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Abstract. A function f(r) is monotone of order p if its 
pth-derivative f(P)(r) fulfils that ( -  1) p f(v) (r)>0. So, e.g. 
the monotonicity properties of order p = 0, 1, 2 describe 
the non-negativity (p = 0), the monotonic decreasing from 
the origin (p = 1) and the convexity (p = 2) of the function, 
respectively. Here, the monotonicity properties of the 
electron function g,,(r; ~)=(--t)"  p(n)(r)r-~, ~>0,  of the 
ground state of atomic systems are analysed both analyt- 
ically and numerically. The symbol p(r) denotes the 
spherically averaged electron density. First of all, the con- 
dition which specifies, if exists, a value en; such that g,(r; 
c%) be monotone of order p is obtained. In particular, it 
is found that %1=max {rp'(r)/p(r)}, %2=max {q0(r)}, 
cql = max {rp"(r)/p'(r)} and cq2 = max {ql(r)}, where qo(r) 
and q~(r) are simple combinations of the first few deriva- 
tives of p(r). Secondly, numerical calculations of the first 
few values c% in a Hartree-Fock framework for all 
ground-state atoms with nuclear charge Z < 54 are per- 
formed. In doing so, the pioneering work of Weinstein, 
Politzer and Srebrenik about the monotonically decreas- 
ing behavior of p(r) is considerably extended. Also, it is 
found that Hydrogen and Helium are the only two atoms 
having the functions p(r), -p ' (r)  and p"(r) with the prop- 
erty of convexity. Thirdly, it is analytically shown that 
the charge function r ~ p(r) with e > [(1 + 4Z2/I) 1/2-1]/2, 
I being the first ionization potential, is convex every- 
where. Finally, the above mentioned monotonicity prop- 
erties are used to obtain rigorous, simple and universal 
inequalities involving three radial expectation values 
which generalize all the similar ones known up to now. 
These inequalities allow to correlate various statical and 
dynamical quantities of the atomic system under study, 
due to the physical meaning of the radial expectation 
values. It is worth to remember that some of these expec- 
tation values may be experimentally measured in experi- 
ments of (e, 2e)-type. 

PACS" 31.10.+z; 31.15.+q 

I. Introduction 

The knowledge of structural properties of the single-fer- 
mion density p (r) is playing an increasingly important 
role for the practical realization of the modern density- 
functional methods in the physics of many-fermion 
systems (Parr and Yang [ 1 ], Kryachko and Ludefia [2], 
Dreizler and Gross [3]). The monotonicity properties of 
the spherically averaged electron density p (r) of the 
ground state of atomic systems, i.e. the non-negativity of 
the electron function 

f ~ ( r ) = ( - 1 ) n p ( n ) ( r )  for n=0,1 ,2 , . . .  (1) 

are specially relevant, due to the smooth character and 
the hidden structure of p (r). 

However, not so much is known apart from the 
positivity (monotonicity of zeroth-degree; n = 0) and the 
numerical observation of the monotonically decreasing 
behavior (monotonicity of first degree) of p (r) due to 
Sperber (Sperber [4]) and Weinstein et al. (Weinstein et 
al. [5]) for some atoms in the seventies, later corroborated 
and extended to the whole periodic table by other authors 
(Simas et al. [61, Angulo [7]). 

Recently, we have numerically realized (Angulo et al. 
[8]) that convexity (monotonicity of second degree) is 
also a characteristic of the ground state density p (r) of 
numerous neutral atoms (e.g. Z =  1, 2, 7-15, 33-44). For 
the rest of atoms up to Z = 54, p (r) presents a extremely 
small non-convex region whose physical origin is not yet 
well understood. Furthermore, we have investigated (An- 
gulo and Dehesa [9]) both rigorously and numerically the 
monotonicity property of nth-degree of p (r) with n going 
zero (positivity) through infinite (complete monotonic- 
ity). We found, in particular, that the only neutral atom 
with a p (r) completely monotone (n--*oe) is hydrogen. 
Several effects of these monotonicity properties on some 
atomic quantities such as the electron density and its 
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derivatives at the nucleus, p(')(0), and the radial expec- 
tation values 

<rm> -~- t rm p (r) dr ,  for m > - 3 (2) 

were also analysed. 
Simultaneously, we have investigated both rigorous 

and numerically the property of logarithmic convexity 
(Angulo and Dehesa [10]) of the atomic charge density, 
showing that H and He are the only two atoms with a 
log-convex p (r). 

