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Abstract. The "Stieltjes moment problem" technique to- 
gether with the positivity and monotonic decreasing 
properties of the electronic density of an atom is used 
to find new and more accurate lower bounds for the 
charge density at the nucleus and the momentum density 
at the origin, in terms of radial and momentum expecta- 
tion values, respectively. Bounds depending on two and 
three expectation values are given explicitly and a Har- 
tree-Fock study of their quality is carried out. Also, the 
behavior of the new bounds at large Z's is discussed. 
The Stiettjes technique allows to find lower bounds of 
better accuracy by including expectation values of higher 
order. 

PACS: 31.15.+q 

The electronic charge and momentum densities of N- 
electron systems with nuclear charge Z (heretoforth to 
be denoted by p(r) and ~,(p) respectively) at the origin 
are quantities which play a fundamental role in many 
problems of atomic physics (Otten [1], Gfilvez and Dehe- 
sa [2], G~lvez et al. [3]). No exact expressions are 
known for these quantities except in the hydrogenic case, 
but a rigorous upper bound (Hoffmann-Ostenhof et al. 
[4]) and an estimated value (Cioslowski [5]) to p(0) of 
high accuracy have been recently derived in terms of 
radial expectation values (r ~) with ~ = - 1 and - 2. 

Also, we have found lower bounds to p(0) in terms 
of one (G~lvez and Dehesa [2]) and two (G/dvez et al. 
[3]) expectation values (r ") for any real c~>-3  pro- 
vided that max p(r)=p(O), p(r) being the spherically 
averaged charge density of an atom, i.e. 

(r i - p ) _ = ~ j  p(r)df2 

what has been numerically shown to be true for all atoms 
studied (Sperber [6], Weinstein et al. [7], Simas et al. 

[8], Angulo [9]). To obtain these bounds, a variational 
technique was used. The most accurate lower bound in 
terms of expectation values of integer order turns out 
to be 

p(0)> 1 ( r - 2 )  2 (~) 

For neutral atoms this bound, as studied in a Har- 
tree-Fock framework, has a quality which worsens with 
high Z, and its accuracy is always less than 50% (Gfilvez 
et al. [3]). 

In the 7(0) case, the only published results are lower 
bounds given by means of the momentum expectation 
value (p~) for any real c~ with - 3  <0~< 5 (Gfilvez and 
Dehesa [2], G~lvez [10]). Best bound for integer c~'s 
is obtained for c~ = - 2 ,  as 

1 ( p - 2 ) 3 / 2  - M '  (2) 
Y(0)> 4]/~ ~ N1/2 

provided that max 7(P)=7(0), where y(p) is the spheri- 
cally averaged momentum density of an atom. For 
spherical atoms, there is a slightly better bound, namely 

7(o)>~ (p-2>3/2 N1/2 

The behavior and Hartree-Fock properties of these 
two bounds have been discussed in the last two previous- 
ly mentioned papers. One should also quote that inequa- 
lities involving (i) p(O), (r ~) and the average charge 
density, (p), (ii) p(O), (r ~) and the indirect Coulomb 
energy, J(p), (iii) 7(0), (p~) and the average momentum 
density, (7), have been derived for spherical atoms (Gill- 
vez [10]). 

Here, we will use the so-called "Stieltjes moment 
problem" technique to find in a rigorous way that: 
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I. The charge density at the nucleus, p(0), is bounded 
from below both by C2 and by 

p(O)>= 1 2(r-i)3+(r-2)2(r)-3g(r-2)(r -1)_C 
3 8(r-1)(r)-9N 2 
(3) 

for all atoms which fulfil that p' (r)< 0. 

2. The atomic momentum density at the origin, 7(0), has 
similar bounds M2 and M3, with (r ~) replaced by (p~), 
provided that V'(p)< 0. 

To prove the above mentioned bounds we invoke the 
following corollary of a Stieltjes theorem (Shohat and 
Tamarkin [11]): A necessary condition which the se- 
quence of moments {v0, v~, ..., v,} must satisfy in order 
that a density function q5 (x), 0 < x < 0% having these mo- 
ments 

09 

v~= ~x~d~(x) dx, e=0,1  . . . . .  n 
0 

may exist is that the following inequalities hold: 

1~ 0 V 1 . . .  V m 

vl v2...v,~+ 1 >0, re=O, 1, ..., [n/2] 

Vrn Vm + 1 • •" V 2 m  

where [z] denotes the greatest integer less than or equal 
to z. 

Assuming that ~b(x) is unimodal at the origin, i.e., 
monotically decreasing from the origin, then 
f(x) = -~'(x) is a positive-definite function with mo- 
ments 

c~  

j x~f(x)dx=(~(O)g)~,o+~V~-x 
0 

The application of the previous corollary to the func- 
tion f(x) leads to the new inequalities 

q~(O) Vo 2vl . . .my, , -1  

m;V°'~'~';" 2vl 3v2...(m+ l)vm >0, 

(m+ 1) V,n (m+2)Vm+l...2mv2,,_ll 

m = t ,  2 . . . . .  In/2] (4) 

which allow to bound the value of the density function 
qS(x), 0 < x < o% at the origin, ~b(0), in terms of any given 
number of its moments. Furthermore, they supply lower 
bounds to q~(0) since the principal minor of 4)(0) in this 
matrix is indeed positive as it is indicated by the Stieltjes 
moment problem associated to the function - x  2 q~'(x). 

