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Abstract Within the present advanced review on the meaning, interpretation and
applications of the so-called ’complexity’, different order-uncertainty planes em-
boding relevant information-theoretic magnitudes are studied in order to analyse
the information content of the position and momentum electron densities of sev-
eral atomic systems, including neutral atoms, singly-charged ions and isoelectronic
series. The quantities substaining those planes are the exponential and the power
Shannon entropies, the disequilibrium, the Fisher information and the variance.
Each plane gives rise to a measure of complexity, determinedby the product of its
components. In the present work, the values of the so-calledLópez-Ruiz, Mancini
and Calbet (LMC), Fisher-Shannon (FS) and Cramer-Rao (CR) complexities will be
provided in both conjugated spaces and interpreted from a physical point of view.

1 Introduction

There have been tremendous interests in the literature to apply information the-
ory to the electronic structure theory of atoms and molecules [1, 2]. The concepts
of uncertainty, randomness, disorder or delocalization, are basic ingredients in the
study, within an information theoretic framework, of relevant structural proper-
ties for many different probability distributions appearing as descriptors of several
chemical and physical systems and/or processes.
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Computacional, Universidad de Granada, 18071-Granada, Spain, e-mail: angulo@ugr.es

J. Antoĺın
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Following the usual procedures carried out within the Information Theory for
quantifying the aforementioned magnitudes concerning individual distributions,
some other extensions have been done in order to introduce the concepts of ’similar-
ity’ or ’divergence’ between two distributions, as comparative measures. Quantum
similarity theory was originally developed in order to establish quantitative compar-
isons between molecular systems by means of their fundamental structure magni-
tudes: electron density functions. Applications of this important theory have been
one of the cornerstones of recent chemical research in molecules [3, 4, 5].

Some pioneering efforts relating Information Theory to electronic structure and
properties of molecules can be already found in the seminal papers by Daudel in
the framework of loge theory [6, 7], subsequently followed by Mezey [8] and reex-
amined later by Nalewajski [9]. The studies of Mezey [10] andAvnir [11] on sym-
metry and chirality-related problems in molecules, and in other very diverse fields
(e.g. image and texture analysis), are also examples of applications of informational
measures on specific aspects of shape, disorder and complexity.

This kind of measures and techniques, which in fact characterizes most of the
information theory aims and tools, have been widely employed in recent years
within the atomic physics framework. The present work constitutes a survey of
some of those applications for obtaining relevant information on different properties
of atomic systems, including structural and experimental ones. The role played by
the two conjugated variables, namely position and momentum, appears fundamen-
tal for a complete description of the atomic information features. It is shown that,
in spite of their simplicity among the many-body systems, the atomic ones posses a
highly enough level of organization and hierarchy to be considered as an appropriate
benchmark for the suggested complexity study.

The relevancy of the above concepts motivates the search foran appropriate
quantification, giving rise to a variety of density functionals, each one with its own
characterisitics and properties which make them more or less useful attending to the
specific problem we are dealing with.

Diverse information measures of probability distributions have been widely ap-
plied with the aim of describing a great variety of systems orprocesses in many
different scientific fields. One of the pioneering and most well-known of such mea-
sures is the variance, but later on many others have been alsoconsidered for these
kind of applications. Among them, it should be emphasized the role played by the
Shannon entropyS [12]

S(ρ) ≡−
∫

ρ(r) lnρ(r)dr (1)

and the Fisher informationI [13, 14]

I(ρ) ≡
∫

ρ(r)|∇ lnρ(r)|2dr (2)

of a distributionρ(r). In fact, S is a basic quantity in statistical thermodynamics
[15] and it is the essential tool on the application of the ’Maximum Entropy’ tech-
nique based on Jaynes’ principle. More recently, Fisher information appeared as a
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fundamental magnitude for deriving important laws of e.g. density functional theory
[16, 17] or quantum mechanics [18] by means of the extremization Frieden principle
[14]. The numerous applications of tools based on bothS andI suggest the relevancy
of using them in a complementary way, attending to their maincharacteristics and
properties as will be described later.

