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Abstract. Firstly, the monotonicity properties of the elec- 
tron-pair density I(u) of atomic systems are investigated. 
Let h(u) denote the spherically-averaged electron-pair 
density of an arbitrary N-electron system, which essen- 
tially coincides with I(u) in the case of atoms. It is found 
that the interelectronic function g~(u) = h (u)/u ~, c~ > O, is 
not only monotonically decreasing from the origin for 
c~ >= cq = max {uh" (u)/h (u)} but it also has the property of 
convexity for c~ > c~2, where the value of c~ 2 is given in the 
text. Secondly, the Stieltjes technique is used to obtain 
rigorous, simple and compact inequalities which involve 
three interelectronic radial expectation values (uk). 
These inequalities are universal in the sense that they are 
valid for both ground and excited states in the whole 
periodic table. Thirdly, for those systems with a unimo- 
dat h(u), i.e. having a single maximum at u = u  . . . .  are 
found (i) upper bounds to Umax in terms of any number of 
moments (u k) via the above-mentioned technique, and 
(ii) lower bounds to the maximal value h, ,ax-h(u , ,~)  
by means of two arbitrary moments (u k) in a varia- 
tional way. A particular case of the latter bound leads 
to a rigorous upper bound to the total electron- 
electron repulsion energy E~ of the system, namely 

E~<_[89n N 2 ( N  - 1) z h .... ]31-. Finally, the electron-pair den- 

sity of Helium is analysed in detail and the quality of the 
above mentioned inequalities is studied by means of the 
M-term Hylleraas-type wavefunctions, with M = 1, 2, 3, 6, 
10 and 20. We observe that in the 20-term case, which is 
shown to be very close to the exact one, e~ and ~2 take the 
values 0.0414 and 0.2067, respectively. Moreover, in such 
a case we found that some of the above mentioned in- 
equalities are very accurate. 

PACS: 31.10.+z; 31.20.Tz; 71.10.+x 

I. Introduction 

The study of structural properties of the intracule or elec- 
tron-pair density I(u), u being the interelectronic vector, 
is basic to understand the chemistry and physics of atomic 

and molecular systems. This is not only because I(u) is 
the major quantity in the associated electron-electron cor- 
relation problem but also because it is of great utility in 
density-functional models of exchange and correlation 
energies [ 1 ]. As long as we are concerned with atomic 
systems, it is sufficient [2] to investigate the spherically- 
averaged electron-pair density h (u) defined by 
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The global behavior of this quantity is of paramount 
importance to gain physical insight in the internal struc- 
ture of atomic systems. Indeed, for example, (i) it allows 
to interpret some general aspects of the atomic periodic 
table such as the Hund's first rule [1, 3], (ii) a funda- 
mental quantity like the interelectronic repulsion energy 
Eee is given by its centroide as 

E e e = ( u - 1 ) - i  ~u 1 P ( u ) d u  
0 

= 4 n  ~ u h ( u ) d u - 4 n / ~  
0 

where P ( u ) =  4 n u 2 h ( u )  is the so-called radial electron- 
pair density, and (iii) it reveals aspects of the short-range 
correlation in the atomic Coulomb hole which is very 
difficult to grasp otherwise [4-6]. 

The density h (u), like any arbitrary density function 
defined on the interval [0, oe), may be fully characterized 
[7] by means of its moments ~k which are, apart from a 
factor 4g, the interelectronic radial expectation values 

/~k=--~ u k h ( u )  d u =  u k - 2 P ( u ) d u  
o 0 

_ ( u  k 2) k > - 1. 
4n  ' 

In this paper, we study both analytically and numerically 
the monotonicity properties of h (u) or, better, of the 



Table 1. Comparison between the values of various ground-state quantities of the He atom calculated by means of several M-term Hylleraas- 
type wavefunctions and the exact ones. The symbols E, h (0) and (u/~) denote the total energy, the electron-pair density at the origin and 
the kth-interelectronic radial expectation value. Atomic units are used throughout 

