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Abstract. By means of the optimum M-term Hylleraas- 
type wavefunctions with 1 _< M_< 6 we study various in- 
terelectronic properties of the Helium-like atoms with 
nuclear charge Z = 1, 2, 3, 5 and 10. Let h(u) denote the 
spherically averaged electron-pair density of a finite 
many-electron system. Firstly we found that the intracule 
function h(u)/u ~ of the above-mentioned atoms is (i) 
monotonically decreasing from the origin for c~ >i el and 
(ii) convex for ~ ~> ct> where cq and c~ 2 are positive con- 
stants which depend on Z and M. Then we show that the 
electron-electron cusp condition, i.e. that h'(0)=h(0), 
may be extended in the sense that the inequality 
h(u)-h' (u)> 0 is valid for any u/> 0. Thirdly, it is shown 
that the inequalities involving three interclectronic mo- 
ments (u ") recently found by the authors are, at times, of 
great quality. Finally the goodness of some bounds to the 
characteristics of the maximum of h(u) and to the total 
interelectronic repulsion energy is discussed in detail. 

PACS- 31.10.+z; 31.20.Tz; 71.10.+x 

I. Introduction and methodology 

The spherical average of the intracule or electron-pair 
density h (u), u being the modulus of the interelectronic 
separation vector u=r l2 ,  has been shown to play the 
dominant role in the atomic electron-electron correlation 
problem [1, 2]. In particular, it is related to the electron- 
electron distribution function or radial electron-pair den- 
sity [3, 4] P (u) by P ( u ) =  4nu2h (u) and to the weighted 
pair distribution function [5, 6] f (u) by f (u) = 4huh (u). 

Up to now, to the best of our information, the only 
known rigorous properties of h(u) are as follows: 

1. It is positive at the origin, everywhere non-negative 
and vanishes at infinity [7]. As any other density function, 
it may be fully characterized by means of its moments 
tim; these quantities represent, apart from a factor 4n,  
the interelectronic radial expectation values (u "~) since 

( u " )  =j '  u'h(u)du= ~f u'"V(u)du 
0 

= 4 n  ~ um+ah(u)du=-4nll,,+2 
0 

(1) 

for any real number m > - 3. These interelectronic mo- 
ments are physically meaningful (e. g. ( u -~ )  = 4 n/t 1 gives 
the value of the interelectronic repulsion energy of atoms 
and molecules) and form in fact the building blocks of 
the electron-electron correlation problem. 

Just from the non-negativity property of h (u) one can 
obtain [8] the interelectronic inequalities 

@ . - 2 )  (u n) =>(u ~- 1)2 n > -- 1 (2) 

2. It satisfies the Kato electron-electron or correlation 
cusp condition [7] 

h'  (u) 
lim - 1 (3) 
.~o h(u) 

3. Contrary to the atomic charge density p (r), which is 
a monotonically decreasing function of r, h (u) is not 
monotonic [7]. Indeed it is, at least, unimodal with the 
maximum at u = u,~ax.0. Let us call hma x = h (u .. . .  ). Re- 
cently [8] rigorous bounds to the characteristics 
(u . . . .  hm~x) of the maximum of an unimodal intracule 
density h(u) of a N-electronic system have been found 
by means of the interelectronic moments. They are given 
by: 

(a) Upper bounds to the maximum location: 

Urea x ~ U, < U o (4) 

with 
<u -~)  

Uo= 2 (~U- 2----~ (5) 

2(U-2)(U) - ~ N ( N -  1)(u ' )  --A 
g l -  ~N(N-- 1) (u -2 )  -- 4 ( u -  1) 2 (6) 
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where 

A= [--2~ N2(N- I)2<u-I)2 +4<u-2>2<u) 2 

- 18 N ( N -  1)(U -2) <U -1 ) <U) 

I 

+ 32(U- ' )3(U) + N3(N - 1)3(U -2)  

(b) Lower bounds to the maximum intensity: 

1 
1 I [(t + 3)(.')]'+3 hmax~h(s,t)=-~- ~ i~s-'~ 3~,?)~g 5 ) (7) 

where s and t are real numbers, s > t. This inequality may 
be used in both senses: to bound hm~ × in terms of  the 
interelectronic moments and to bound these moments by 
means o f h  .. . .  . In the latter sense one has, e.g. if s = 0  
and t = - 1 