1.1 Complexity: Meaning and Definitions

Another relevant concept within information theory, in some cases strongly related
to the aforementioned measures, is the so-called ’complexity’ of a given system or
process. There is not a unique and universal definition of complexity for arbitrary
distributions, but it could be roughly understood as an indicator of pattern, structure
and correlation associated to the system the distribution describes. Nevertheless.
many different mathematical quantifications exist under such an intuitive descrip-
tion. This the case of the algorithmic [19, 20], Lempel-Ziv [21] and Grassberger
[22] complexities, as well as the logical and thermodynamical depths by Bennett
[23] and Lloyd and Pagels [24], respectively, all them as others with many scientific
applications.

Complexity is used in very different fields (dynamical systems, time series, quan-
tum wave functions in disordered systems, spatial patterns, language, analysis of
multi-electronic systems, cellular automata, neuronal networks, self-organization,
molecular or DNA analyses, social sciences, etc.) [25, 26, 27]. Although there is
no general agreement about the definition of what complexityis, its quantitative
characterization is a very important subject of research innature and has received
considerable attention over the past years [28, 29].

The characterization of complexity cannot be univocal and must be adequate for
the type of structure or process we study, the nature and the goal of the descrip-
tion we want and for the level or scale of the observation thatwe use. In the same
way it is interesting to combine the properties of the new proposals to character-
ize complexity and test them on diverse and known physical systems or processes.
Fundamental concepts such as information or entropy are frequently present in the
proposals for characterizing complexity, but some other ingredients that do not only
capture uncertainty or randomness can also be searched. Onewishes also to capture
some other properties such as clustering, order or organization of the systems or
process. Some of the definitions and relations between the above concepts are not
clear; even less so is how disorder or randomness takes part in the aforementioned
properties of the system and vice versa.

The initial form of complexity is designed such that it vanishes for the two ex-
treme probability distributions (little complex ones), corresponding to perfect order
(represented by a Dirac-delta) and maximum disorder (associated with a highly flat
distribution). Most of those definitions take into account elements of Bayesian and
information theories. Some of the more recent ones consist of the product of two
factors, measuring, respectively, order and disorder on the given systems or, equiv-
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alently, localization and delocalization [30, 31]. They will be referred to as product-
complexities.

These product complexity measures have been criticized andconsequently mod-
ified leading to powerful estimators successfully checked in a wide variety of fields
[32, 33, 34, 35, 36, 37]. Fundamental concepts such as entropy or information are
frecuently present in the proposals for characterizing complexity, but it is known
that other ingredients capturing not only randomness are also necessary. In fact one
would wish also to detect, for instance,clustering or pattern.

Even restricting ourselves to the aforementioned factorization, there is no unique
definition for complexity. The reason is that there exist different candidates for being
one of the coupled factors which give rise to complexity. Themost popular ones are
well-known to play a relevant role in an information-theoretic framework. Among
them, let us mention the Shannon entropy S, the disequilibrium D, the Fisher infor-
mation I and the variance V.

Much work has been done using those quantities as basic measures, not only for
quantifying the level of spreading of distributions but also for many other applica-
tions, such as, for instance, maximum-entropy estimation and reconstruction of an
unknown distribution from very limited information on it.

Other authors have recently dealt with some particular factors of the complexity
measures. In particular, Shannon entropy has been extensively used in the study of
many important properties of multielectronic systems, such as, for instance, rigorous
bounds [38], electronic correlation [39], effective potentials [40], similarity [41] and
minimum cross entropy approximations [42].

More recently, Fisher information has been studied as an intrinsic accuracy mea-
sure for concrete atomic models and densities [43, 44] and also for quantum me-
chanics central potentials [45]. Also, the concept of phasespace Fisher information,
where position and momentum variables are included, was analyzed for hydrogen-
like atoms and the isotropic harmonic oscillator [46]. The net Fisher information
measure is found to correlate well with the inverse of the ionization potential and
dipole polarizability [44].

Quantum similarities and self-similarities D for neutral atoms were computed for
nuclear charges Z =1-54 only in the position space [47, 48], but afterwards a more
complete analysis including Z=1-103 neutral systems and singly charged ions has
been done in position and momentum spaces [49].

Some studies on atomic similarity, using magnitudes closely related to D or to
relative Shannon entropies, have been also reported [50, 51]. Very recently a com-
parative analysis of I and D shows that they both vary similarly with Z within the
neutral atoms, exhibiting the same maxima and minima, but Fisher information
presents a significantly enhanced sensitivity in the position and momentum spaces
in all systems considered [52]
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1.1.1 LMC Complexity

Among the more recent and succesful definitions of complexity, usually built up as
a product of two factors quantifying, respectively, order/disequilibrium and disor-
der/uncertainty, specially remarkable is the one providedby López-Ruiz, Mancini
and Calbet [30], to be denoted by C(LMC) due to its pioneeringauthors, which
satisfies as others do the condition of reaching minimal values for both extremely
ordered and disordered limits. Additional relevant properties are the invariance un-
der scaling, translation and replication.