Hylleraas-type wavefunction Exact 

1-term 2-term 3-term 6-term 10-term 20-term 

- E  2.847656 2.891121 2.902432 2.903329 2.903603 2.903718 23.903724 

h(0) 0.191202 0.119912 0.116122 0.111970 0.109598 0.107053 0.106352 

@-2) 1.89844 1.55270 1.48305 1.47393 1.46881 1.46531 1.46477 
(u -~) 1.05469 0.974297 0.947174 0.946045 0.946006 0.945832 0.945818 
(u °) 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 
(u) 1.29630 1.37243 1.42058 1.42188 1.42174 1.42202 1.42207 
@2) 2.10700 2.32730 2.50449 2.51109 2.51576 2.51607 2.51644 
@3) 4.09694 4.66983 5.24207 5.27141 5.31261 5.30611 5.30800 
(u ~) 9.24882 10.7844 12.6608 12.7874 13.0385 12.9727 12.9812 

density function 

h(u) g~(u )= - - ,  u>_0 (1) 

in terms of  the associated values (u~).  In Sect. II the 
Stieltjes-moment-problem technique [7] is used to obtain 
new and rigorous universal inequalities which involve 
three interelectronic radial expectation values. This tech- 
nique was recently introduced in the study of  atomic 
structure [ 8 - t l ]  and shown to be a very useful tool to 
gain physical insight. Then, in Sect. III, the same tech- 
nique is applied to a unimodal electron-pair density h (u), 
i.e. having only a single maximum at u = Um~ x. In doing 
so, rigorous upper bounds to u . . . .  are shown in terms of 
an arbitrary number of moments @k).  Also, rigorous, 
simple and compact lower bounds to the maximal value 
hm~ ~ -= h (Um~x) are variationally found by means of two 
arbitrary moments (uk) .  Finally, in Sect. IV, the elec- 
tron-pair density of helium is numerically studied by 
means of  the so-called Hylleraas-type wavefunction of  M 
terms, with M = 1, 2, 3, 6, 10 and 20. In particular, besides 
the well-known unimodality [12] of h (u), we obtain two 
additional properties: 

1. h (u ) /u  ~ is monotonically decreasing from the origin 
for every e > ~ i  - m a x { u h '  (u) /h(u)} ,  where u~ is given 
in Table 1. 
2. h ( u ) / u  ~ is convex for every u >uz ,  where the values 
of u2 are also given in Table 1 for different M's. 

These properties together with the universal inequalities 
described in the following sections allow to find numer- 
ous interesting relationships for the He atom which in- 
volve the interelectronic moments @k) ,  Um~× and hma x. 
Discussion of these relationships follows and then a few 
sentences are made as concluding remarks. 

II. Universal relationships among interelectronic 
radial expectation values 

Here we study the monotonicity properties of  the inter- 
electronic density function g~ (u) defined by (1). This is 

equivalent to studying the following non-negativity con- 
dition: 

1 Hp(u; u ) - = ( -  l) p - -  > 0  (2) 
d u P E  u ~ _]= 

where p is any, but fixed, non-negative integer number. 
If  (2) is satisfied, one says [ 11] that h (u ) /u  ~ is monotone 
of order p. Remark that the first few cases p = 0, 1 and 
2 express the non-negativity, unimodality at the origin 
(or monotonic decreasing from the origin) and the con- 
vexity properties of  h (u) /u  ~, respectively. 

Working out the differentiation involved in (2), one 
realizes that, for a fixed p, the condition 

P! ~ (-1) k 
( -  1)P F(u~--) k=0 

F ( u + k )  1 d P - ~ h ( u ) >  0 (3) 
× k I ( p - k ) !  u ~+k du " - k  = 

defines a value up such that for u >__ up the interelectronic 
function h (u ) /u  ~ is monotone of  order p. Assuming the 
existence of the value up, one notices that the inequality 
(3) reduces to 

p = 0 ,  

p = l ,  

p = 2 ,  

h ( u ) > O  

u h ( u ) - u h '  ( u ) > O  

u2h " ( u ) -  2 u u h ' ( u ) + u  (u + 1 ) h ( u ) > 0  

respectively. These expressions show that 

~uh, (u)~ 
u 0 = 0 ,  u , = m a x  (. h(u)  ) '  

u 2 = m a x { f ( u ) }  
(4) 

where 

1 

i 

+ [(h (u) - 2 uh" (u))  2 - 4 u 2 h (u) h" (u)l 2 }. 