Here, we will extend the study of  monotonicity prop- 
erties of  atomic systems far beyond this situation. Indeed, 
first of all we will investigate both analytically (see Sect. II) 
and numerically (see Sect. III) the monotonicity prop- 
erties of the atomic charge density function 

g . ( r ;a )=r -~ f . ( r ) ,  for ~_>0. (3) 

Then, in Sect. IV we will give rigorous conditions to be 
fulfilled by the electron density p (r) so that the atomic 
electron function g, (r; ~) is monotone of order p, i.e. the 
non-negativity condition 

Gnp(r;o~ ) - - ( -  1)P g(~P)(r;~)>= O, (4) 

where p is any, but fixed, non-negative integer number, 
and g(.P) (r; ~) denotes the pth-derivative of the g.-func- 
tion. These conditions will be obtained by means of  the 
so-called Stieltjes moment-problem technique (Shohat 
and Tamarkin [11]), already used by the authors in atomic 
physics (Angulo and Dehesa [9], Angulo et al. [12]), and 
they will be expressed in terms of  the radial expectation 
values (rm}. Also, in Sect, III it is numerically shown 
that there actually exists a value ~ = Ot.p from which the 
condition (4) is satisfied, that is the electron function 
g. (r; a)  is monotone of  p th-order for each atom at the 
ground state. 

II. Analytical study of charge monotonieity 

In this section, we investigate the monotonicity of  pth- 
order of  the atomic charge function g, (r; a) in an ana- 
lytical way. First we give the conditions to be fulfilled by 
the a-values so that g , ( r ; a )  be p-monotonic, and then 
we found analytical bounds for some a-values via the 
nuclear charge Z and the first ionization potential I of  
the atomic system under consideration. 

• Let us begin with the assumption that the condition 
(4) is fulfilled. Working out the p th-derivation of  g~ (r; ~) 
one has 

p! } 
G , p ( r ; a ) = ( -  1) p+" F ( a )  k=o 

F(u +k)  r_~_kp(.+p_X)(r ) (5) 
× ( -  1)~ k ! ( p - k ) !  

for each n, p = 0, l, 2 .....  and any ~ _>_ 0. Remark that all 
the nth to the (n + p )  - th derivatives of  p (r) appear in 
the expression of  the function G~p (r; a). Let us examine 
only the cases corresponding to the first three lowest val- 
ues of  n. 

1. Case n = 0. Since fo (r) --- p (r) and go (r; a) = r - "  p (r), 
then 

aop(r ;~)  = (--  1) p ~ . (6) 

The non-negativity of this function fully describes the 
monotonicity properties of  the charge function r-~ p (r). 
According to the inequality (4) and (5), one realizes that 
the condition 

p~ p 
( -  1)P Z 

F(~)  k=O 

F ( c c + k )  1 dP-kp( r )>_0  
× ( - 1 ) k k ! ( p _ k )  ! r~+~ drP-k -- (7) 

defines a value ~Op such that for a >_-aop the charge func- 
tion r-~ p (r) is monotone of order p. It is interesting to 
notice that the inequality (7) reduces to 

p = O ,  

p = l ,  

p = 2 ,  

p(r)>O, 

ap (r)-- rp" (r) > O, 

r2p" (r) - 2 ~r p'  (r) -4- ~ (o~ q- 1) p (r) > O, 

and so on. These expressions show that 

[rp" (r)~ 
~ ° ° = 0 '  ~°' = m a x  (. p - ( r ) - )  ' 

~o2 = max{ qo (r)}, 
(8) 

where 

I2-  7 1 {2rp , ( r )_p(r )+; to}  ' if X0>0 ' 

qo (r) = (9) 
0, if ;t o < 0, 

and ;t0 = [2 rp' (r) - p (r)] 2 - 4 rZp (r) p" (r). Then, apart 
from the well-known quantum-mechanical non-negativ- 
ity character of  r-~p (r), one obtains two important 
characteristics of  the charge density p (r): 

• The function r -~ p (r) with ~ _>_ ~o~ is monotone of  first 
order, i.e. unimodal with mode at the origin. This tells 
us that it is monotonically decreasing from the origin. 
• The function r -~ p (r) with a >_-no2 is monotone of  sec- 
ond order, i.e. it has the property of  convexity. 