I 

Eee=(u-l)~ N2(N-1)2hmax (8) 

which gives an upper bound to the total electron-electron 
repulsion energy E~e of an N-electron system via hma x. 
4. The intracule function h(u) /u  ~ with c~1= 
max{uh'  (u)/h (u)} is monotonically decreasing from the 
origin [8], This property may be used to obtain [8] 

(n+~l  +2)2 (U n -  1)2, (u,,-=) (u ) 
>=(n+~ l +2 )  2 -  1 

n > - 1 (9) 

which improves the inequality (2), since ~ ~ > 0 due to the 
first property of h (u). 
5. The intracule function h(u) /u  ~2, 0~2=max{f(u)},  
where 

1 
f ( u ) - 2 h ( u  ) {2uh'  ( u ) - h ( u )  

± 
+ [(h (u) - 2 uh" (u)) 2 - 4 u 2 h" (u) h (u)]" } 

is convex [8]. Using this property one obtains 

> ( n + ~ 2 + 2 ) ( n + ~ 2 + 3 )  (u,,-1)2 

n > -- 1 (10) 

which further improves the inequality (9), since c% > c~ t- 

From a numerical point of  view, several properties of 
h (u) have been studied for different wavefunctions, spe- 
cially in two-electron ions [9-I6].  Emphasis has been 
made to check the correlation cusp condition (3) and to 
evaluate the interelectronic values ( u " ) ,  m = - 2 ,  - 1, 1, 
2, 3 and 4. 

In this paper we will use the optimum Hylleraas M- 
term wavefunctions, 1 ~ M ~  6, developed by one of us 

[17, 18] to carry out a numerical analysis in the helium- 
like atoms having a nuclear charge Z =  1, 2, 3, 5 and 10 
for five purposes: 

• To calculate some characteristics of the intracule den- 
sity h (u). See Sect. II. 
• To extend the validity of  the correlation cusp condition 
to any u .  0. See Sect. III. 
• To evaluate the interelectronic moments ( u " )  for any 
real m between - 3  and 4, and to study the accuracy of 
the inequalities I [Eq. (2)], II [Eq. (9)] and Ill  [Eq. (10)1 
among three of  these quantities. See Sect. IV. 
• To analyse the accuracy of the bounds (4) and (7) to 
the location and intensity of  the maximum of the intracule 
density h (u). See Sect. V. 
• To investigate the goodness of the upper bound (8) to 
the total interelectronic repulsion energy. See Sect. V. 

II. Some characteristics of the electron-pair density 

Though there exists discussion [10] that it cannot be a 
formal solution to the Schr6dinger equation, the Hylle- 
raas function provides us with physical quantities of prac- 
tical accuracy. We start with the comparison of the near 
exact values [t t ] of  several quantities related to the in- 
tracule density h (u) with those calculated by the optimum 
Hylleraas wavefunctions. This comparison is done for the 
helium-like atoms with Z = 1 ( H - ) ,  2 (He), 3 (Li +), 
5(B 3+) and 10(NeS+). The involved quantities are: the 
total ground state energy E, several interelectronic radial 
expectation values (u m) of integer and fractional orders, 
the value of  h (u) at the origin h (0), the location Um~ × 
and the intensity h ..... of  the maximum of  the density, 
and the values ~1 and ~2 for which the intracule function 
h (u)/u ~ is monotonically decreasing fi'om the origin and 
convex, respectively. 

The results of  this comparison are shown in Tables 
1-5 for the five atoms taken into consideration. A few 
observations are in order: 

(i) The energy E and the interelectronic moments (u"~), 
which are globally averaged quantities, are much better 
determined for a given number of terms of the variational 
wavefunctions than local properties of  h (u) such as h (0), 
the maximum characteristics u, .... and h ..... and the values 
~1 and ~2. 
(ii) The convergence of the quantities taken in this study 
when the number of  terms of the wavefunction is in- 
creased, is very nice for the averaged quantities and non- 
uniform for the interelectronic local properties. 
(iii) There where it is possible (i.e., for E, some values 
o f (u  m) and h (0)), the comparison between our Rayleigh- 
Ritz variational values (specially when one uses the 6- 
term wavefunctions) and the near exact ones [11] is very 
good. 