Then, apart from the well-known quantum-mechanical 
non-negativity character of  h (u)/u% one obtains two im- 
portant characteristics of the electron-pair density h (u): 

1. The function h (u)/u ~ with ~ > ce i is monotone of first 
order, i.e. is unimodal with mode at the origin. This tells 
us that it is monotonically decreasing from the origin. 
2. The function h(u)/u ~ with 0{ >c¢ 2 is monotone of sec- 
ond order, i.e. it has the property of  convexity. 

Now, we apply the Stieltjes-moment-problem technique 
[7] to the function umHp(u;a) for any m > 0 .  It states 
that the moments of that function, i.e. the quantities 

T=T(~ ,p ,m)=~  uJ+mltp(u; ~)du (5) 
0 

must satisfy the following inequalities: 

A(i)>(~ for i = 0  and 1 and k = 0 ,  1,2.. 

The A-symbol denotes the Hadamard determinant 

(6) 

A(i)_ k --  

Vm+i Vm+i+ I "'" 1]m~-i+k 

J im+i+ 1 Vm+i+2 "'" Y m + i + k + l  

: : ". .  : 

ldmq-i+k Vm+iq-k+i  . . .  ldm+iq-2k 

(7) 

The calculation of  the integral given in (5) produces 

p!F(t+c~ + p + 3 )  
<u') (8) v j -  4 r c F ( t + ~  + 3) 

for t = m + j - ~ - p - 2  > --3. The combination of (6), 
(7) and (8) leads to a rich variety of new rigorous rela- 
tionships which involve interelectronic radial expectation 
values <u~> of any order k. The simplest non-trivial case, 
i.e. for i = 0, k = 1 and m = 0 gives 

u0~2>~ 

which leads to the important inequality 

n-- t > 2  <bln--2><IA n )  = f ( n , C ~ p , p ) < u  n > -- 1 (9) 

with p = 0, 1, 2 . . . . .  and 

(n+o~p+ 2)(n+O~p+p+ 1) 
F(n, O~p,p) = (n + O~p 47 1) (n + C~ e + p  + 2)" (lO) 

Notice that the optimal value % (i. e. the minimal value 
of e which verifies the inequality (3) for a given p)  was 
taken into account; it makes the inequality to be most 
accurate. One should realize that % varies not only with 
p but it depends also on the specific system that one is 
dealing with. Let us mention here that ap<%,+~ as one 
can see by working with (3). 

The relationships (3)-(4) and (9)-(10) are universal 
in the sense that they may be applied to any many-elec- 
tron system and are valid for both ground and excited 
states. Let us now consider some particular cases: 
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1. For  p = 0, i.e. assuming only the non-negativity prop- 
erty of  h (u), one has 

(U n - 2 )  (/A n)  ~ ( U n - -  I ) 2 , /7 > --  l 

2. For  p = 1, i.e. from the unimodality at the origin of  
h (u)/u =', one has 

<u~-~)(u ~) 

> (nq-0~lq-2)2 ( g n - - l )  2 , H >  --1 (12) 
= ( n  +C¢ I + 2 )  2 -  1 

~uh" (u)~ 
where ~1 = m a x  ( ~ i - )  as pointed out by (4). 

3. For  p = 2 ,  i.e. from the convexity of  h(u)/u% one 
has 

( n + ~ 2 + 2 ) ( n + ~ 2 + 3 )  (u ~-2) (u"> > 
(n+c% + 2)(n+e2+ 3 ) -  2 

× @ n - n ) 2 ,  n >  1 (13) 

where e 2 = m a x { f ( u ) }  as given in (4). 