The initial definition of the LMC complexity has been criticized [28] and mod-
ified [35] in order to the aforementioned properties be verified, giving rise to the
expresion

C(LMC) ≡ D · eS = D ·L, (3)

of a distributionρ(r). It is built up as the product of two relevant quantities within
an information-theoretic framework: the ’disequilibrium’ D [53],

D(ρ) ≡
∫

ρ2(r)dr (4)

which quantifies the departure ofρ(r) from equiprobability, and the aforementioned
Shannon entropyS as measure of randomness or uncertainty on the distribution.
The usefulness of C(LMC) has been shown in different fields, allowing detection of
periodic, quasiperiodic, linear stochastic and chaotic dynamics [30, 36, 37].

1.1.2 Fisher-Shannon Complexity

It appears also interesting to look for statistical complexities involving also a local
information measure, as can be done by replacing one of the LMC global factors by
a ’local’ measure of intrinsic accuracy. In this sense, the main properties of Fisher
information I make this quantity to be an appropriate candidate with the aim of
defining a complexity in terms of complementary global and local factors. Very
recently, the Fisher-Shannon complexity C(FS) has been defined [52, 54] in terms
of both Fisher information and Shannon entropy and, consequently, providing a
measure combining the global and local characters, and alsopreserving the desirable
properties for any complexity as previously described. TheFisher information I
itself plays a fundamental role in different physical problems, such as the derivation
of non-relativistic quantum-mechanical equations by means of minimum I principle,
as also done for the time-independent Kohn-Sham equations and the time-dependent
Euler equation [17, 55].

The FS is defined in terms of the power Shannon entropyJ ≡
1

2πe
e2S/3 and the

Fisher informationI as

C(FS) ≡ I · J (5)
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where definition of J is chosen in order to preserve general complexity properties. As
compared to LMC complexity, and appart from the explicit dependence on Shannon
entropy, C(FS) replaces the disequilibrium global factor by the Fisher local one. The
C(FS) expression arises from the isoperimetric three-dimensional inequalityI ·J ≥ 3
[56, 57, 58] providing a universal lower bound to FS complexity. Among the main
applications carried out, it should be remarked those concerning atomic distributions
in position and momentum spaces where FS complexity is shownto provide relevant
information on atomic shell structure and ionization processes [52, 54, 59, 60].

1.1.3 Cramer-Rao Complexity

In the present work, we will also analyze, appart from C(LMC)and C(FS), the
’Cramer-Rao’ complexity C(CR), also as the product of a local and a global mea-
sure, keeping the first one as the Fisher information I, and replacing the Shannon
entropy exponential by the variance V, giving rise to

C(CR) ≡ I ·V, (6)

product which has been considered in different contexts [61, 60, 59]. Specially re-
markable is the existence of a lower bound, in spite of the factors being of very
different origin as well as their definition in terms of the distribution, emphasizing
again the strong connection between both the local and global level of uncertainty.

1.2 Numerical Analysis

The main aim of the present work is to analyze the above definedLMC, FS and
CR complexities associated to the one-particle densities in both conjugated spaces,
namely positionρ(r) and momentumγ(p) densities, as well as the product or phase-
space distributionf (r,p) ≡ ρ(r)γ(p), for a great amount of atomic systems includ-
ing neutral atoms (Section II), singly charged ions (Section III) and isoelectronic
series (Section IV).

Analyzing the main information-theoretic properties of many-electron systems
has been a field widely studied by means of different procedures and quantities, in
particular for atomic and molecular systems in both position and momentum spaces.
It is worthy to remark the pioneering works of Gadre et al [62,63] where the Shan-
non entropy plays a fundamental role, as well as the more recent ones concerning
electronic structural complexity [27, 64], the connectionbetween information mea-
sures (e.g disequilibrium, Fisher information) and experimentally accessible quan-
tities such as the ionization potentials or the static dipole polarizabilities [44], in-
terpretation of chemical phenomena from momentum Shannon entropy [65, 66],
applications of the LMC complexity [36, 37] and the quantum similarity measure



Atomic information planes and complexities 7

[47] to the study of neutral atoms, and their extension to theFS and CR complexities
[52, 60] as well as to ionized systems [39, 54, 59, 67].

