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Abstract Within the present advanced review on the meaning, inteapoa and
applications of the so-called 'complexity’, different erduncertainty planes em-
boding relevant information-theoretic magnitudes arelistli in order to analyse
the information content of the position and momentum etectiensities of sev-
eral atomic systems, including neutral atoms, singly-gbédions and isoelectronic
series. The quantities substaining those planes are trmerpal and the power
Shannon entropies, the disequilibrium, the Fisher infagimnaand the variance.
Each plane gives rise to a measure of complexity, deternbgdtie product of its
components. In the present work, the values of the so-chlbg@dz-Ruiz, Mancini
and Calbet (LMC), Fisher-Shannon (FS) and Cramer-Rao (GRptexities will be
provided in both conjugated spaces and interpreted fronysigdd point of view.

1 Introduction

There have been tremendous interests in the literature ply agformation the-
ory to the electronic structure theory of atoms and molec[ile 2]. The concepts
of uncertainty, randomness, disorder or delocalizatioa basic ingredients in the
study, within an information theoretic framework, of redew structural proper-
ties for many different probability distributions appewyias descriptors of several
chemical and physical systems and/or processes.
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Following the usual procedures carried out within the Infation Theory for
quantifying the aforementioned magnitudes concerningviddal distributions,
some other extensions have been done in order to introda@®titepts of 'similar-
ity’ or 'divergence’ between two distributions, as comga@measures. Quantum
similarity theory was originally developed in order to dsdish quantitative compar-
isons between molecular systems by means of their fundamsmniicture magni-
tudes: electron density functions. Applications of thigpartant theory have been
one of the cornerstones of recent chemical research in mekef3, 4, 5].

Some pioneering efforts relating Information Theory tacaienic structure and
properties of molecules can be already found in the semiaaérs by Daudel in
the framework of loge theory [6, 7], subsequently followgdezey [8] and reex-
amined later by Nalewajski [9]. The studies of Mezey [10] &vdir [11] on sym-
metry and chirality-related problems in molecules, andthreovery diverse fields
(e.g. image and texture analysis), are also examples atagiphs of informational
measures on specific aspects of shape, disorder and cotypplexi

This kind of measures and techniques, which in fact chariaete most of the
information theory aims and tools, have been widely emploiyerecent years
within the atomic physics framework. The present work cimsts a survey of
some of those applications for obtaining relevant infororabn different properties
of atomic systems, including structural and experiment&iso The role played by
the two conjugated variables, namely position and momenappears fundamen-
tal for a complete description of the atomic informationtégas. It is shown that,
in spite of their simplicity among the many-body systems,dtomic ones posses a
highly enough level of organization and hierarchy to be @ered as an appropriate
benchmark for the suggested complexity study.

The relevancy of the above concepts motivates the searcanf@ppropriate
quantification, giving rise to a variety of density functis, each one with its own
characterisitics and properties which make them more srdssful attending to the
specific problem we are dealing with.

Diverse information measures of probability distribugdmave been widely ap-
plied with the aim of describing a great variety of systemgpmcesses in many
different scientific fields. One of the pioneering and mosi-keown of such mea-
sures is the variance, but later on many others have beer@sidered for these
kind of applications. Among them, it should be emphasizedrthe played by the
Shannon entrop$[12]

S(p) =~ [ p(r)Inp(r)dr (1)
and the Fisher informatioh[13, 14]

I(p)= [ p(r)|Dinp(r) ar 2)

of a distributionp(r). In fact, Sis a basic quantity in statistical thermodynamics
[15] and it is the essential tool on the application of the Xitaum Entropy’ tech-
nigue based on Jaynes’ principle. More recently, Fisherimétion appeared as a
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fundamental magnitude for deriving important laws of egnsity functional theory
[16, 17] or quantum mechanics [18] by means of the extremoizdtrieden principle
[14]. The numerous applications of tools based on Bathdl suggest the relevancy
of using them in a complementary way, attending to their nchiaracteristics and
properties as will be described later.

1.1 Complexity: Meaning and Definitions

Another relevant concept within information theory, in sooases strongly related
to the aforementioned measures, is the so-called 'conpl@fia given system or
process. There is not a unique and universal definition ofptexity for arbitrary
distributions, but it could be roughly understood as andattir of pattern, structure
and correlation associated to the system the distributestribes. Nevertheless.
many different mathematical quantifications exist undehsan intuitive descrip-
tion. This the case of the algorithmic [19, 20], Lempel-ZBA] and Grassberger
[22] complexities, as well as the logical and thermodynainéepths by Bennett
[23] and Lloyd and Pagels [24], respectively, all them agdtwith many scientific
applications.