For  p > 3 ,  one needs to solve an ordinary differential 
equation of  order equal to or higher than three in order 
to obtain % defined by (3), what is generally complicated. 
This is the reason for us to consider only the cases p = 0, 
1 and 2 in specific systems, as wild be done for helium in 
Sect. V. In these cases, the evaluation of % is much easier 
as we have to evaluate a differential equation of, at most, 
second order. 

These inequalities may be used for many purposes. In 
particular, by making n = 0  and 1 in (13) one easily ob- 
tains rigorous bounds to the interelectronic repulsion 
energy Eel. Indeed, with n = 0  one has a lower bound 
which depends on @ ) ,  c~ 2 and N, the number of electrons 
of the system, and with n = 1 one has an upper bound 
which depends on ( u - 2 ) ,  ~2 and N. 

To end this section let us point out that the inequalities 
(6)-(8) may supply an infinity of relationships involving 
interelectronic radial expectation values /xu ~) of  either 
integer order or fractional (in fact real; remember that 
m > 0) order k. 

III. Many-electron systems 
with a unimodal electron-pair density 

Here we consider an arbitrary N-electron system having 
a unimodal electron-pair density h(u). Specific systems 
with a unimodal h(u) at their ground states are e.g. the 
helium-like atoms [ 12] from H -  through Mg m+ . Let Urea x 
and h~a X be the location of  the single maximum and the 
maximal value h (Umax) of  the density h (u), respectively. 
We look for rigorous bounds to Um~ x and hm~ x in terms 
of  the radial interetectronic expectation values @k) .  



The main results of this section are: 

1. Upper bonds to //max' It is found that 

b/max ~ go 

and 

Uma x ~ U 1 when U l =< U 0 

(14) 

(15) 

where U o and U I are given by 

Vo_2(u-') (u_2) (16) 

2@ -2)  (u)  - 3 N ( N -  1) (b/-1) - -  A 

Uj = 32N(N_ 1)(u_2) _ 4 ( u _ l )  2 (17) 

In writing (17) we have used the normalization @ 0 ) =  
4 ~/.2 = ½ N ( N -  1) and the symbol A which is defined as 

- 1 8 N ( N - 1 ) @ - 2 ) @  l ) (u )  

I 
÷ 32~u- I)3~u) ÷ 8"7 N3 (N--1)3(u-2)] 7. 

It is worthwhile to point out that the procedure used to 
find the bounds (15), which will be described below, al- 
lows to obtain better but more complicated bounds which 
include a higher number of interelectronic expectation 
values. 
2. Lower bounds to hm~ x. It will be shown below that 

1 

hmax>=h(s, t) =- C(s, t) \-~-:i:~TTSl# (18) 

where s and t are real numbers, s > t, and 
I 

[ ( t  + 3)s+3],-~t 
C ( s , t ) = l  k i ~ + ~ J  " (19) 

Some particular cases are given by 

1 ( b / - - 2 )  2 

h ( - 1 , - 2 ) = 8 ~  r (b/ ~) (20) 

h ( 0 , - 2 ) -  1 ((u-2): '~½ 
4 b/-jzr \ (u°) J 

1 ( 2 ( . - 2 )  3 ~ 
-4~ 3 ~ 7 ) /  (21) 

h ( 0 , - 1 ) -  2 (u -~ )  3 8 @ - , ) 3  
97t @0)2 - 9 ~  [ N ( N -  1)] 2. (22) 

The last bound is particularly interesting because it may 
also be used to obtain a rigorous upper bound to the total 
electron-electron repulsion energy E ~  = ( u -  ~) of an N- 
electron system via hma ~ as 

i 

E~,~ N2( N -  1) 2h .... (23) 

This is the only result which connects the electron-elec- 
tron repulsion energy E<,<. of an N-electron system with 
some characteristics of the electron-pair density h (u) of 
the system. Here we should mention that Kinoshita [ 1 3, 
14] was able to get an upper bound to E~. e by means of 
the kinetic energy for a two-electron system, which may 
be easily generalized to any N-electron system. 