2. Case n = l .  Here f l ( r ) = - p ' ( r )  and g l ( r ; a ) =  
- r-~ p" (r). Then, one has that 

dP [ - P ' ( r ) ] > = O  (10) 
Glp (r;c~) = ( -  1)P ~rp r ~ - 

This condition or equivalently, according to (5), the in- 
equality 

( -  1)P+' r (~)  F, 
k=0 

r(~ +k) 
x ( -  1) * k! (p -k ) !  

pC°-k+l)(r)>_O 
r ~ +k 



allows to calculate the value a ~p so that for a > a ~p the 
charge function - r-~ p '  (r) is monotone of  order p. For 
the first lowest values of p, this inequality reduces as 

p = 0 ,  

p = l ,  

p = 2 ,  

and so on. These expressions show that 

I e l ° = 0 '  c~11 = m a x  p ' ( r )  ) '  

e,2 = max{ ql (r)}, (11) 

- p '  (r)>O, 
rp" ( r ) - - e p '  (r)>=O, 

- r a p  '' ( r ) + 2 e r p "  ( r ) - - e  ( a + l ) p '  (r)>=O, 

where 

ql(r)  = 

1 { 2 r p " ( r ) - p ' ( r ) - k ~ } ,  if k 1 > 0 ,  

Q 0, if 21 < 0 ,  
(12) 

and 21 = [2 r p" (r) - p '  (r)] a - 4rap ' (r) p " (r). Then, one 
has two additional properties of  the charge density p (r): 

• The function - r - ~ p  ' (r) with a_>eH is monotoni- 
cally decreasing from the origin, and 
• The function - r - ~ p ' ( r )  with a~al2 is convex 
everywhere. 

3. Case n = 2 .  Now, f 2 ( r ) = p " ( r )  and g2( r ; e )=  
r -~ p" (r). Then one has that 

dP [P" (r)] >__0. (13) Gap(r;e)=(--1)PdrP k r~ J 

Equation (5) shows that this condition transforms into 

( - l y  p! y, 
r ( e )  k=0 

F ( a  + k )  p (p -k+a) ( r )>o ,  
× ( - 1 ) k k ! ( p _ k )  ! r~+k = 

which allows to find, for those atoms having a convex 
p (r), the value a2p such that for a >_ a2p the charge func- 
tion r -~ p" (r) is monotone ofpth-order.  This inequality 
simplifies for the first lowest values of  p as follows: 

p=0 ,  

p = l ,  

p = 2 ,  

p" (r)>O, 

ep"  (r) - rp "" (r) >: O, 

r2p TM (r) - 2e r  p " (r) + e (a + 1) p"  (r) => 0, 

and so on. These expressions show that, for convex at- 
oms, 

e 2 o : O ,  c%l=max ~rP"-'-(r)) 
L p" ( r ) ) '  

(t4) 
e2a = max{ q2 (r)}, 
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where 
I l 

1 { 2 r p "  ( r ) - p "  ( r ) - k~}  if 22>_0 
q2 (r) = 2 p" (r) ' -- ' 

0, i f 2 2 < 0  , 
(15) 

and 22=-[2rp '' ( r ) - p "  ( r ) ] 2 - 4 r 2 p  " (r)plV(r). Then, 
two new properties of  the charge density are found: the 
function r -~ p"  (r) is (i) monotonically decreasing from 
the origin for e >a21 and (ii) convex everywhere for 
e ~_~ a22, 
• Now we are going to show how to obtain analytical 
bounds to the a-values. To extend an important result of  
Hoffmann-Ostenhof and Hoffman-Ostenhof [ 13] accord- 
ing to which the charge density p (r) is convex outside a 
sphere of  radius Z / I  ( I  being the first ionization poten- 
tial), our attention is centered around the value of  a02. 
We have found that 

eo2~½ [ (1  + ~ ) 1 / 2 -  1] . (16) 

To obtain this upper bound we start from the known 
inequation (Hoffmann-Ostenhof and Hoffman-Ostenhof 
[131) 

--½u" + ( I - - ~ - ) u = < 0 ,  

for u (r) = r [p (0]  1/2, which is valid in the infinite nuclear- 
mass approximation. We rewrite it in terms of  the charge 
function go (r; e) - r -~ p (r) as 

2 r2 gog~ " ;> rZ g~ 2 + 8 IrZ gg - 8 Z r  g 2 

- e (a + 2) g2 _ 2 (e + 2) r go g ; .  