The applications in the present work on a global of 370 systems will be car-
ried out in order to gain insight not only on the information content of those sys-
tems, but also to interpret the complexity values in terms ofphysical properties and
processes, such as shell-structure and ionization. Also the associated informational
planes substended by the factors composing each complexitywill allow to obtain
relevant interpretations on the main physical processes and characteristics of the
distributions here studied. In doing so, Near-Hartree-Fock wavefunctions [68, 69]
will be employed to compute the densities and the associatedinformation measures
and planes as well as complexities. For atomic systems in theabsence of external
fields (as is the case of this work) it is sufficient to deal withthe spherically averaged
densitiesρ(r) andγ(p). Main conclusions on the results will be given in Section V.

2 Complexity and Atomic Shell Structure

Complexity studies for atoms have also been carried out, butmost of them are only
for Z=1-54 [27, 64]. Recent complexity computations, usingrelativistic wave func-
tions in the position space, were also done [70]. Some other complexity works sim-
ply take the position density, not the momentum one, as basicvariable [71]. In this
sense, it is worthy to point out the different behaviors displayed by some of these
quantities in position and momentum spaces for atomic systems, as we have recently
shown [50, 52].

In particular, it has been shown that it is not sufficient to study the above measures
only in the usual position space, but also in the complementary momentum space, in
order to have a complete description of the information theoretic internal structure
and the behaviour of physical processes suffered by these systems. Some other new
proposals of product-type complexity measures (e.g., Cramer-Rao complexity) have
been also constructed and computed for multielectronic systems [60].

This section is devoted to the analysis and interpretation,from a physical point
of view, of the LMC, FS and CR complexity values and information planes cor-
responding to all neutral atoms throughout the Periodic Table, within the range of
nuclear chargesZ = 1−103. Such a study is carried out in position, momentum and
phase/product spaces, which corresponding distributionsand their complexities are
obtained by means of the accurate wavefunctions provided inRef. [68].

2.1 Comparison between Atomic LMC and FS Complexities

First, let us compare the LMC and FS complexities for those systems, as done in
Fig. 1 for position and momentum spaces (1(a) and 1(b), respectively). It is remark-
able, attending to the curves displayed in these figures, thesimilar structure of LMC
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Fig. 1 LMC and FS complexities for neutral atoms with nuclear charge Zin position (left) and
momentum (right) spaces. Atomic units (a.u.) are used.

and FS complexities in both spaces, in spite of their strongly different definition,
mainly due to the information measure accompanying the Shannon factor, namely
the ’global’ disequilibrium for LMC and the ’local’ Fisher information for FS. It is
worthy to point out not only the almost identical magnitude orders of both complex-
ities, but also the strong correlation between their structure, characterized by the
number and location of extrema, and the shell-filling process as well as the groups
the atoms belong to. Last comment is supported by the fact that both complexities in
the two conjugated spaces display local minima for noble gases as well as for some
atoms involved in the so-called ’anomalous shell-filling’ (being specially relevant
the systemsZ = 24,29,46). Similar comments can be done concerning maximal
values.

2.1.1 LMC and FS Information Planes
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Fig. 2 Disequilibrium-Shannon plane (D,L) for neutral atoms with nuclear charge Z in position
(left) and momentum (right) spaces. Atomic units (a.u.) are used.

Attending to the factors which compose complexities, it is also interesting to an-
alyze the individual contribution of each one to the total complexity. For illustration,
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the ’disequilibrium-Shannon plane’ is shown in Fig. 2, drawn in terms of (D,L), as
components of the LMC complexity, in position and momentum spaces (Figs. 2(a)
and 2(b), respectively). Both figures again reveal the shell-filling patterns, much
clearly in momentum than in position space. In fact, the different pieces of curves
in momentum space belong to disjoint exponential entropy (Lp) values. Adding a
new subshell makesLp to increase, the disequilibriumDp decreasing within each
subshell. Opposite behaviors are displayed in position space concerning not only
monotonicity, but also location of regions within the planes where heavy atoms con-
centrate around: high disequilibrium in position space andhigh disorder (entropy)
in the momentum one.