Following the same reasoning as Gfitvez et al. [1 5] one 
can easily show that, for a fixed s, the sharper these lower 
bounds h (s, t), the smaller is t. A careful analysis of the 
inequatites (18) as well as other new and old inequalities 
which involve Ee~ will be done elsewhere. 

Let us now prove all these results. To find the bounds 
to Um~ x given by (16)-(17), one must apply the Stieltjes 
technique to the positive-definite function 
q5 ( u ) = ( f l - b / ) h '  (b/) with / ? - = u ~ .  To do that, firstly 
one calculates the moments of this function which are 

-7 Cj-- uJ(a ( u ) d u = ( j ÷  1)/*s-f l j~/_ I 
0 

if j >  0 (24) 

Then, according to the Stieltjes moment problem [7], the 
inequalities 

¢1 ¢2 "'" Ck+l 

¢2 ~3 ' ' "  ¢k+'2 
. . . . .  : 

G+, G+2- "  ~21~+i 

>=0 (25) 

for k = 0 ,  1 .... are fulfilled. Inserting the values of Cj 
given by (24) into (25) and taking into account the prop- 
erties of determinants, one gets the following general de- 
terminantal inequalities: 

1 ,8 /72 ... 5k+l 

//o 2Fq 3/~ z ... (k + 2),ua. + i 

A~O .... 2//1 3/~2 4/13 ... (k+ 3)///<+2 
: : : " , .  : 

( k +  I)/ /~ ( k + 2 ) ~ : + ~  ( k + 3 ) & + 2  .-. (2k+2),a2,~+~ 

2 0  

(26) 

valid for any non-negative integer k. The first two ine- 
qualities are 

A00)= 2/*~ --/*0 fl > 0  

A }') = 8/* 1/.3 -- 9/* 2 + (6/*[/x2-- 4/*0/*3) B 

+ (3/.o/.2-- 4/* 2) f12 ~ 0 (27) 

which allow to get the searched bounds Uo and U~ as 
given by (15)-(17). Similar bounds depending on a higher 
number of  moments may be easily obtained by means of 



the consideration of  the cases k = 2, 3,. . .  in (26). Finally, 
let us find the lower bound to hma × given by (18). We will 
do that by following a procedure already used by G~ilvez 
et al. [15, 16]. Since, by definition, hm~>h(u ) for all u, 
one has that for any positive q 

1 1 

h=.=>= (28) 

where COq is the so-called frequency moment of  order q 
of  the density function h (u). On the other hand, it is 
known [17] that co= (with n not necessarily integer but 
greater than one) is bounded from below as 

1 

c% >=f (~,fl, n)@°}" J (29) 

provided c~ > fl > 3(1 - n ) / n  and with 

f(c ./Ln) =n"(a 

[ ( n ( f l + 3 ) - 3  a n - l ) ]  -('' l) 

! 

\ [n(~ + 3 )  3] n(~ +3) -3  (30) 

The combined use of  both inequalities (28)-(29) produces 
a set of  lower bounds to hma x which have an increasing 
behavior with q. So, the best lower bound wilt occur for 
q ~ o o .  The last lower bound turns out to be h(s, t) as 
given in the inequality (18), what completes the proof. 

IV. The electron-pair density of helium 

The electron-pair density h (u) of  the ground-state of  
He has been calculated by many authors [12, 18-22]. 
Here we have investigated this function by means of  the 
M-term Hylleraas-type wavefunctions [23] with M =  1, 2, 
3, 6, 10 and 20. To be as reliable as possible, first we 
calculate the total ground state energy E of  our system 
as well as several quantities directly connected with the 
density h(u) such as its value at the origin, h (0), and 
several interelectronic radial expectation values (u ~), with 
- 2 _< k_< 4. The comparison of  these values with the cor- 
responding exact ones is shown in Table 1. It illustrates 
that the 20-term values are very close to the exact ones 
[24]. 