The first two observations should not be surprising be- 
cause in a Rayleigh-Ritz variational calculation the ap- 
proximate wavefunction can be locally much less accurate 
than for some globally averaged quantities in which local 
errors of opposite sign have been partially cancelled in 
the integration process. 



Table 1. Comparison, there where it is possible, between the values of various average and local ground-state quantities of the H -  ion 
calculated by means of the optimum M-term Hylleraas-type wavefunctions, 1 < M <  6, and the near-exact ones [11]. The symbols E, (uk), 
h (0), u ~ ,  ct~ and ~2 denote the total energy, the kth-interelectronic radial expectation value, the electron-pair density at the origin, the 
location of  the maximum, the intensity of the electron-pair density at its maximum, and the values of  ~ for which the electron-pair function 
h (u)/u ~ is monotonically decreasing from the origin and convex, respectively. Atomic units are used throughout 

Z = 1 Hylleraas wave function Near exact 

1 -term 2-term 3-term 4-term 5-term 6-term 

- E  0.472656 0.512293 0.525851 0.526927 0.527362 0.527570 0.527751 

@-5/2) 0.429784 0.223858 0.168747 0.158996 0.165523 0.163628 - 
(u 2) 0.315104 0.183743 0.163226 0.155173 0.157118 0.156883 0.155108 
@-3/2) 0.334896 0.220930 0.212578 0.204119 0.204142 0.204330 - 
(u - I )  0.429688 0.323526 0.322849 0.313345 0.312119 0.312388 0.311022 
(u °) 1,00000 1.00000 1.00000 1.00000 1.00000 1,00000 1.00000 
(u) 3,18182 4.28989 4.08521 4.31960 4.34221 4.34748 4.41269 
@2) 12.6942 23.1821 20.4881 23.9225 23.8716 23.9516 25.2020 
@3) 60.5860 149.482 120.973 164,709 159.753 160.197 180.601 
@4) 335.715 1111.31 817.663 1371.14 1264.56 1259.15 1590.0 

h(0) 0.0129294 0.00608770 0.00305538 0.00288526 0.00322725 0.00306420 0.002740 
Um~ ~ 0.000000 0.000000 0.923985 0.967835 0.812928 0.876085 - 
hm~ ~ 0.0129294 0.00608770 0.00420245 0.00389237 0.00404550 0.00405284 - 
~t 0.000000 0.000000 0.150071 0.142292 0.106942 0.132288 - 
~2 0.0871262 0.0785974 0.372100 0.373125 0.305717 0.347517 -- 

Table 2. Comparison, there where it is possible, between the values of various average and local ground-state quantities of the Ite atom 
calculated by means of  the optimum M-term HyUeraas-type wavefunctios, 1 < M=< 6, and the near-exact ones [ 11 ]. The symbols E, (uk), 
h(0), u~ , ,  h ~ ,  cq and e2 are as explained in caption of Table 1 or text. Atomic units are used throughout 

Z = 2 Hylleraas wave function Near exact 

1-term 2-term 3-term 4-term 5-term 6-term 

- E  2.847656 2.891121 2.902432 2.902772 2.903385 2.903453 2.903724 

(u -5Is) 4.05674 3.01033 2.87320 2.87723 2.80702 2.80851 - 
(u - s )  1.89844 1.55270 1.48305 1.48388 1.46917 1,46959 1.46477 
(u -a/s) 1.28785 1,12815 1.08513 1.08484 1,08152 1.08162 - 
(u - l )  1.05469 0.974297 0.947174 0.946498 0.946387 0.946409 0.945818 
(u °) 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 
(u)  1.29630 1.37242 1.42058 1.42497 1.42091 1.42002 1.42207 
(u s) 2.10700 2.32730 2.50449 2.52594 2.51166 2.50433 2.51644 
@3) 4.09694 4.66983 5.24207 5.32757 5.29172 5.24976 5.30800 
@4) 9.24882 10.7844 12.6608 12.9921 12,9258 12.7116 12.9812 

h(O) 0.191202 0.119912 0.116122 0.116240 0.109425 0.109444 0.106352 
um. x 0.000000 0.162781 0.140105 0.142180 0.177457 0.177793 - 
hma ~ 0.191202 0.127021 0.120845 0,121239 0.117174 0,117358 - 
~ 0.000000 0.0283162 0.0196774 0.0207758 0.0335512 0.0342107 - 
~2 0.0871262 0.183845 0.163095 0.165021 0.194323 0.194757 -- 

