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Abstract. Rigorous upper and lower bounds to the atom- 
ic Compton profile J(q) are obtained for any value of the 
momentum transferred q in terms of radial expectation 
values (p~) of the atomic momentum density 7(p). In 
doing so, a procedure based on moment-theoretic tech- 
niques and Chebyshev inequalities has been used. This 
type of results can be employed to study the compatibili- 
ty of diverse information obtained by using different 
models, techniques, numerical calculations or experimen- 
tal data. The same method allows also to obtain approx- 
imations to the Compton profile and to bound other 
relevant characteristics of J(q). A comparison of the ap- 
proximations with some previously known Maximum 
Entropy Approximations is done. In order to test the 
accuracy of the bounds, a numerical study of the results 
is carried out in a Hartree-Fock framework for atomic 
systems. 

PACS: 31.10.+z; 31.15.+q 

The one-electron densities of a N-electron system in po- 
sition and momentum spaces, p (r) and 9, (p) respectively, 
are basic ingredients in the study of many physical prop- 
erties from a Density Functional Theory perspective, 
which is nowadays one of the fundamental theories of 
matter [ I 1. 

Much attention has been paid to the relevant role 
played by the position-space density p (r) in the descrip- 
tion of many-electron systems. However, a similar study 
in terms of the electronic distribution in momentum space 
has still to be much more worked out. Moreover, in the 
last decade the electron momentum distribution of atomic 
and molecular systems has been shown to be experimen- 
tally accessible [2-4]. Let us just remark here that the 
atomic Compton profiles can be obtained by means of 
photon-photon or photon-electron coincidence measure- 
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ments [5-7], high resolution Compton scattering [8], an- 
gular correlation of positron annihilation radiation [9], 
(e, 2e) coincidence spectroscopy [10] and magnetic 
Compton scattering experiments [ 11 ]. 

It is worthy to point out that the height of the peak 
of the Compton profile may be the most accurately mea- 
sured quantity in atomic and molecular physics [2]. How- 
ever, the same accuracy does not occur when Compton 
experiments require high values of the momentum trans- 
ferred. In spite of the experimental improvements, the 
relation between the measured cross sections and Comp- 
ton profiles is not straightforward, specially at high 
energies. This is mainly due to the fact that the Compton 
profile J (q )  can only be measured up to some finite value 
of the momentum transferred qmax, which depends on the 
type of experiment. So, the computation of quantities 
such as expectation values of the momentum density 7 (P) 
from experimental Compton profiles involves extrapo- 
lation techniques or the use of analytical models. In Ref. 
[12], a careful analysis of the expectation values of the 
momentum density predicted from statistically simulated 
Compton profiles is carried out. The numerical tests per- 
formed in this work indicate that the accuracy in the 
obtention of the higher order expectation values from 
J (q )  strongly depends on qma×" An asymptotic constraint 
(calculated in a Hartree-Fock framework) had to be used 
to reduce drastically the admissible range for these mo- 
ments and therefore to stabilize the extrapolation. 

The reciprocal form factor or characteristic function 
[ 13 - 17 ], quantum-mechanical calculations [ 18 - 19 ] and 
information theory with momentum and energy con- 
straints [20-22] have been also used to obtain Compton 
profile approximations. But results on this subject other 
than approximations are very scarce in the literature, par- 
ticularly for the momentum density ? (p) [23-25]. There- 
fore, it is useful and interesting to have rigorous rela- 
tionships between Compton profiles and momentum ex- 
pectation values in order to test theoretical approxima- 
tions or experimental measurements. 

In this work it is shown that the knowledge (from any 
source) of the first few moments of the momentum den- 
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sity (,p~) imposses serious restrictions on the values of 
the Compton profile at any point. In this sense, theoret- 
ical calculations of expectation values (based on elec- 
tronic structure computations within a concrete model) 
can be used to check their compatibility with Compton 
profiles constructed by using experimental data, other 
models or techniques. To be more precise we rigorously 
bound from above and from below the Compton profile 
J(q) for any value of the momentum transferred q in 
terms of the radial expectation values (,p") of the electron 
momentum density y (p). 

These type of results can also be used to obtain an 
allowed corridor for future Compton profiles values, as 
well as to study the consistency of different sets or sources 
of experimental data. Specifically, a filtration procedure 
of experimental points or error bars can be outlined: 
those experimental points whose error bars lie completely 
outside the allowed corridor are not compatible with the 
moments (and therefore with the model or the hypothesis 
used to calculate the moments). 