Complexity is used in very different fields (dynamical syssgtime series, quan-
tum wave functions in disordered systems, spatial pattdanguage, analysis of
multi-electronic systems, cellular automata, neuron&laoeks, self-organization,
molecular or DNA analyses, social sciences, etc.) [25, Z§, Rlthough there is
no general agreement about the definition of what complégjtjts quantitative
characterization is a very important subject of researamature and has received
considerable attention over the past years [28, 29].

The characterization of complexity cannot be univocal andtrbe adequate for
the type of structure or process we study, the nature anddakaj the descrip-
tion we want and for the level or scale of the observation Weuse. In the same
way it is interesting to combine the properties of the newppsals to character-
ize complexity and test them on diverse and known physicstesys or processes.
Fundamental concepts such as information or entropy ageérgly present in the
proposals for characterizing complexity, but some othgradients that do not only
capture uncertainty or randomness can also be searchedvi€hes also to capture
some other properties such as clustering, order or orgamizaf the systems or
process. Some of the definitions and relations between theaibncepts are not
clear; even less so is how disorder or randomness takesihet eaforementioned
properties of the system and vice versa.

The initial form of complexity is designed such that it vdrés for the two ex-
treme probability distributions (little complex ones)responding to perfect order
(represented by a Dirac-delta) and maximum disorder (&sgalcwith a highly flat
distribution). Most of those definitions take into accouleneents of Bayesian and
information theories. Some of the more recent ones consi$teoproduct of two
factors, measuring, respectively, order and disorder emyiven systems or, equiv-
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alently, localization and delocalization [30, 31]. Theylwe referred to as product-
complexities.

These product complexity measures have been criticized@amskequently mod-
ified leading to powerful estimators successfully checkea wide variety of fields
[32, 33, 34, 35, 36, 37]. Fundamental concepts such as gntrojpformation are
frecuently present in the proposals for characterizing merity, but it is known
that other ingredients capturing not only randomness axeracessary. In fact one
would wish also to detect, for instance,clustering or patte

Even restricting ourselves to the aforementioned facition, there is no unique
definition for complexity. The reason is that there existet#nt candidates for being
one of the coupled factors which give rise to complexity. Tst popular ones are
well-known to play a relevant role in an information-thet@zdramework. Among
them, let us mention the Shannon entropy S, the disequilibb), the Fisher infor-
mation | and the variance V.

Much work has been done using those quantities as basic resasot only for
quantifying the level of spreading of distributions butcafer many other applica-
tions, such as, for instance, maximum-entropy estimati@hraconstruction of an
unknown distribution from very limited information on it.

Other authors have recently dealt with some particulaofaadf the complexity
measures. In particular, Shannon entropy has been exténssed in the study of
many important properties of multielectronic systemshsas; for instance, rigorous
bounds [38], electronic correlation [39], effective pdtals [40], similarity [41] and
minimum cross entropy approximations [42].

More recently, Fisher information has been studied as aiméit accuracy mea-
sure for concrete atomic models and densities [43, 44] asal fak quantum me-
chanics central potentials [45]. Also, the concept of plspsee Fisher information,
where position and momentum variables are included, wagzethfor hydrogen-
like atoms and the isotropic harmonic oscillator [46]. Thet Risher information
measure is found to correlate well with the inverse of thézation potential and
dipole polarizability [44].

Quantum similarities and self-similarities D for neutradms were computed for
nuclear charges Z =1-54 only in the position space [47, 48]afierwards a more
complete analysis including Z=1-103 neutral systems anglsicharged ions has
been done in position and momentum spaces [49].

Some studies on atomic similarity, using magnitudes cjosslhated to D or to
relative Shannon entropies, have been also reported [$0V&Y recently a com-
parative analysis of | and D shows that they both vary sifyitetith Z within the
neutral atoms, exhibiting the same maxima and minima, bstdfi information
presents a significantly enhanced sensitivity in the posiéind momentum spaces
in all systems considered [52]
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1.1.1 LMC Complexity

Among the more recent and succesful definitions of complengually built up as
a product of two factors quantifying, respectively, ordeséquilibrium and disor-
der/uncertainty, specially remarkable is the one providgd 6pez-Ruiz, Mancini
and Calbet [30], to be denoted by C(LMC) due to its pioneeanthors, which
satisfies as others do the condition of reaching minimalegfor both extremely
ordered and disordered limits. Additional relevant praipsrare the invariance un-
der scaling, translation and replication.