Table 3. Comparison, there where R is possible, between the values of various average and local ground-state quantities of the Li + ~n 
calculated by means of the optimum M-term Hylleraas-type wavefunctios, 1 ~ M ~  6, and the near-exact ones [ 11 ], The symbols E, (uk), 
h (0), Urn,x, h . . . .  e l  and e2 are as explained in caption of Table 1 or text. Atomic units are used throughout 

Z = 3 Hylleraas wave function Near exact 

1-term 2-term 3-term 4-term 5-term 6-term 

- E  7.222656 7.268157 7.278030 7.278505 7.279446 7.279567 7.279913 

(u -5Is) 12.9849 10.7544 10.5224 10.4723 10.329t 10.2661 - 
(u - s )  4.81510 4.22792 4.13508 4.12432 4.09944 4.08982 4,08225 
(u -a/s ) 2.58836 3.37173 2.32651 2.32412 2.31814 2.31641 
(u -~) 1.67969 1.59244 1.56994 1.56987 1.56831 1.56807 1.56772 
(u °) 1,00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 
(u)  0.813953 0.848217 0.863889 0.861540 0.862006 0.862488 0,862315 
(u s) 0.830719 0.894956 0.931239 0.923405 0.925262 0.927877 0.927064 
@3) 1.01425 t.t2288 1.19678 1.17617 1,18221 t.19127 1.18856 
@4) 1,43770 1.62778 1.78088 1.72888 1.74683 1.77421 1.7660 

h(0) 0.772335 0.580883 0.572786 0.568445 0,549727 0.541255 0.533808 
Um~ x 0.000000 0.0622761 0.0525144 0.0541871 0.0700142 0.0767448 
hm~ ~ 0.772335 0.592966 0.581090 0.576954 0.564646 0.559181 
~ 0.000000 0.0102183 0.00715835 0.00738766 0.0132510 0.0161001 
~2 0.0871262 0.139287 0.129530 0.129871 0.145984 0.154302 
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Table 4. Comparison, there where it is possible, between the values of various average and local ground-state quantities of the B3+ion 
calculated by means of the optimum M-term Hylleraas-type wavefunctios, 1 < M<= 6, and the near-exact ones [ t 1 ]. The symbols E, (uk), 
h (0), u,,~, h~,~, cq and ~2 are as explained in caption of Table 1 or text. Atomic units are used throughout 

Z = 5 Hylleraas wave function Near exact 

l-term 2-term 3-term 4-term 5-term 6-term 

- E  21.972656 2 2 . 0 1 9 5 4 4  2 2 . 0 2 8 3 5 4  2 2 . 0 2 9 2 6 8  2 2 . 0 3 0 3 0 5  22.030504 22.030970 

(u -s/~) 52.1700 46.8555 46.3999 45.8604 45.7293 45.6576 - 
@-2) 14.6484 13.5843 13.4461 I3.3688 13.3488 13.3375 13.3075 
@-3/2) 5.96229 5.66319 5.61227 5.59961 5.59408 5.59217 - 
(u -~) 2.92969 2.83781 2.81865 2.81765 2.81565 2.81547 2.81470 
(u °) 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 
@) 0.466667 0.478975 0.483346 0.481795 0.482473 0.482382 0.482436 
(U 2) 0.273067 0.286590 0.292395 0.289678 0.290747 0.290706 0.290791 
(u 3) 0.191147 0.204575 0.21t368 0.207602 0.209031 0.209152 0.209243 
@4) 0.155345 0.169169 0.177263 0.172225 0.174112 0.174525 0.17458 

h(0) 4.09811 3.49671 3.47628 3.39860 3.37455 3.36700 3.314478 
Um~ ~ 0.000000 0 . 0 1 9 9 6 0 0  0 . 0 1 7 1 8 6 7  0 . 0 2 1 2 8 8 9  0 . 2 4 1 1 1 9  0.0238086 - 
h ..... 4.09811 3.51851 3.49204 3.42234 3.40595 3.39689 - 
~ 0.000000 0 . 0 0 3 1 0 0 5 2  0 .00225749  0 .00346966  0 .00461195  0.00440319 
~2 0.0871262 0.113730 0.109172 0.115710 0.119673 0.119841 - 