We have found that h (u) is indeed unimodal as other 
authors [11] have already shown. The location of the 
single maximum, u ...... and the maximal value the func- 
tion, h(um=×)=-h . . . .  varies with M as shown in Table 2. 

Soon we found that h (u) has no monotone properties 
from the origin but two important  results came up: 

1. h (u) is unimodal with mode near the origin, but not 
at the origin, as previously shown by other authors 
[12]. The location of  the single maximum, u . . . .  and the 
maximal value of the density, h ...... are given in Table 2. 

Table 2. Values of the coordinates, urn, x and h ..... of the maximum 
of the ground-state electron-pair density h (u) of the He atom. The 
values of the parameters c~ and c%, as given by (31), are also shown. 
The calculation was done in the Hylleraas framework described in 
the text. Atomic units are used throughout 

Hylleraas-type Maximum c~ ~ ~ 2 
wavefunction u=~= h(u~,==) 

1-term 0.000000 0.191202 0,0000000 0.087126 
2-term 0.162781 0.127021 0,0283162 0,183845 
3-term 0.140105 0,120845 0.0196774 0.163095 
6-term 0,163425 0.118766 0.0289043 0.t81186 

10-term 0.175298 0.117329 0.0333685 0.191409 
20-term 0.190546 0.116545 0.0414379 0,206741 

Table 3. Values of the upper bounds U 0 and U~ to the location u ..... 
of the maximum of the electron-pair density h (u) of He. The ratios 
R (s, t)= H(s, t)/h ..... are given, in percent, for (s, t )= (0, - 1), 
(0, - 2) and ( - 1, - 2). H(s, t) are the lower bounds to the maximal 
intensity hm=>: of h (u) as defined in the text. The M-term Hylleraas- 
type wavefunctions are used. Atomic units are also used throughout 

~I  um~ ~ hm~ ~ 

U, U 0 R(0, - 1) R(0, - 2 )  R ( -  1, - 2 )  

1 0.751 1.111 43.4 62.8 71.1 
2 0 .886  1.255 51.5 70.0 77.5 
3 0 .893  1,277 49.7 68.7 76.5 
6 0 .906  1.284 50.4 69.2 76.9 

10 0 .917  1.288 5t.0 69.7 77.3 
20 0.924 1.291 51.4 69.9 77.5 

2. The interelectronic function h (u)/u ~ is monotonically 
decreasing from the origin for a > e i and has the property 
of  convexity for e > cq, where the parameters el and 0% 
have the values shown in Table 2 as calculated in the 
above mentioned Hylleraas framework. Notice that the 
20-term values, which are almost the exact ones, give 

~z=0.0414 and e2=0 .2067 .  (31) 

Then, the sets of  inequalities obtained in the two previous 
sections may be applied to the helium case. The ine- 
qualities of  Sect. II, which allow to correlate three inter- 
electronic moments  (u" )  of  successive orders, are highly 
accurate. For illustration, the accuracy of the inequality 
(13) is always higher than 85% and slightly depends on 
both the order n and the number M of  terms of the wav- 
efunction. The particular cases n = 0 and n = 1 together 
with the ~2-value given by (31) allow to bound in both 
senses the total electron-electron repulsion energy E<,<, of  
He as 

i 

1.1741 ( u )  - ~ < E.~. < 0.8470 ( u -  2)3. 

The interval defined by these two bounds to Eee may be 
still narrowed by taking a p-value P0 > 2 in the inequality 
(9); this requires the knowledge of  the parameter  ap0, 
which is obtained by numerically solving the correspond- 
ing inequality (2). 