Then, taking into account that p '  (r)=< 0, i.e. that 0 =< 
ago <= - r g 6 ,  one reduces this inequality to 

gtt 
r 2 50 >=4Ir2_4Zr+o~(e  + 1), 

go 

so that g;' is positive for  any value of  r for a-values bigger 
than [(1 + 4 Z Z / I )  1 /2-  1]/2. Since a02 is by definition, 
the minimum a-value from which r - ~ p  (r) is convex 
everywhere, then the inequality (16) follows. 

Therefore, the charge function r - ~ p  (r) is, indeed, 
convex everywhere for any e > [(1 + 4 Z 2/I)1/2 - 1]/2. We 
should emphasize that much more effort should be spent 
to bound analytically other values of  e~e. This woul help 
to gain much more insight into the charge monotonicity 
of the atomic systems, thus into their internal structure. 

III. Numerical study of atomic charge monotonicity 

The performance of  numerical calculations based on the 
near Hartree-Fock wavefunctions of  Clementi-Roetti [ 14] 
for all ground-state atoms, Hydrogen through Xenon, 
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allows to find not only that a o x = a l o = 0  for all atoms 
(what indicates the monotonicity of  first degree studied 
by many authors (Sperber [4], Weinstein et al. [5], Simas 
et al. [6], Angulo [7]) as already mentioned) but also the 
values of  ~o2, a~l, ~ 2 ,  ~21 and a22. They are given in 
Table 1. A few observations may be readily made:  

Table 1. Values of ~0~, cqi,~t2,c%i and ~22 for all neutral 
atoms, 1 _<Z< 54, obtained with Clementi-Roetti near-Hartree- 
Fock wavefunctions. The atomic density function g,,(r;e) 
= ( - 1 ~ p(,0 (r) r-'"~ is monotone of order p 

Z ~02 ~11 ~12 ~21 ~22 

1 0.00000  0.00000 0.00000 0 .00000 0.00000 
2 0 .00000 0.00000 0.00000 0 .00000 0.00000 
3 0 .24820 0.76950 2.62566 
4 0 .36165 1.22097 3.19750 
5 0 .17110 0.52396 2.23153 
6 0 .02016 0.05745 1.58678 
7 0 .00000 0.00000 1.18589 8.35102 13.31590 
8 0 .00000 0.00000 0.91417 4 .44487 7.85389 
9 0 .00000 0.00000 0.73114 3 .01519 5.86426 

10 0 .00000 0.00000 0.59913 2.25093 4.78672 
11 0 .00000  0.00000 0.55849 2 .04399 4.49240 
12 0 .00000 0.00000 0.57471 2 ,09190 4.53863 
13 0 .00000 0.00000 0.65869 . 2.12023 5.20914 
t4 0 .00000 0.00000 1.26988 6.03374 10.54796 
15 0 .00000 0.00000 1.83298 26.23035 38.90220 
16 0 .49656 1.62042 4.12545 
17 0 .18169 0.51373 2.58432 
18 0 .28710 0.85423 3.02874 
19 0 .34115 1.02885 3.28163 
20 0 .37310 1.12608 3.43595 
21 0 .35476  1.06745 3.35030 
22 0 .32055 0.95563 3.19568 
23 0 .28570 0.84317 3.03528 
24 0 .21465 0.61551 2.71845 
25 0 .21130 0.60288 2.69828 
26 0 .17429 0.49506 2.53588 
27 0.13341 0.37334 2.36802 
28 0 .09668 0.26645 2.22206 
29 0 .04397 0.11944 2.01390 
30 0 .03084 0.08273 1.96008 
31 0 .01626 0.04366 1.91781 
32 0 .00504 0.01343 1.87374 
33 0 .00000 0.00000 1.85052 95.75753 159.56496 
34 0 .00000 0.00000 1.81100 33.97675 53.29167 
35 0 .00000 0.00000 1.84148 42.80330 70.13453 
36 0 .00000 0.00000 1.84652 46.24841 68.20616 
37 0 .00000 0.00000 t .77375 24.89784 34.87495 
38 0 .00000 0.00000 1.81469 27.90172 42.21412 
39 0 .00000 0.00000 1.77261 22.28058 33.03348 
40 0 .00000 0.00000 1.76633 20.52939 29.75565 
41 0 .00000 0.00000 1.73982 17.57648 25.95925 
42 0 .00000 0.00000 1.70677 15.25819 22.98737 
43 0 .00000 0.00000 1.93390 14.43761 22.50102 
44 0 .00000 0.00000 2.24874 78.33496 112.73189 
45 0.08691 0.22837 2.55888 
46 0 .17695 0.48156 2.86983 
47 0 .24287 0.67307 3.12267 
48 0 .31717 0.90145 3.44484 
49 0 .36752 1.06153 3.64821 
50 0 .40826 1.19324 3.83024 
51 0 .44508  1.31973 4.00670 
52 0 .47967 1.42030 4.16121 
53 0 .50337 1.51612 4.28040 
54 0 .53624  1.62106 4.43827 