Table 5. Comparison, there where it is possible, between the values of various average and local ground-state quantities of the Ne 8+ wn 
calculated by means of the optimum M-term Hylleraas-type wavefunctios, 1 ~ M ~  6, and the near-exact ones [ 11 ]. The symbols E, (u~), 
h (0), u ~ ,  h . . . .  ~ and ~2 are as explained in caption of Table 1 or text. Atomic units are used throughout 

Z = 10 Hylleraas wave function Near exact 

1-term 2-term 3-term 4-term 5-term 6-term 

- E  93.847656 9 3 . 8 9 5 4 1 7  9 3 . 9 0 3 4 8 2  9 3 . 9 0 4 8 6 5  9 3 . 9 0 5 9 2 7  93.906250 93.906802 

(u -s/2) 320.033 304,264 303.078 300.993 300.510 300.273 - 
@-2) 62.5651 60.3198 60.0683 59.8484 59.8032 59.7739 59.6946 
(u 3/2) 17.7141 17.2731 1%2087 17.1816 17.1731 17.1689 - 
(u -~) 6.05469 5.95996 5.94311 5.94087 5.93876 5.93825 5.93724 
(u °) 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 
(u) 0.225806 0.228854 0.229751 0.229338 0.229501 0.229482 0.229492 
@2) 0.0639334 0 . 0 6 5 5 7 7 6  0 . 0 6 6 1 5 3 4  0 . 0 6 5 7 9 2 8  0 . 0 6 5 9 1 7 1  0.0659081 0.0659174 
@3) 0.0216549 0 . 0 2 2 4 5 7 3  0~0227831  0 . 0 2 2 5 3 7 6  0 . 0 2 2 6 1 8 4  0.0226192 0.0226254 
@4) 0.00851583 0 .00892190  0 .00910982  0 .00894928  0 .00900124  0.00900677 0.0090100 

h (0) 36.1739 33.5643 33.4908 33.0532 32.9429 32.9115 32.6432 
Um~ X 0.000000 0 . 0 0 4 5 8 8 0 8  0 .00396024  0 .00509340  0 .00582351 0.00565712 -- 
h .... 36.1739 33.6100 33.5245 33.1083 33.0161 32.9797 - 
~ 0.000000 0 .000680507  0.000502641 0.000833109 0.00110861 0.00103482 - 
~2 0.0871262 0 . 0 9 8 9 6 3 2  0 . 0 9 7 0 8 8 8  0.100471 0.102300 0.102134 - 

IlL Extension of the correlation cusp condition 

Here we have evaluated h(u) and its derivative h '  (u) as 
well as their difference 

go(U)=h(u)-h' (u) 

for all the two-electron ions with Z =  t, 2, 3, 5 and  10 by 
means  of  the 6-term Hylleraas wavefunctions.  The results 
are shown in Fig. 1. Therein we observe that in all cases, 

1. The intracule density h (u) is un imoda l  as was previ- 
ously seen [9]. 
2. The intracule funct ion  go(u) is positive at the origin 
and,  up  to 5 a tomic units,  non-negat ive  and  n o n - m o n o -  
tonic. Indeed, it possesses a single m a x i m u m  whose char- 
acteristics u ~  X and  go (U~ax) are given in Table  6, which 

also collects the coordinates  (Um~n, h '  m~n) of the m i n i m u m  
of h'  (u). 
F r o m  Fig. 1 and  Table  6 it is interesting to point  out  that 
the locat ion of bo th  extrema Um~ x and Um~ n get closer one 
to another  with increasing Z, so that  in Ne a+ ( Z =  10) 
case they coincide up to 94 percent. Something similar 
occurs for the intensities go(um~×) and  t h~i~ I- 

We ma y  argue that  go ( u ) >  0 no t  only at the origin, 
as the correlat ion cusp condi t ion  implies, bu t  also for 
all positive values of  u. This observat ion has impor tan t  
physical consequences,  as e.g. for the atomic electron- 
electron coalescence, which will be discussed elsewhere 
[19]. 
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Fig. 1. The electron-pair density (solid line) h(u), its derivative 
(dashed line) h' (u) and the difference (dotted-dashed line) 
go (u) = h (u) - h '  (u) calculated by means of the optimum Hylleraas 