In particular, for m = I, 2 one has 

v2 (4a) 
~(0)=>2v 1 

and 

~b(0) > 4v~ v3-12Vo vl v2 + 8 v~ 
8vl v3-9v2 z 

(4b) 

respectively. 
In case that the function 4) represents the spherically 

averaged charge density of an atom, p(r), its moments 
are 

v~= ~ r~p(r)dr=~r~-2p(r)d3r~4~(r~-2 ) 
0 

(5) 

for c~>-  1. It is assumed that the charge density p(r) 
is normalized to the number of electrons of the system, 
i.e. 

Sp(r)d3r=N. 

On the other hand, the condition p'(r)< 0, which ex- 
presses the monotically decreasing of the electron density 
p(r), has been numerically shown to be true for all atoms 
studied (Simas et al. [8], Angulo [9] ); then, the inequali- 
ties given by (4) are valid. Now, taking the values of 
v~ with e=0,  1, 2 and 3 to (4a and b) one has in a 
straightforward manner the searched lower bounds C2 
and C3 to p(0) as given by the inequalities (1) and (3) 
respectively. 

In momentum space, the application of the same pro- 
cedure to the spherically averaged momentum density 
of an atom, 7(P), easily leads to the above mentioned 
lower bounds M 2 a n d  M 3 to ~(0), provided that ~,'(p)__< 0. 
The latter condition, which indicates the unimodality 
at the origin of the atomic momentum density, is not 
universally true. Indeed, the condition 7'(/9)_-<0 is only 
fulfilled for Z=1-7 ,  11-13, 19-26, 31, 37-42 and 49-50 
in the 1 _< Z_< 54 region of the periodic table (Anguto[9]). 

The Stieltjes technique allows for the inclusion of 
higher moments (expectation values), provided they exist, 
so improving the quality of the bounds. 

That quality is numerically studied in Tables 1 and 
2 and Fig. I for several ground-state atoms satisfying 
the required constraint. The radial and momentum ex- 
pectation values as well as the values of p(0) and ~(0) 
used in the tables are based on non-relativistic atomic 
wavefunctions (Clementi and Roetti [12], Boyd [13], 
Gadre etal. [14]). In Table 1 we compare the two-, 
three- and five-moments bounds (i.e., C2, C3 and C4 
respectively) with the Hartree-Fock value of p(0) for a 
few atoms. This comparison is extended to all atoms 
with Z < 54 in Fig. 1. In Table 2, the one-, two-, three- 
and five-moments bounds (i.e., M', M2, Ma and M4 re- 
spectively) are compared among themselves and with the 
Hartree-Fock value of 7(0). One observes that sharpness 
is not yet obtained. The momentum M-bounds are of 
much better accuracy than the charge C-bounds. In both 
cases, one notices that the accuracy of the bounds gets 
substantially improved when a new expectation value 
is included. In addition, the quality of the charge C- 
bounds has a monoton decreasing behavior with increas- 



Table 1. Comparison of the two-, three- and five-moments lower 
bounds (Cz, C3 and C4 respectively) with the Hartree-Fock value 
of p(0) for a few neutral atoms. Ratios between bounds and p(0) 
are given in percent. Atomic units are used everywhere 

Z p(0) C2 C3 C,, R 2 R 3 R 4 

2 3.60 1.70 2.28 2.58 47.1 63.4 71.8 
6 127.56 52.16 66.20 72.89 40.9 51.9 57.1 

10 620.15 220 .14  308 .50  345.96 35.5 49.7 55.8 
14 1765.71 592.36 733.81 364.45 33.5 41.6 49.0 
18 3840.22 t224.77 1560.64 1833.07 31.9 40.6 47.7 
27 13370.81 3893.83 4961.13 5569.79 29.1 37.1 41.7 
36 32228.20 8720.68 11184.14 13188.25 27.1 34.7 40.9 
42 51612.91 13514.35 16945.05 19168.98 26.2 32.8 37.1 
48 77609.13 19676.69 24900.82 27920.37 25.4 32.1 36.0 
54 111163.95 27484.77 34310.90 39920.39 24.7 30.9 35.9 
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ing Z's  while that of the m om en t um  M-bounds  does 
not. 