The inequalities of  Sect. I II  are based only on the un- 
imodality of  the intracule density h (u) and they correlate 



the coordinates (u ... . .  h ... .  ) of  the single maximum of 
h (u) with the interelectronic moments  @n).  In the helium 
case, the upper bounds U 0 and U 1 given by (16)-(17), 
for the location Urea × of the maximum, are numerically 
shown in Table 3. By comparing these bounds with the 
appropriate value of Um~ x given in Table 2, one observes 
that its quality is poor. Although the accuracy of these 
bounds may be improved as more as we want by taking 
into account the inequalities (26) for values of  k higher 
than 1 (what means to consider additional moments  ~u ~) 
of  integer order n other than - 2 ,  - 1, 0 and 1), we think 
that this is not the right way to operate due to the so 
complicated expressions for the resulting bounds. We be- 
lieve that it would be better to obtain bounds similar to 
( I6)- (17)  which are based not only on the unimodality 
property but also on other characteristics of  the density 
h (u) as it will be shown elsewhere. 

The lower bounds h (s, t) to the maximal value o f h  (u) 
given by (18)-(22) depend only on two interelectronic 
moments  (u~).  For  illustrative purposes, let us consider 
those given by (20)-(22) which for the He atom are as 

h ( - 1, - 2) = 0.03979 ( u -  ~---~ (32) 

h (0, - 2) = 0.04594 ( u -  2)~ (33) 

h (0, - 1 ) = 0.07074 (u - ~ ) 3. (34) 

The quality of  these bounds is numerically studied in 
Table 3 by means of  the above mentioned Hylleraas-type 
wavefunctions. From the ratios R ( s , t ) = h ( s , t ) / h  . . . .  
given in percent, one observes that the best bound is 
h ( -- 1, - 2), its accuracy being of 77.5% in the 20-terms 
case. In this calculation the values of  the moments  (u - ~ ) 
and (u - 2 )  were taken f rom Table 1. Regarding Table 3 
one realizes that, since u ..... is near the origin and that 
moments of  negative order grasp better such a region of 
the density, we can further improve this accuracy by 
considering two moments  of  higher negativity order; 
possibly, moments of  fractional order between - 3  and 
- 2, but this will be studied elsewhere [25]. Another  way 
to further improve the quality of  these bounds is, of  
course, by including a higher number of  moments, but 
this is much more cumbersome. 

Finally, let us concentrate our attention on the total 
interelectronic repulsion energy Ee~ = (u ~). For  the He 
atom, the inequality (23) gives the upper bound 

I 

E.,~ < 2.41799 h ; ~  (35) 

and the particular cases n = 0 and n = 1 of  the inequality 
(13) together with the value of  a2 given by (31) provide 
the following lower and upper bounds: 

5 
1.1741 ( u )  ~ __< Eee <0 .8470(u  2) "- . (36) 

Although the mathematical  and physical origin of  these 
two inequalities (35) and (36) is very different, both of  
them are very accurate. Indeed, from the information 
given in Tables 1 and 2 one can see that the accuracy of  

the inequality (35) is 80% and that of  the inequality (36) 
is about  90%. 

V.  C o n c l u d i n g  r e m a r k s  

First of  all we have proved that, although the electron- 
pair density h (u) is non-monotone,  there always exists a 
value of c~ such that the electron-pair function h ( u ) / u  ~ 
is not only monotonically decreasing from the origin but 
also convex for any a tom in both ground and excited 
states. Then, this result together with the Stieltjes mo- 
ment-problem technique have been used to obtain uni- 
versal relationships which involve three interelectronic 
radial expectation values (u n) of  sucessive integer orders. 

In addition, for those atoms having a unimodal h (u), 
upper bounds to the location u ..... of  the single maximum 
in terms of  an arbitrary number of  values (u" )  and lower 
bounds to the maximal intensity h (u ..... ) by means of two 
arbitrary values (u" )  are obtained in a rigorous way. 

Finally, the electron-pair density h (u) of  the He atom 
is investigated and the quality of  all the above mentioned 
bounds is studied by means of  the M-term Hylleraas-type 
wavefunctions. It  is found that the interelectronic func- 
tion h ( u ) / u  °'°4 is monotonically decreasing from the or- 
igin and h ( u ) / u  °2~ is convex everywhere. The accuracy 
of the resulting bounds is, often, bigger than 80% in the 
20-term case, which is shown to be very close to the exact 
one. 
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