6-term wavefunctions in the two-electron atoms with Z =  1, 2, 3, 5 
and 10. Remark that  go (u) is everywhere non-negative. Atomic 
units are used throughout  

Table 6. Maximum characteristics of  the interelectronic function 
g o ( u ) = h ( u ) - h '  (u). The symbols u ~  and go . . . .  denote the lo- 
cation of  the maximum and the intensity of go (u) at its maximum. 
Corresponding meanings may be attributed to the minimum char- 
acteristics (Umin, h ~ )  of  h '  (u). Atomic units are used throughout  

Z Minimum of Maximum of 
h' (u) g o ( u ) = h ( u ) - h  ' (u) 

Umin h£zin Umax go, max 

1 2.17564 - 0.00133111 1.49001 0.00471892 
2 0.666966 .... 0.105517 0.528974 0.195147 
3 0.378406 - 0.817447 0.320436 t.23167 
5 0.197513 - 8.73022 0.177229 11.1789 

10 0.0896275 .... 175.570 0.0846755 198.923 

10 

IV. Interelectronic moments: values and inequalities 

Here we will evaluate the interelectronic radial expecta- 
tion values (u u)  for all integer and non-integer orders 
between - 3  and 4, and then we will use them to study 
the accuracy of the interelectronic three-moment ine- 
qualities I[Eq. (2)], II[Eq. (9)1 and III[Eq. (10)1 for all 
the two-electron atoms with Z =  1, 2, 3, 5 and I0. The 
optimum 6-term tlylleraas wavefunctions are used. 

The calculated values of the interelectronic moments 
(u ~) are shown in Table 7 and drawn as a function o f~  

0 
-3 -2 -i 0 1 2 3 4 

Fig. 2. Dependence of the calculated interelectronic moment  <u u) 
on the order ~, - 3  </~ __< 4, in the two-electron atoms with Z =  1, 
2, 3, 5 and 10. The opt imum Hytleraas 6-term wavefunctions were 
used. Atomic units are used throughout  
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Table 7. Fractional and integer 
interelectronic moments (u ~), 
-2 .8  __<p <4.0 of the electron-pair density 
h (u) calculated by means of the optimum 
Hylleraas 6-term wavefunction. Atomic 
units are used throughout 

/, Z = I  Z = 2  Z = 3  Z = 5  Z=10  

-2 .8  0 . 2 6 9 0 6 3  6 . 9 4 9 9 6  30.2630 t63.743 1362.45 
-2 .6  0 . 1 7 8 8 5 2  3.49652 13.5296 64.1578 456.081 
- 2.4 0 . 1 5 5 5 2 0  2.35305 8.13354 33.9558 206.693 
- 2.2 0 . 1 5 1 2 1 7  t.79324 5.55556 20.4784 106.902 
- 2.0 0.156883 1.46959 4.08982 13.3375 59.7739 
- 1.8 0 . 1 7 0 1 6 4  1.26557 3.16891 9.15597 35.2564 
- 1.6 0 . 1 9 0 8 9 7  1.13110 2.55131 6.53801 21.6443 
- 1.4 0 . 2 2 0 0 6 7  1.04123 2,11766 4.81704 13.7168 
- 1.2 0 . 2 5 9 5 8 8  0.982321 1.80269 3.64222 8.92453 
- 1.0 0 . 3 1 2 3 8 8  0.946409 1.56807 2.81547 5.93825 
- 0.8 0 . 3 8 2 6 7 3  0.928730 1.38998 2.21877 4.02926 
-0 .6  0 . 4 7 6 3 8 0  0.926433 1.25298 1.77874 2.78182 
-0 .4  0 . 6 0 1 8 5 3  0.937916 1.14672 1.44814 1.95082 
-0 .2  0 . 7 7 0 8 5 0  0.962454 1.06406 1.19565 1.38763 

