolation
techniques or the use of analytical models [12].

From a theoretical point of view, not so much rigorous
information is known about o (r), c(p) and J (q), in spite of
the efforts of many authors during the last few years. For
atomic systems, some rigorous properties are well known
[13—16]. Moreover, several other structural properties
[17—22], numerical computations [23—25] and inequali-
ties involving the expectation values [21, 26—31]
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(where o(r),(1/4n) : o(r) d) and c(p),(1/4n) : c(p) dXp

are the spherical averages) have been recently derived. The
normalization Sr0T"Sp0T"N is considered through-
out.

In view of the aforementioned scarce information
available on the one-electron densities o (r) and c(p), and
taking into account that some of the atomic expectation
values are physically meaningful [14, 32—37] and/or ex-
perimentally measurable [3, 38—40], it turns out of great
interest to obtain reliable (and simple) approximations to
these densities by using the limited information coming
from their expectation values.

In this work we use the Maximum-Entropy (ME)
formalism to obtain approximations to o (r) and c(p) in
terms of their first few radial expectation values (2)—(3)
respectively. It should be noticed that an increase of the



amount of information leads to an improvement on the
approximations. Moreover, these approximate densities
allow to calculate several physical quantities of the system
to be compared with different models or experimental
data. In Sect. II, the ME mathematical technique is de-
scribed. In Sect. III, the aforementioned approximations
are obtained and numerically analyzed in a Hartree-Fock
framework.

II. Maximum-entropy technique

If we know the first few radial expectation values of
a density, how can we get information on the value of such
density at any point? We are faced to an underdetermined
moment problem, for which various alternative solutions
can be devised (see e.g. [41—43]). Taking into account the
limited known information (i.e. the first few moments of
the density) it is clear that there is not a unique solution,
i.e. there is an infinite number of densities which first
moments are the known ones.

The ME method, based on information theory,
chooses, among all the admissible densities, the least bi-
ased function compatible with the information we actually
have [44]. Considering the density o (r) as an statistical
probability density, the choice is performed by maximiz-
ing the information entropy functional

S[o],!

=
:
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o (r) lno (r) dr (4)

under the constraints given by the knowledge of its first
few moments.

Jaynes entropy concentration theorem [44] shows
that, among all possible distributions compatible with
a given incomplete information, the ME distribution is the
one which occurs in the greatest number of ways, and that
the majority of them have entropy very close to the
maximum. It should be mentioned that this ME method
has been also applied in a great variety of fields, including
e.g. radioastronomy [45], parameter spectral estimation
[46], particle physics [47] or atomic and many-fermion
physics [25, 48—50]. On the other hand, let us remark that
the ME technique provides complementary information
to the one obtained from the Stieltjes-Chebyshev method,
recently applied to the study of o (r) [29], c(p) [31] and
J(q) [30]. From the latter, rigorous upper and lower
bounds on the values of the density are obtained, while the
ME method chooses, among all the admissible functions
which are compatible with these bounds, the most plaus-
ible in the sense described above.

It should be also mentioned that different numerical
methods have been used to solve the previous reduced
moment problem, e.g. orthogonal expansions or reference
density methods [51], recursion or continued fraction
methods [52], the Stieltjes-Chebyshev method [41], mo-
ment preserving splines techniques [53] and Pollaczek
polynomials [54]. Although the power of the ME method
has been extensively checked and compared with other
techniques [55—57], we are not claiming that the ME
method leads to more approximate densities than other

methods do. As a matter of fact, due to the nonunicity and
unstability of the inference problem, each method has its
own advantages and difficulties and then, they should be
used not as competitors but as complementary tech-
niques. In particular, this is the case of the Stieltjes-
Chebyshev and ME methods.

From now on, we will center our attention in the
atomic charge density o (r), keeping in mind that all the
results given below are also valid for the momentum
density c(p) by only replacing the moments k

n
by l

n
.

The maximization of S[o] subject to the constraints
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give rise to the following Lagrange multiplier problem:
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where j
0
,2, j

M
are Lagrange multipliers. It is easy to

show that the ME solution (if it exists) is
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where A"e1~j0 is the normalization constant and the
remaining Lagrange multipliers j

1
,2, j

n
must be numer-

ically calculated from the extremely nonlinear system of
equations
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where the subscript 122M gives the list of moments
included in the constraints. Only for M"1 the corres-
ponding Lagrange multiplier j

1
can be obtained analyti-

cally.
Concerning the existence of ME solution, let us re-

mind that it always exists when the moment problem is
defined on a finite interval [57]. However, this important
result can not be extended to the case of infinite or
semiinfinite intervals. In such case, some analytical and
numerical existence conditions are known, which depend
on the number of moments involved. In the next section
a detailed discussion of these conditions in the context of
atomic systems is done.

III. Maximum-entropy solutions

A. Existence conditions

The elementary case M"1 always provides an analytical
ME solution, namely
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Fig. 1. Existence conditions for ME distributions in the position
space having prescribed the first three moments in terms of relative
moments kN
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. Regions I and II repres-

ent the positivity inequalities for these relative moments. Moreover,

region I is alowed and region II is forbidden for the existence of
a ME distribution in accordance with the Kociszewski [61] condi-
tions. Atomic units (a.u.) are used

In a similar way, one obtains the more general ME solu-
tion
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subject to the constraints Mk
0
, k

k
N .