2.2 Atomic CR Complexity
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Fig. 3 CR complexity for neutral atoms with nuclear charge Z in position (upper left), momentum
(upper right) and product (lower) spaces. Atomic units (a.u.) are used.

Concerning Cramer-Rao complexity C(CR), main numerical results for atomic
systems are displayed in Fig. 3 for position, momentum and product spaces. In ana-
lyzing their structure as functions of the nuclear chargeZ it is interesting to observe
that most minima ofCr(CR) and all ofCp(CR) are the same of the LMC and FS
complexities, previously specified. In fact, shell structure patterns are very similar
for the three complexities, in spite of being determined by four quantities (S, D, I
and V) of very different character. The same also occurs for some of those isolated
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factors in all spaces, such as e.g. the exponential entropy Land the variance V, which
figures are not shown for the sake of shortness.

2.2.1 CR Information Plane
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Fig. 4 Cramer-Rao plane (I,V) for neutral atoms with nuclear charge Zin position (left) and mo-
mentum (right) spaces. Atomic units (a.u.) are used.

The Cramer-Rao (I,V) information plane is shown in Fig. 4 forthe two con-
jugated spaces, in order check to which extent each composing factor is respon-
sible of the shell-filling pattern displayed. In position space (Fig. 4(a)), adding a
new subshell makes Fisher informationIr to appreciably increase, its values belong-
ing to disjoint intervals determined by the valence subshell. However, the variance
Vr ranges over a unique interval for all systems without distinguishing their shell
structure, but displaying a monotonically decreasing behavior (with few exceptions)
within each specific subshell. Just the opposite behaviors for the corresponding mo-
mentum quantitiesIp andVp are observed in Fig. 4(b), in what concerns ranges of
values and monotonicity.

It is worthy to notice how the three complexity measures hereconsidered are
able to provide information not only on randomness or disorder, but also on the
structure and organization of the atomic systems. The same is not always true for the
individual factors, appearing relevant to deal simultaneously with the localization
and randomness factors, as well as the complementary conjugated spaces, in order
to have a more complete description of the information content of atomic systems.

Summarizing the results of this section, (i) a complete description of the information-
theoretic characteristics of atomic systems requires the complementary use of posi-
tion and momentum spaces, (ii) LMC and FS complexities provide similar results
(qualitatively and quantitatively) for all neutral atoms in both spaces, displaying
periodicity and shell-filling patterns as also CR complexity does, and (iii) such pat-
terns of the localization-delocalization planes in one space are inverse to those of
the conjugated space.
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3 Effects of the Ionization on Complexity

In this section the LMC, FS and CR complexities are analyzed for singly charged
ions with a number of electrons up toN = 54, that is with a global chargeQ = Z −
N = ±1, Z being the nuclear charge. These quantities, together with the previously
discussed values for neutral atoms within suchN range, provide us with information
on how complexity progresses in mono-ionization processes[54, 59]. In doing, we
are considering a global of 150 systems (53 cations, 43 anions and 54 neutral atoms),
the computations on ions being performed by employing the accurate wavefunctions
of Ref. [69].

3.1 LMC and FS Complexities of Singly-Charged Ions

A similar comparison between LMC and FS complexities as donepreviously for
neutral atoms in both conjugated spaces has been also carried out for anions and
cations in the two spaces. Conclusions raised by the analysis of these quantities for
ions are almost identical to those provided when discussingthe Fig. 1 for neutral
atoms, in what concerns similarity between C(LMC) and C(FS)values as well as
their connection with the shell-filling process by means of the location of their ex-
trema, most minima of complexity corresponding to noble gases or the anomalous
shell-filling set of atoms.

3.2 CR Complexity of Singly-Charged Ions and Neutral Atoms

Fig. 5 CR complexity in
product space neutral atoms
and singly charged ions with
nuclear charge Z. Atomic
units (a.u.) are used.
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Concerning the Cramer-Rao complexity C(CR), its evolutionthroughtout the
ionization is clearly displayed in Fig. 5, where its value isprovided for the three
considered species (anions, cations and neutrals) in orderto determine to which ex-
tent the ionization processes (by adding or removing electrons keeping fixed the
nuclear chargeZ) modify the atomic complexity. For illustration, this comparison is
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carried out for the Cramer-Rao complexityCrp(CR) in the product space as shown
in Fig. 5. Again, it is clearly observed the correlation of complexity with the atomic
shell structure for all species. Additionally, it is appreciated that (i) complexity in-
creases as the system loses an electron, and (ii) maxima are clearly associated to ’s’
valence subshells (those involved in ionization) while minima correspond to noble
gases or some anomalous ’d’ subshells filling.