0.0 1.00000 1.00000 1.00000 1.00000 1.00000 
0.2 1.31296 1.05108 0 . 9 5 0 9 3 6  0.846416 0.729404 
0.4 1.74355 1.11674 0.914281 0.724438 0.538045 
0.6 2.34048 1.19857 0 . 8 8 8 1 5 6  0.626537 0.401089 
0.8 3.17423 1.29873 0 . 8 7 1 2 1 0  0.547210 0.301970 
1.0 4.34748 1.42002 0.862488 0.482382 0.229482 
1.2 6.01063 1.56600 0.861348 0.428992 0.175949 
1.4 8.38533 1.74114 0.867401 0.384719 0.136046 
1.6 11.8000 1.95100 0 . 8 8 0 4 7 0  0.347782 0.106042 
1.8 16.7443 2.20253 0.900567 0.316803 0.0832929 
2.0 23.9516 2.50433 0.927877 0.290706 0.0659081 
2.2 34.5270 2.86710 0 . 9 6 2 7 5 5  0.268643 0.0525222 
2.4 50.1437 3.30418 1.00573 0.249941 0.0421407 
2.6 73.3486 3.83222 1.05750 0.234066 0.0340337 
2.8 108.037 4.47204 1.11897 0.220585 0.0276608 
3.0 160.197 5.24976 1.19127 0.209152 0.0226192 
3.2 239.074 6.19822 1.27575 0.199486 0.0186063 
3.4 359.010 7.35883 1.37409 0.191359 0.0153933 
3.6 542.354 8.78398 1.48828 0.184585 0.0128062 
3.8 824.080 10.5401 1.62070 0.179014 0.0107116 
4.0 1259.15 12.7116 1.77421 0 .174525 0.00900677 

Table 8. Accuracy in percent of the inequalities I, II and III which involve three interelectronic moments (u"). The optimum Hylleraas 
6-term wave-functions were used. See text for details. Atomic units are used throughout 

z (n"-2>(u")>(u*'- ' )  ~ (n , , -2)(u , , )>f2(u.  ')~ 

n = 0 1  2 3 4 n = 0 1  2 3 4 n = 0 1  2 3 4 

1 62.20 73.63 78.91 82.37 85.09 79.74 81.99 83.82 85.62 87.42 83.44 85.36 86.34 87.53 88.91 

2 60.94 74.41 80.52 84.13 86.57 80.37 83.48 85.79 87.59 89.02 85.27 87.46 88.66 89.70 90.64 

3 60.12 73.94 80.17 83.79 86.20 79.74 83.07 85.47 87.26 88.65 85.20 87.26 88.43 89.43 90.31 

5 59.43 73.63 80.04 83.76 86.22 79.13 82.80 85.37 87.25 88.68 85.20 87.20 88.43 89.47 90.37 

10 59.00 73.38 79.90 83.69 86.19 78.63 82.55 85.23 87.17 88.65 85.09 87.07 88.34 89.43 90.36 

in Fig. 2. One  observes that  these quant i t ies  have a similar 
behavior  in all cases. F o r  a given Z and beginning at 
/t = - 3 they decrease down to a m i n i m u m  and then they 
cont inously  grow with increasing/~.  The  m i n i m u m  lies at 
/~ = - 2 . 2  in H -  case, and at - 0 . 7  and 1.1 in He  and 
Li + cases respectively. F o r  the other  two cases the min-  
i m u m  lies outside o f  the interval  - 3 < ~ < 4. 

N o w  we will study the accuracy o f  the inequali t ies 
I [Eq. (2)1, II [Eq. (9)] and III  [Eq. (10)] which are o f  the 
form 

(u~-2)(u~)~=I~p(u~'-~) 2, n >  - - 1 , p =  1, 2, 3 

where Fp have the values 

( n + ~ l  + 2 )  2 
F,=I,  F2= 

(nq-~  1 + 2 )  2 -  1 ' 

(n + ~ 2  + 2) (n -}-~2 -~ 3) 
F3- 

( n + c % + 2 ) ( n + ~ 2 + 3 ) - -  1 

respectively. The  accuracy is measured by the ratio o f  
both  sides o f  the inequal i ty  t imes a hundred.  Its values 
in percent  are shown in Table  8 for these three inequal-  
ities. This table allows to make  several observat ions.  The  
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Table 10. Calculated values of the intensity of the electron-pair density at its maximum, h . . . .  and the lower bound h (s, t) for the optimum 
value of t (which is given in parentheses) and several values of s, which differs from t by 0.01, 0.1, 0.5 and 1.0. The optimum Hylleraas 
6-term wavefunctions were used. See text for details. Atomic units are used throughout 

Z hm~ × h(s , t )  Is> t >  -3 ]  

s -  t=0.01 s -  t=0.1 s - t = 0 . 5  s - t =  1.0 

1 0.0041 0.0034 (-2.23) 0.0034(-2.27) 0.0034(-2.42) 0.0034(-2.54) 