For M"2, the following condition for the existence of
ME solution with the constraints Mk

0
, k

1
,k
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[58]:
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The general existence condition with the constraints
Mk

0
, k

k
, k

2k
N (k'0) is also known [59]
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We have checked, by using near Hartree-Fock wave func-
tions [60, 61] that, for atomic systems, the Dowson and
Wragg [58] existence condition is only satisfied by the
Hydrogen atom (nuclear charge Z"1) in the position
space and by the atoms Z"1, 2, 8, 9, 10 in the momentum
space. So the ME approximation to the atomic charge
density, oME

12
(r), does not exist except for the Hydrogen

atom and the ME momentum density, cME
12

(p), does exist
only for the aforementioned atoms.

For M"3 no analytical existence conditions are
known. Kociszewski [62] and Tagliani [63] found numer-
ically the allowed values of Mk

0
,k

1
, k

2
, k

3
N for which the

ME solution exists. We have verified in the same frame-
work that, for the atomic systems with Z"1!92, the
corresponding ME approximations oME

123
(r) and cME

123
(p)

exist for those atoms which do not have ME solution with
M"2.

Figures 1 and 2 show the allowed (I) and forbidden (II)
Kociszewski regions for the existence of ME charge and

momentum densities, respectively, having prescribed the
first three moments. The figures are plotted in terms of the
relative moments defined as

kN
n
"

kn~1
0

k
n

kn
1

(n"1, 2, 3) .

Heavier atoms not included in these figures also belong to
the allowed region I.

Finally, in [63] it has been shown that for M54 there
always exists ME solution.

B. Maximum-entropy densities

In this section we apply the ME technique to the spheri-
cally averaged atomic densities o (r) and c(p). This method
provides model independent estimations on these func-
tions from a few expectation values SrnT and SpnT. More-
over, in order to have an idea of the accuracy of the
approximations, some numerical computations are also
carried out in a Hartree-Fock framework.

When the normalization and only one additional con-
straint (k

k
) are considered, the expression of the ME solu-

tion is given by (9) which can be expressed in terms of the
radial expectation values by using (2). Some interesting
examples are
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From these two ME solutions, approximations to the
radial expectation values are obtained in terms of Sr~2T,
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Fig. 2. Existence conditions for ME distributions in the momentum
space having prescribed the first three moments in terms of relative
moments kN
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ent the positivity inequalities for these relative moments. Moreover,

region I is allowed and region II is forbidden for the existence of
a ME distribution in accordance with the Kociszewski [61] condi-
tions. Atomic units (a.u.) are used

Fig. 3. Hartree-Fock charge density and ME approximations o
1
(r),

o
2
(r) and o

123
(r) for the Aluminium atom (Z"13). Atomic units

(a.u.) are used

Fig. 4. Hartree-Fock momentum density and ME approximations
c
1
(p), c

2
(p), c

12
(p) and c

1234
(p) for the Helium atom (Z"2). Atomic

units (a.u.) are used
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Similar expressions can be obtained for the atomic mo-
mentum density by replacing o and r by c and p respec-
tively.

It is worthy to mention that the ME approximation
oME
1

(r) for the Hydrogen atom gives the exact atomic

charge density. This fact is related to the particular posi-
tion of the Hydrogen atom in Fig. 1.

When more constraints are taken into account, the
ME solutions must be numerically obtained. As illustra-
tion, we have calculated the approximate densities oME

1
(r),

oME
2

(r), oME
123

(r) for Aluminium (Z"13) and cME
1

(p),
cME
2

(p), cME
12

(p) and cME
1234

(p) for Helium (Z"2) using near
Hartree-Fock wave functions [60]. These approximations
are compared with the Hartree-Fock ones in Figs. 3 and 4.
It is apparent that the more information is considered the
more accurate are the ME approximations, being oME

123
(r)

and cME
1234

(p) very close to the exact densities.
On the other hand, in Table 1 we also compare the

central values and some moments, predicted by the ap-
proximations to c(p), as well as the entropies associated to
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Table 1. Comparison between the Hartree-Fock and the ME pre-
dictions for the central value c (0) and the expectation values SpT,
Sp2T and Sp3T of the Helium momentum density. Atomic units (a.u.)
are used

c(0) SpT Sp2T Sp3T Sc

cME
1

0.62 3.52 7.37 19.29 0.4801

cME
2

0.37 2.23 2.93 4.37 0.4851

cME
12

0.53 2.56 4.06 7.54 0.4774

cME
1234

0.46 2.80 5.72 16.65 0.4753

c
HF

0.44 2.80 5.72 17.99 0.4750

those approximations, with the corresponding Hartree-
Fock values for Helium. Notice that the one-constraint
approximations give accurate predictions in spite of the
scarce information used. As it should be expected, the
predictions obtained from cME

12
(p) and cME

1234
(p) substan-

tially improve the values given by the one-constraint
densities. Remark the decreasing and convergent [64]
behavior of the entropies associated to the different ap-
proximations when considering a higher number of mo-
ments, being the corresponding to cME

1234
really close to the

Hartree-Fock one.
Summarizing, the ME method provides a powerful

tool to approximate unknown densities from very limited
information. These model-independent approximations
can be used to estimate not available properties of the
densities which would be difficult to obtain by other
means. In this work, the ME technique has been applied
to the spherically averaged charge and momentum densit-
ies in atomic systems, where the aforementioned charac-
teristics are especially relevant.
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