1. F rom (7) and the second column of Table 1 which 
gives the values of  a02, one concludes that the charge 
density p (r) is convex for atoms with Z = 1, 2, 7-15 and 
33-44. For  the rest of  atoms with Z__<54, one has that  
r ~o2 p (r), with 0 < ~02 < 0.54, is convex. It  indicates that, 
in such cases, convexity is violated, although very weakly. 
A detailed analysis of  the corresponding non-convexity 
region of these atoms has been recently carried out (An- 
gulo et al. [8]). 
2. Equation (10) together with the values of  e l l  given 
in the third column of  Table 1 once again show the 
convexity of  p (r) in the above mentioned atomic 
region of  the periodic table since, in such a region, 
G H (r; ~ 11 = 0) = p"  (r). For  the rest of  atoms with Z < 54 
one has that the charge function - r - ~ ' l p  (r)  is mono- 
tonically decreasing f rom the origin where the value of  
c~1~ varies f rom 0.01 (Ge) to 1.62 (S, Xe). In addition, the 
values of  a~2 in the fourth column allow to gain fur- 
ther insight into the structure of  the atomic charge 
density. Indeed, ~ 2  vanishes only for H and He; so, 
G12 (r; ~ 12 = 0) = - p " (r) >= 0. Then, these two atoms are 
the only ones having a charge density p (r) with the prop- 
erty of  monotonicity of  third degree. Furthermore, 
for the atoms with Z < 5 4  the charge function 
- r - ~  1~ p" (r) is convex and the values of  a ~2 varies from 
0.558 (Na) to 4.438 (Xe). 
3. The fifth and sixth columns give the values of  0~21 and 
a22- These values together with (13) suggest a few com- 
ments. Since e21=0  for the two lightest atoms and 
G2~ (r; 0) = - r p  " (r) >= O, then the monotonicity of  third 
order of  p (r) of  H and He is again found, coherently 
with the previous paragraph. Besides, c~22 = 0 for H and 
He. This indicates that the H and He have a charge den- 
sity with the stronger property of  monotonicity of  fourth 
order. Additionally, the charge function r -~  p "  (r) is not 
only (i) monotonically decreasing from the origin in the 
regions with 7 _< Z_< 15 for a varying f rom 2.04 (Na) to 
26.23 (P) and with 33_<Z_<44 for e going from 14.44 
(Tc) to 95.76 (As), but also (ii) convex with 7 < _ Z <  15 
for a varying from 4.49 (Na) to 38.90 (P) and with 
33_<Z_<44 for c¢ much less than 100 except in the As 
and Ru cases. Finally, let us also say that in the atomic 
regions 3 < Z_< 6, 16 _< Z _< 32 and 45 _< Z_< 54 the charge 
function r -~  p "  (r) cannot  be neither convex nor  mono-  
tonically decreasing from the origin. 

IV Charge monotonicity effects: 
Inequalities among radial expectation values 

Once we have seen that there really exist atomic systems 
with a charge function g , ( r ; a )  having the property of  
monotonicity of  order p = 0, 1, 2 . . . . .  i.e. satisfying (4), 
we will search its effects on the charge density p (r) itself. 
This shall be done by means of  the so-called Stieltjes 
moment-problem technique (Shohat and Tamarkin [11 ]) 
which has been recently (Angulo et al. [8], Angulo and 
Dehesa [9], Angulo et al. [12], Dehesa et al. [15]) proved 
to be very useful to gain physical insight in the internal 
structure of  many-electron systems. 