Also, it is interesting to analyze the asymptot ic  be- 
havior of the above mentioned bounds with the nuclear 
charge Z. Since the expectation values ( r  ~> and < f >  
of neutral a toms go for large Z as (Dmitrieva and Plin- 
dov [15]) 

- 3 < c ~ <  - 3 / 2  

- 3 / 2 < c ~ < 3  

~ = 3  

- 3 < e <  --3/2 

- 3 / 2 < c ~ < 3  

~ = 3  

Z - c t  

<tO ~ [ Z  1-~/3, 

kin Z, 

<p~>,~ Z l  + Z~'/3, 

[ Z  3 In Z, 

then one can easily obtain that  the encountered bounds 
Cm, m = 2 ,  3, 4 to p(0) and Mm, m = 2 ,  3, 4, to 7(0) have 
a Z s/< and Z - 1 / < b e h a v i o r  at large Z, respectively, while 
in the variational case (with only one moment)  go as 
Z 5/e (position space) and Z-1/2 (momentum space). 

For  completeness, let us point out that contrary to 
the momen tum case, where the only existing expectation 
values ( f >  are those with - 3 < ~ < 5  due to the 
p-S-decreasing behavior  of ]~(p) at large momen ta  (Ben- 

Fig. 1. Comparison of the two-, three- and five-moments lower 
bounds, C2/Z 3, C3/Z 3 and C4/Z 3 respectively, with the Hartree- 
Fock value p (0)/Z 3 for all neutral atoms with Z < 54. Atomic units 
are used everywhere 

esch and Smith [16], Thakkar  [17]), in the position 
space the existence of all the radial expectation values 
(r~>, ~ > -  3, and then all the moments  v~, ~ > -  1, of 
the charge density p(r), is assured due to its known ex- 
pontential  behavior  at large distances (Benesch and 
Smith [16]). So, in principle, one can obtain with the 
Stieltjes technique, by means of the determinantal  in- 
equalities (4), a lower bound of p(0) with any given accu- 
racy just by taking into account a sufficiently high 
number  of moments  vs. However, the corresponding ex- 
pressions are not analytically useful. 

Summarizing, we have found two sets of rigorous 
lower bounds {C,,, m = 2 ,  3, 4, ...} and {ram, m = 2 ,  3 and 
4} to the atomic charge and m o m e n t u m  densities at the 
origin, respectively, by means of the expectation values 
of the corresponding coordinate provided that such den- 
sities have a monotonical ly decreasing behavior. As al- 
ready discussed, Har t ree-Fock calculations seem to show 
such a behavior for a large port ion of atoms in the mo-  
mentum density and for the whole periodic table in the 

Table 2. Comparison of the one-, two-, three- and five-moments lower bounds (M', Mz, M3 and M 4 respectively) with the Hartree-Fock 
value 7(0) for a few neutral atoms which have a monotonically decreasing momentum density. Ratios between bounds and 7(0) are 
given in percent. Atomic units are used everywhere 

Z 7 (0) M' M2 M3 M4 R' R2 R3 R4 

2 0.439 0.269 0.311 0.371 0.388 61.2 70.8 84.5 88.5 
7 0.799 0.477 0.589 0.665 0.693 59.7 73.7 83.2 86.7 

11 10.385 2.547 4.776 6.298 6.975 24.5 46.0 60.7 67.2 
13 4.881 1.873 2.996 3.596 3.815 38.4 61.4 73.7 78.2 
20 19.270 4.873 9.346 11.225 12.064 25.3 48.5 58.2 62.6 
25 10.640 2.430 4.708 5.914 6.480 22.8 44.2 55.6 60.9 
31 4.290 1.168 2.120 2.680 2.925 7.2 49.4 62.5 68.2 
38 23.82I 4.604 10.216 12.485 13.412 19.3 42.9 52.4 56.3 
40 16.966 3.280 6.973 8.569 9.235 19.3 41.1 50.5 54.4 
50 4.227 1.170 2.120 2.576 2.764 27.7 50.2 61.0 65.4 
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charge  density. The  first two bounds  of  each set have  
a simple and  c o m p a c t  fo rm which involve the expecta-  
t ion values of  order  ~ = - 2 ,  - 1  and  + I. In  general, 
the qual i ty  of  the m o m e n t u m  M - b o u n d s  is bet ter  than  
tha t  of  the charge C-bounds ,  being m u c h  bet ter  for light 
a toms.  Finally, let us only men t ion  tha t  the new bounds  
al low to correlate  in a s imple m a n n e r  p(0) and  7(0) with 
fundamenta l  and /o r  measurab le  quant i t ies  which are 
represented by  the radial  and  m o m e n t u m  expecta t ion  
values respectively, such as, for example,  the d iamagnet ic  
susceptibil i ty ( ~ ( r 2 ) ) ,  the electron-nucleus potent ia l  
( ~ ( r - 1 ) ) ,  the spherically averaged C o m p t o n  profile 
peak  ( , ,~ (p-1) ) ,  the Dirac-Sla ter  exchange energy 
( , - - (p)) ,  the non-relat ivist ic  kinetic energy ( ~  @2) )  and  
the relativistic Brei t-Pauli  correc t ion  to the kinetic ener-  
gy (,,~ (p4)) .  
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