3.2.1 CR Information Plane for Monoionization Processes
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Fig. 6 Cramer-Rao plane (I,V) in position (left) and momentum (right) spaces, for neutral atoms
and singly charged ions with nuclear charge Z. Atomic units (a.u.) are used.

The Cramer-Rao informational plane substended by the constituing factors (I,V)
also provides interesting results interpreted according to the atomic shell structure.
Fig. 6 displays this plane in both conjugated spaces (6(a) for position and 6(b) for
momentum) for the systems here considered. Appart from the faithful reproduc-
tion of shell structure, it is worthy to remark that, as shownin Fig. 6(a), systems
of large Z are highly localized and organized in position space while the light ones
appear much more delocalized. Location at the position(Ir,Vr) plane after an ion-
ization process slightly changes for heavy atoms as to the light ones. Additionally,
for fixed nuclear charge Z complexityCr(CR) decreases following the sequence
anion-neutral-cation, that is as losing electrons, being the changes associated to ’s’
electrons considerably higher to those of ’p’ or ’d’ subshells.

Exactly the opposite trends to those discussed in position space are observed in
the momentum one, as shown in Fig. 6(b): large Z systems are now less localized and
with a greater variance than the light ones, and lossing electrons makes the variance
to increase and Fisher information to decrease, just the reciprocal that happens in
position space.



Atomic information planes and complexities 13

4 Isoelectronic Series: Dependence of Complexity on the Nuclear
Charge

After carrying out the analysis of complexity dependence onthe outermost sub-
shells, as done in the previous section by considering ionization processes, let us
now focus in the atomic core as source of the attractive forces and their effects on
complexity values.

4.1 Composition and Number of Isoelectronic Series

We start by considering a neutral atom, that is a system with identical values of the
nuclear chargeZ and the number of electronsN, from which we give rise to a set of
cations by progressively increasing one-by-one the nuclear chargeZ keeping fixed
the number of electrons (or, equivalently, starting from a global chargeQ ≡ Z −
N = 0 until reaching a maximum positive value, beingQmax = 20 in the numerical
application here considered). Such a set of cations together with the neutral atom is
known as an ’isoelectronic series’, characterized by the fixed number of electronsN
as well as the maximum valueQmax. Studying the previously considered complexity
measures for a given isoelectronic series provides information on their dependence
on the nuclear chargeZ for fixed N electrons. In this section, such a study will
be carried out for nine isoelectronic series, namely those corresponding toN =
2−10, within a Hartree-Fock framework [69]. Each series consists of 21 members
(a neutral atom and 20 cations), giving rise consequently toanalyze complexities of
a global of 189 atomic systems.

4.2 Complexities and Information Planes of Isoelectronic Series

As in Section III, we consider here (i) LMC, FS and CR complexities, (ii) the as-
sociated information planes (D,L), (I,J) and (I,V), and (iii) distributions in position,
momentum and product spaces.

4.2.1 LMC Complexity and Information Plane

In Fig. 7 the disequilibrium-Shannon plane (D,L) is shown inposition, momentum
and product spaces (Figs. 7(a), 7(b) and 7(c), respectively) for the isoelectronic se-
ries N = 2− 10. For the individual spaces (position and momentum), eachseries
roughly follows a linear trajectory in a double logarithmicscale. In fact, the Helium
series (N = 2) displays an almost constantC(LMC) = D ·L line in both spaces, what
means that increasing the nuclear charge produces, as should be expected, a higher
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Fig. 7 Disequilibrium-Shannon plane (D,L) in position (upper left),momentum (upper right) and
product (lower) spaces, for isoelectronic series withN = 2−10 electrons. Atomic units are used.

localization D and a lower uncertainty, both effects compensating each other propor-
tionally and providing an almost constant product which defines LMC complexity.
Concerning product space, the corresponding Disequilibrium-Shannon plane (D,L)
is shown in Fig. 7(c). It is worthy to notice the strong changes in the slopes of
all series as compared to those of the isolated spaces. While product entropy does
not suffer drastic changes, localization appears very different within each series.
Additionally, shell-filling patterns are clearly displayed, with systems having 2s as
valence subshell having a higher complexity than those filling the 2p one. It is also
remarkable that theN = 2 series displays a very different behavior as compared
to the other series. This can be interpreted by taking into account that those sys-
tems are the unique ones here considered consisting only on acore shell. From all
these comments it should be concluded that the product spaceplane is relevant in
order obtain an interpretation of the Disequilibrium-Shannon plane values in terms
of shell structure.