Let us apply the Stieltjes technique (Shohat and Ta- 
markin [11]) to the non-negative function r m G.p (r; c~) 
for any real m. It states that the moments of that function, 
i.e. the quantities 

oo  

vj-=-vj(e,n,p,m) = ~ rJ+mG,p(r;e)dr 
o 

=(-1)P+~rJ+~-d~-(P(m(r)--~dr (17) 
o d r P \  r~ / 

must satisfy the following Hadamard determinantal in- 
equalities: 

A(kO=>0, for i=0 ,  1 and k = 0 ,  1, 2 .....  (18) 

where 

V m + i  V r n + i + l  . . .  Urn+i+ k 

/1(i) = V m + i - - 1  V m + i + 2  . . .  Vmq- iq -k+  1 (19) : : ' .  : 

V m + i + k  V m + i + k + l  "'" ])m+i+21c 

The moments vj given by (17) can be expressed in terms 
of the radial expectation values (r a)  as given by 

p!F(n+ t + 3)F(n+ t +a +p+ 3) 
vj= 4~F(n+t+a+3)r( t+3)  ( # ) '  

if t > - 3, (20) 

where t = j  + m - e - p  - n - 2. The expressions (18) and 
(19) together with the values of the moments given by 
(20) lead to a huge variety of infinite new and rigorous 
relationships among various radial expectation values 
(r t ) .  Let us only consider the simplest case, i.e. i=0,  
k = 1 andre = 0.Then, onehasthatv0v 2 > v2whichproduces 
a fundamental inequality involving three radial expec- 
tation values as 

( r  q - 2 )  (r q) >=F~(q,c~p,p)(rq-l) 2, q > - 1, (21) 

with n = 0, 1, 2,..., p = 0, 1, 2,... and 

F,~(q,c~,p,p) 

=(q+ 2)(n+q+ l)(n+q+~,e+ 2)(n+q+~,p+P+ 1) 
(q+ 1)(n+q+ 2)(n+q+e,p+ 1)(n+q+~p+p+ 2)" (22) 

Also, the optimal value e,p (i.e. the minimal value of 
which satisfies the inequality (4) for given n and p) has 
been taken into account. One should realize that a~p de- 
pends not only on n and p but also on the specific system 
that one is dealing with. It is interesting to point out that 

e,p <e, ,p+l  <~,+l ,p,  (23) 

and then 

e~,~+k__<e~+~,, for k = 0 ,  1 .... (24) 

In case.., that e~ .~co  or when p =0,  i.e. just using the 
posltwlty condition of g, (r; e) = ( - 1)n p(,l (r), then the 
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inequality (21) transforms into 

(q+2)(n+q+l) 
(rq-2)(rq) >(q+ t ) ( n + q + 2 )  (rq-l) 2. (25) 

Since the accuracy of this inequality increases with n for 
a fixed q, then the optimality will be obtained for n ~ 0% 
in which case one has 

q + 2  (r q-2) (rq) ~ _ ~ f  (Fq-1 ~2 q > __ 1. (26) 

The relationships (4)-(15) as well as (21)-(22) and any 
inequality among a number of values (r t) other than 
three obtained from (18)-(20), are universal in the sense 
that they are valid for both ground and excited states of 
any physical system. Furthermore, the inequality (21) 
strongly generalizes and improves all the similar ones 
(Angulo and Dehesa [9], Angulo and Dehesa [10], Tsap- 
line [16], Blau et al. [17], Gadre [18], Gadre and Matcha 
[19], Gfilvez [20]) which have appeared in the literature, 
to the best of our information. 