The isotropic Compton profile J(q) and the spheri- 
cally averaged momentum density ?J (p) are related in the 
impulse approximation as follows [26-27] 

J(q)=2~z S pT(p)dp 
Iqt 

where q is the projection of the initial momentum of the 
electron onto the scattering vector. Notice that the quan- 
tum-mechanical non-negativity of the density y (p) im- 
plies the monotonic decreasing of the function J(q), i.e. 
that J '  (q) __< 0. On the other hand, the momentum density 

(p) can be obtained from the Compton profile J(q) by 
differentiation: 

1 dJ (p )  
~, (p )  = 

2 zcp dp 

The above relations allow to express the radial expecta- 
tion values of the momentum density 

(p~) =~ p"7 (p)dp 

by means of the one-dimensional moments of the Comp- 
ton profile, namely 

cO 

I~ = ~ q" J(q) dq 
0 

in the form 

( 2 J ( 0 ) ,  n=  - 1 (pn) 
( 2 ( n +  1)/G, 0=<n < 5 

(1) 

where the upper limit on n is imposed by the high-mo- 
mentum asymptotic behavior of the momentum density 
as 3, (p),,~p-8 [26, 28-29]. Here, the normalization used 
is (pO) __ N, i.e. to the number of electrons of the system. 
Some of these expectation values have an intrinsic physi- 
cal meaning. For instance, the kinetic energy of the N- 
electron system and its relativistic correction due to the 
mass variation are proportional to @2) and (,p4), re- 

spectively [30]. There are valuable, but limited, infor- 
mation on these expectation values, either from experi- 
mental data, or by using different models or rigorous 
relations. The results obtained in this work suggest that 
a greater effort in the model-independent knowledge of 
expectation values would be desirable. 

The non-negativity of the function - J '  (q) allows to 
bound the quantity J(q) in terms of the moments @~>.In 
doing so, we will use moment theory and Chebyshev in- 
equalities [31-33]. The same technique has been success- 
fully applied in a variety of fields such as particle physics 
[34-35], solid state physics [36-37] and atomic physics 
[38-39]. Chebyshev inequalities provide upper and lower 
bounds for distributions of the type 

q 

T(q)=Sg(q)dq 
0 

with g (q)>  0, in terms of the first 2 n moments 

co 

~k=~ qkg(q)dq ( k = 0 , 1 , . . . , 2 n - 1 )  
0 

The bounds are built up by computing the quadrature 
parameters g~(~ > 0, q}"~ ¢ [0, oo) which satisfy the mo- 
ment equations [40] 

n 

Ck = ~, O}~)[q}.~lk (k=O, 1 .... , 2 n - l )  (2) 
~=1 

The solution yields bounds on T (q) at the points q}") in 
terms of O}n): 
i - -1  i 

~, fi(.n~<., = ~ (q}~)<  ~, fi}n~ ( i= 1,2,. . . ,n) 
j = l  j = I  

It is possible to obtain bounds at any point q >  0 by 
reducing the order of the moment equations (2) in the 
form 

t /  

~k= ~ 6}')(q)[q}")(q)ff (k=O, 1 ..... 2n-2) 
i = 1  

(3) 

where q -  q}n~ fbr some value of i [32-33]. 
Now, let us consider the non-negative function 

g ( q ) =  - J '  (q). Then, taking into account (1) we get 

~,~= qnJ' (q)dq 
0 

( ( ' P 2  1> , l__<n<6 

The use of these values in (3) provides upper and lower 
bounds on g~ (q) = J (0) - J (q) or, equivalently, we bound 
J(q) in terms of radial expectation values (,pn) at any 
point q. The same method allows one to obtain rigorous 
bounds on the half-width %5 of J(q), which is a relevant 
parameter on the characterization of the Compton pro- 
file. 
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I t  is worthwhile to point out that, due to the procedure 
used, the arithmetic mean of  the upper and the lower 
bounds to J(q) would be convergent to this function by 
increasing the number  of  moments  involved [32]. How- 
ever, we should remember that the finite moments  @ " )  
are limited to the range - 3 < n < 5 for atomic systems 
[28-29], being impossible to increase arbitrarily the num- 
ber of  them. 