2 0.1174 0.1100(-2.72) 0.1100(-2.76) 0.1098(-2.88) 0.t095(-2.97) 

3 0.5592 0.5413 (-2.94) 0.5413 (-2.98) 0.5413 (-3.00) 0.5413 (-3.00) 

5 3.3969 3.3670(-3.00) 3.3670(-3.00) 3.3670(-3.00) 3.3670(-3.00) 

10 3 2 . 9 7 9 7  32.9115(-3.00) 32.9115(- 3.00) 32.9115(- 3.00) 32.9115 (-3.00) 

accuracy of inequality I goes from 59% (for Z =  10 and 
n = 0) to 86% (for Z =  10 and n = 4). The other two in- 
equalities are much more accurate. For  a fixed n and a 
given atom, the inequality I l l  (where the convexity of  
h ( u ) / u  ~ is required) is of  higher accuracy than the cor- 
responding inequalities II (where the monotonically de- 
creasing from the origin of  h ( u ) / u  ~ is required) and I 
(where only the non-negativity of  h (u) is used). More- 
over, the inequality I l l  is of  great quality. Indeed, its 
accuracy is always higher than 83%, going up to 90.64% 
in the helium case when n = 4. Also one should say that 
when the inequality involves interelectronic moments 
(u ~) of  positive powers (i.e. for n > 0) only, its accuracy 
is slightly higher than that having any moment  of  negative 
power. 

V. Bounding the maximum of the electron-pair density 
and the repulsion energy 

First of  all, we will analyse the goodness of  the upper 
bounds U 0 and U 1 given by (4)-(6) to the location Urea x 
of  the maximum of  the intracule density h (u) as well as 
the lower bound h (s, t) given by Eq. (7) of  the intensity 
h . . . .  of  h (u) at the maximum. This is done for the helium- 
like atoms with Z =  1, 2, 3, 5 and 10 by means of  the 
Hylleraas 6-term wavefunctions. The results are given in 
Tables 9 and 10. A glance to Table 9 allows to realize that 
both upper bounds U 0 and U 1 to Urea x are of  poor  quality. 
However, Table 10 illustrates that the two-moments lower 
bounds h ( s , t )  t o  hma x given by (7), i.e. depending on 
( u ' )  and (u ~') where s and t are real numbers so that 
s > t, are very good. 

In Table 10 we have given the values of  hma x and the 
bound h (s, t) calculated for the opt imum value of  t which 
is given in parentheses, and different values of  s which 
differ f rom t in 0.01, 0.1, 0.5 and 1.0. One observes that 
the best bound is found when thi's difference is the small- 
est one, i.e. is 0.01. This bound is of  great accuracy; 
indeed it is always higher than 84% and, at times, the 
bound is practically equal to hma x. 

Then, the quality of  the upper bound to the total in- 
terelectronic repulsion energy E ~  = ( u - ~ ) ,  as given by 
(8), is studied in Table 11 for all the above mentioned 
He-like atoms by means of  the Hylteraas 6-term wave- 

Table 9. Calculated values of the maximum location Urea ~ and two 
upper bounds U 0 and U~ by means of the optimum HyUeraas 
6-term wavefunction. See text for details. Atomic units are used 
throughout 

Z um~ Uj ~ 

1 0.8761 3.0709 3.9824 
2 0.1778 0.9157 1.2880 
3 0.0767 0.5355 0.7668 
5 0.0238 0.2898 0.4222 

10 0.0057 0.1352 0.1987 

Table 11. Calculated values of the total interelectronic repulsion 
energy E,~ = (u-1) and the upper bound given by (8). The optimum 
Hylteraas 6-term wavefunctions were used. See text for details. 
Atomic units are used throughout 

z (u - I )  Bound 

1 0.3124 0.3855 
2 0.9464 t.1838 
3 1.5681 1.9921 
5 2.8155 3.6348 

10 5.9383 7.7542 

function. Therein the values o f ( u - ~ )  and the bound (8) 
are explicitly given. We observe that the bound is rea- 
sonably accurate for all the two-electron ions taken into 
account. It  differs from the calculated values less than 
thirty percent in all the atoms. 

In brief, further effort should be done to improve these 
bounds. 
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