Let us consider some particular cases of the inequality 
(21): 

1. Case n=O. Then, go(r;cO=r -~ p (r) is assumed to be 
monotone of order p. The inequality (21) simplifies as 

(rq-2) (rq) >=Fo(q,o~p,p)(rq-t)2, q > --1,  (27) 

with 

(q+C~p+ 2)(q+~p+p+ 1) 
F°(q'c~P'P) (q+~p+ 1 ) ( q + e p + p + 2 ) '  (28) 

where ep = COp. Some particular subcases are 

~ 2 )  (0~p + p  + 1) 
q = 0 ,  N(r-2) > 1)(ep+p + 2) ( r -1 )2 '  (29) 

( (~+ 3) (c~p + p  + 2) N2 (30) q = l ,  ( r -1 ) ( r )>  +2)(ep~-p + 3) ' 

q = 2  N(r2)>_! c~p+4)(ep+p+3) 
' --(O~p+3)(O~p+p+4) (r)2" (31) 

Notice that we have used (r °) = N, the number of par- 
ticles of the system.On the other hand, for ep=0,  i.e. 
when go (r; e ) = p  (r), which corresponds to the case of a 
charge density p (r) of monotonicity of order p, the in- 
equality (27) reduces to 

(r q-25 (rq5 > (q + 2) (q +p + 1) = ( q +  1 ) ( q + p + 2 )  (rq-1)2' 
(32) 

q > - i  and p = 0 , 1 , 2  .... 

This particular result has been recently found by the 
authors (Angulo and Dehesa [9]) and shown to generalize 
all the known inequalities involving three successive ra- 
dial expectation values (Tsapline [16], Blau et al. [17], 
Gadre [18], Gadre and Matcha [19], G~ilvez [20]). 

It is important to remark that for completely mono- 
tonic electron densities, i.e. for p-~ ~ ,  the inequality (32) 
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takes on the form (26). This is a consequence of the fact 
that the requirement of positivity of ( -  1)" p("~ (r) for all 
n's is equivalent to the assumption of complete mono- 
tonicity for p (r). In addition one should say here that 
the inequality (26) has been discussed recently by the 
authors (Angulo and Dehesa [9]) in both theoretical and 
numerical senses. 

2. Case n = 1. Then gl (r; 00 = - r-~ p '  (r) is assumed to 
be monotone of order p. The inequality (21) reduces as 

(rq-2)(rq> ~Fl(q, Oqp,p)<rq-1)Z,q> --1,  (33) 

with 

FI (q, ~Xlp,P) 

(q÷ 2)2(q÷~tp÷ 3)(q÷~p+p÷ 2) 
(34) - -  . 

(q+  1)(q÷ 3)(q+~p÷2)(q,÷~p+p+ 3) 

Some particular subcases are 

> 4(e lp+ 3) (Cqp+P+ 2) 
q = 0 ,  N<r -2> = ~ 2 ) ( ~ l p + p ÷ 3 )  

( r - l>  2, (35) 

9(o~lp+4)(o~1p÷p÷ 3) 
q = l ,  (r-l>(r>>=8(~p,÷3)(~lp+p÷4)N2, (36) 

> 16(~1p ÷ 5) (c~p ÷p '÷4)  
q = 2 ,  N(r2> = ~ T ~ ÷ p , ÷  5) (r>2" (37) 

Notice that with the only requirement of positivity for 
- p '  (r) or, what is equivalent, for monotonically de- 
creasing densities p (r), one is led to 

<rq-2> <rq> 

> (q÷2)2 <rq-l> 2, q >  --1,  (38) 
= ( q ÷  1)(q÷3)  

what was recently found by the authors (Angulo and 
Dehesa [9]). 

On the other hand, for ~lp=0, i.e. when gl ( r ;~ )=  
- p'  (r) is monotone of order p, then the inequality (33) 
reduces as 

<r q-2 > <rq> 

~(q+2)(q+p+2) 
(q÷l)(q+p+3) (rq-l> 2, q > - l .  (39) 

This inequality was recently found (Angulo and Dehesa 
[9]) only for the particular value p = 1, which corresponds 
to the first order monotonicity of - p '  (r) or, what is 
equivalent, to a convex p (r). In addition, let us point out 
that the comparison between the inequalities (32) and 
(39) shows that the latter one is more accurate than the 
former one for fixed values of p and q. This is because 
the pth-order monotonicity for - p '  (r) is a requirement 
stronger than the corresponding one for p (r). The im- 
provement factor in going from (32) to (39) is 

( q ÷ p ÷ 2 )  2 
I°=--(q-}-}-p÷ 1) ( q ÷ p  -}-3) >-- 1, (40) 

which varies from 1.333 for q ÷ p = 0  to 1 for q÷p= oo. 