In position space, systems with large nuclear chargeZ for any isoelectronic series
display a highly localized structure (large D) as shown in Fig. 7(a). In such a large
D area, trajectories are almost linear which correspond to analmost constant prod-
uct measure. Deviations from this linear shapes are better observed for low nuclear
charge systems, possesing a greater complexity. Biggest position space complexi-
ties correspond to neutral systems, with a relatively lowerlower localization and
greater uncertainty as compared to its cations. All those comments are just the op-
posite ones in momentum spaces, as can be readily realized byobserving Fig. 7(b).
Heavy systems are characterized by a low localization and high entropy in mome-
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tum space, and neutrals deviate from isoproduct lines as possesing a higher level
of structure. It is worthy to remark also that spacing between consecutive systems
within each isoelectronic series decreaes as increasing Z,because of a higher sim-
ilarity between systems with large nuclear charge as compare to those with low Z,
which progressively separate among themselves.

4.2.2 FS Complexity and Information Plane
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Fig. 8 Fisher-Shannon plane (I,J) in position (upper left), momentum (upper right) and product
(lower) spaces, for isoelectronic series withN = 2−10 electrons. Atomic units are used.

A similar analysis has been also carried out for the Fisher-Shannon plane (I,J)
in position, momentum and product spaces (Fig. 8). It is worthy to remember the
rigorous lower bound to the associated FS complexityC(FS) = I · J ≥ constant
(the constant being 3 for the conjugated spaces and 18πe for the product space)
in order to verify such a bound for the systems here considered. The straight line
I · J = constant drawn in the plane by using a double logarithmic scale divides it
into an ’allowed’ (upper) and a ’forbbiden’ (lower) parts. Parallel lines to that one
represent isocomplexity points, and higher deviations from this frontier are associ-
ated to greater FS complexities. Such a parallel shape is roughly displayed by all
isoelectronic series in both position and momentum spaces,as shown respectively
in Figs. 8(a) and 8(b). Similar comments to those provided ondiscussing Fig. 7 in
what concerns location areas of systems at the plane, distances within a series be-
tween consecutive systems, deviation from minimal complexity values and opposite



16 J.C. Angulo and J. Antolı́n

behaviors in conjugated spaces are also valid for the position and momentum (I,J)
planes as concluded by analyzing Figs. 8(a) and 8(b).

For the sake of briefty, results on the Cramer-Rao plane (I,V) are not displayed,
but conclusions obtained from their values are the same as those just discussed for
disequilibrium-Shannon and Fisher-Shannon planes.

5 Concluding Remarks

Different information-theoretic quantities as well as complexities defined as the
product of a couple of localization-delocalization factors have been shown to pro-
vide relevant information not only on the shell structure and organization of a great
variety of atomic systems, but also on ionization processesand their dependece on
both the nuclear charge and the number of electrons. In doingso, it appears nec-
essary to deal simultaneously with the conjugated positionand momentum space
electron densities, being also important to consider the product space in order to
get a more detailed and complete description of such systems. The method here
employed for carrying out the present study is also applyable to the analysis of ad-
ditional multifermionic systems, as is the case of molecules and many others, as
well as physical or chemical processes, such as reactions orpolarization among oth-
ers. Some of these subjects are now being studied and will be presented hopefully
elsewhere.

It has been also shown the interest of studying the associated information planes
substended by two information functionals, which for the atomic case clearly dis-
play the characteristic shell-filling patterns throughtout the whole periodic table. It
still remains open the question of the existence of additional functionals, planes and
complexities providing further information on the atomic structure and the ioniza-
tion processes, among others
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42. J. Antoĺın, J.C. Cuch́ı, J.C. Angulo, J. Phys. B32, 577 (1999).
43. A. Nagy, K.D. Sen, Phys. Lett. A360, 291 (2006).
44. K.D. Sen, C.P. Panos, K.Ch. Chtazisavvas, Ch.C. Moustakidis,Phys. Lett. A364, 286 (2007).
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