We have studied the accuracy of  the upper and lower 
bounds to J(q) by means of the near Hartree-Fock atomic 
wavefunctions of  Clementi and Roetti  [41] for several 
ground-state neutral atoms of the periodic table. We have 
observed that  (i) in general, the accuracy of both upper 
and lower bounds decreases when increasing the number  
of  electrons N, (ii) the best upper bounds correspond to 
the case of  inert gases (iii) the halogens show up the more 
accurate lower bounds, and (iv) the worst upper and 
lower bounds (in accuracy) are those of  the alkaline met- 
als. It  is also observed that  the 6-moment bounds are 
only slightly better than the 4-moment  bounds, being the 
improvement  more apparent  for the upper bounds. For  
illustration, the lower and upper bounds on J(q) obtain- 
ing by using either 4 or 6 moments  are shown for the 
Helium ( N = 2 ) ,  Lithium ( N = 3 ) ,  Neon ( N =  10) and 
Chlorine ( N =  17) atoms, in Figs. 1, 2, 3 and 4 respec- 
tively. 

To  the best of  our knowledge, these are the first 
rigorous bounds provided for the Compton  profile J(q). 
However, some approximations obtained by means of 
information-theorectic methods are known [20-22]. Here, 
we will only remember the Maximum Entropy Approxi- 
mations built up with the momentum and energy con- 
straints [20-22]: 

N 2 2N 
- ~5 q (4) J ,  (q) = ~ -  e 

a(q) 
(~.u.) 

1.z t ' ' ~ ' l . . . .  { . . . .  i ' ' ' ' 
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Fig. 1, Upper and lower bounds to the Compton profile J(q) of 
the Helium ground state atom, obtained by using 4 and 6 moments. 
Numerical calculations were performed in the Hartree-Fock frame- 
work of Clementi and Roetti [41]. Atomic units are used 
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Fig. 2. Upper and lower bounds to the Compton profile J(q) of 
the Lithium ground state atom, obtained by using 4 and 6 moments. 
Numerical calculations were performed in the Hartree-Fock frame- 
work of Clementi and Roetti [4t]. Atomic units are used 
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Hg. 3. Upper and lower bounds to the Cornpton profile J(q) of 
the Neon ground state atom, obtained by using 4 and 6 moments. 
Numerical calculations were performed in the Hartree-Fock frame- 
work of Clementi and Roetti [41]. Atomic units are used 

and [20, 21] 

( 3 N 3 )  1 / 2 3 N  
J 2 ( q ) =  2 r r ~ )  e 2 7 r ( P 2 > q 2  (5) 

respectively. It  is interesting to remark that Maximum 
Entropy Approximations and our Chebyshev bounds can 
be used as complementary methods in the study of  Comp-  
ton profiles by means of radial momentum expectation 
values, since the Chebyshev method provides rigorous 
upper and lower bounds on the profile and the Maximum 
Entropy Approximations choose, among all admissible 
functions (which satisfy the bounds),  the one most  rea- 
sonable in the sense that is the least-biased profile com- 
patible with the information we actually have. 
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Fig. 4. Upper and lower bounds to the Compton profile J(q) of 
the Chlorine ground state atom, obtained by using 4 and 6 mo- 
ments. Numerical calculations were performed in the Hartree-Fock 
framework of Clementi and Roetti [41]. Atomic units are used 
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Fig. 5. Comparison between the Maximum Entropy Approxima- 
tions [20-22] given by (4) and (5), and our 6-moment approxi- 
mation to the Compton profile J(q) of the Helium ground state 
atom. Numerical calculations were performed in the Hartree-Fock 
framework of Clementi and Roetti [41]. Atomic units are used 

In Fig. 5 we compare the Maximum Entropy Ap- 
proximations J1 (q) and J2(q) with our 6-moment ap- 
proximation for the Helium ground state atom in the 
above mentioned numerical framework. Notice that the 
relative quality of the three approximations depends 
largely on the region of q-values considered. 

In summary, rigorous upper and lower bounds for 
the Compton profile J(q) in terms of radial expectation 
values (p")  have been obtained by means of moment- 
theoretic methods and Chebyshev inequalities. Moreover, 
an approximation to J(q) in terms of the same expec- 
tation values has been obtained, being comparable to 
other ones obtained by using different information and 
techniques. The above results can be used to study the 

consistency and compatibility of different models (in 
which the moments are calculated) with experimental data 
or other kind of techniques or numerical approximations 
which indirectly lead to Compton profiles. 
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