3. Case n=2.  Then g2(r;cc)=r -~ p" (r) is assumed to be 
monotone of order p. The inequality (21) reduces as 

(rq-Z)(rq)~F2(q,~2p,p)(rq-1)2, q> - 1 ,  (41) 

with 

F2 (q, C~2p,P) 

_ (q+  2) (q+  3) (q + 0~2p + 4) (q + C%p +p + 3) 
(42) 

(q+ 1)(q+4)(q+~2p+ 3)(q+ot2p+p+4)" 

Some particular subcases are 

q = 0 ,  

> 3 (~2p + 4) (~2p +P + 3) ( r -  J >2, (43) 
N(r-2> = ~ - 2 ; ~  3) (~2p +P + 4) 

q = l ,  

6 (~2p -4- 5) (~2p "~P ~- 4) N2 (44) 
<r-1)<r> >=5(O~2p_{_4)(O~2p_~_p÷ 5) ' 

q = 2 ,  

N<re ) > 10 (eZp + 6) (0~ap +p  + 5) 
= 9(~2p ÷ 5) (~2p ÷P ÷ 6) (r>2" (45) 

With p = 0 one has 

(r q- 2 ) <r q ) 

=>(q+2)(q+3)  
(q+l)(q+4) <rql> 2, q > - l ,  (46) 

which is satisfied by any convex density p (r). 
On the other hand, let us point out that for ~2p = 0, 

i.e. when g2(r;~)=p" (r) is monotone of order p, the 
inequality (41) gets transformed into 

<r q-2 > <r q > 

>(q+2)(q+p+3)(rq-l>2, q >  --1. (47) 
= ( q +  1 ) ( q + p + 4 )  

The particular case p = 0 (which means to consider that 
p" (r) is positive or, what is the same, that p (r) is convex) 
has been recently found (Angulo and Dehesa [9]). 

Let us now compare the inequalities (32), (39) and 
(47) for fixed values of p and q. The inequality (47) is 
more accurate than the inequality (32) by a factor 

=(q+p+2)(q+p+3) 
el--~@-TTi)(q+p+4)> l' 

which goes from 1.5 when q + p = 0  down to 1 for q+p 
And it is more accurate than inequality (39) by a factor 

( q + p + 3 )  2 
e2=--(q+p+ Z)(q+p+4) >=1' 

which varies from 1.125 for q + p = 0  to 1 for q+p= oo. 

Finally, let us point out that the quality of the inequalities 
found in this section depends much on the specific atom 
and the order of monotonicity of its groundstate density 



293 

taken into account in each case. To give an idea of it, we 
have calculated the accuracy of  the inequalities (30), (36) 
and (44) for p = 2 in all the atoms with nuclear charge 
1 _< Z_< 54. It is found that the accuracy is around 80% 
in H and He for all three inequalities and then it decreases 
with increasing Z but it is always bigger than 26.5%. 

V. Concluding remarks 

To summarize, the montonicity properties of the atomic 
electron density ( -  1) n p(n)(r)r -~, ~ > 0, are investigated. 
We fred, as particular cases, the values e~p ofc~ for which 
the functions r-~°p p ( r ) ,  - r - ~ I "  p ' (r) and r-~2;  p " ( r )  
are monotonically decreasing from the origin (i. e. mono- 
tone of order p = 1) and convex (i.e. monotone of  
order p = 2). These values are numerically evaluated in a 
Hartree-Fock framework for all ground-state atoms 
with Z=<54. It is found that a01=0, 0_<a02<0.54, 
0<c~H< 1.63, 0<~12<4 .44  and, if exist, 0=<~21 < 100 
and 0 < a 2 2 < 1 0 0  except for Z = 3 3  and 44 where 
~22 ~2> I00. 

Finally, we make use of the above mentioned mono- 
tonicity properties of  order p to obtain simple, compact 
and universal inequalities among three radial expectation 
values of  contiguous orders. These inequalities generalize 
all the previous published in the literature, to the best of  
our information. They are specially remarkable because 
these expectation values may be often experimentally 
measurable by means of, among others, experiments of  
(e, 2 e)-type and represent some statical and dynamical 
quantities of the atomic system under consideration. 
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