The initial definition of the LMC complexity has been critieid [28] and mod-
ified [35] in order to the aforementioned properties be \edifigiving rise to the
expresion

C(LMC)=D-e5=D-L, 3)

of a distributionp(r). It is built up as the product of two relevant quantities with
an information-theoretic framework: the 'disequilibriuBn [53],

D(p) = [ p?(r)r @

which quantifies the departure pfr) from equiprobability, and the aforementioned
Shannon entropy as measure of randomness or uncertainty on the distribution
The usefulness of C(LMC) has been shown in different fieldiewéng detection of
periodic, quasiperiodic, linear stochastic and chaotitadyics [30, 36, 37].

1.1.2 Fisher-Shannon Complexity

It appears also interesting to look for statistical comples involving also a local
information measure, as can be done by replacing one of the gidbal factors by
a local’ measure of intrinsic accuracy. In this sense, tt@mproperties of Fisher
information| make this quantity to be an appropriate candidate with the i
defining a complexity in terms of complementary global anchldfactors. Very
recently, the Fisher-Shannon complexity C(FS) has beenatefb2, 54] in terms
of both Fisher information and Shannon entropy and, coresgity providing a
measure combining the global and local characters, anghedserving the desirable
properties for any complexity as previously described. Fisher information |
itself plays a fundamental role in different physical peshk, such as the derivation
of non-relativistic quantum-mechanical equations by rsedminimum | principle,
as also done for the time-independent Kohn-Sham equatiahthe time-dependent
Euler equation [17, 55].

The FS is defined in terms of the power Shannon ent[may%eezs/3 and the
Fisher informatior as

C(F9=1-J 5)
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where definition of J is chosen in order to preserve generaptexity properties. As
compared to LMC complexity, and appart from the explicitelegience on Shannon
entropy, C(FS) replaces the disequilibrium global factot® Fisher local one. The
C(FS) expression arises from the isoperimetric three-dgiomal inequality - J > 3
[56, 57, 58] providing a universal lower bound to FS compiexAmong the main
applications carried out, it should be remarked those aoirogatomic distributions
in position and momentum spaces where FS complexity is showrovide relevant
information on atomic shell structure and ionization psses [52, 54, 59, 60].

1.1.3 Cramer-Rao Complexity

In the present work, we will also analyze, appart from C(LM&d C(FS), the
'Cramer-Rao’ complexity C(CR), also as the product of a lesal a global mea-
sure, keeping the first one as the Fisher information |, aptheeng the Shannon
entropy exponential by the variance V, giving rise to

C(CR) =1V, (6)

product which has been considered in different contexts§6159]. Specially re-
markable is the existence of a lower bound, in spite of théofadbeing of very
different origin as well as their definition in terms of thestlibution, emphasizing
again the strong connection between both the local and gkl of uncertainty.

1.2 Numerical Analysis

The main aim of the present work is to analyze the above defihd, FS and
CR complexities associated to the one-particle densitié®ih conjugated spaces,
namely positiorp(r) and momentuny(p) densities, as well as the product or phase-
space distributiorf (r,p) = p(r)y(p), for a great amount of atomic systems includ-
ing neutral atoms (Section Il), singly charged ions (Sectit) and isoelectronic
series (Section 1V).

Analyzing the main information-theoretic properties ofnpalectron systems
has been a field widely studied by means of different proeesland quantities, in
particular for atomic and molecular systems in both posiind momentum spaces.
It is worthy to remark the pioneering works of Gadre et al [63] where the Shan-
non entropy plays a fundamental role, as well as the morentex®s concerning
electronic structural complexity [27, 64], the connectimiween information mea-
sures (e.g disequilibrium, Fisher information) and experitally accessible quan-
tities such as the ionization potentials or the static @digmblarizabilities [44], in-
terpretation of chemical phenomena from momentum Shanntomy [65, 66],
applications of the LMC complexity [36, 37] and the quantumikarity measure
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[47] to the study of neutral atoms, and their extension tdi8@nd CR complexities
[52, 60] as well as to ionized systems [39, 54, 59, 67].

The applications in the present work on a global of 370 systeiifi be car-
ried out in order to gain insight not only on the informatiamntent of those sys-
tems, but also to interpret the complexity values in termgshyfsical properties and
processes, such as shell-structure and ionization. Aklsasbociated informational
planes substended by the factors composing each compleiitsdlow to obtain
relevant interpretations on the main physical processdscharacteristics of the
distributions here studied. In doing so, Near-HartreekRwavefunctions [68, 69]
will be employed to compute the densities and the associateanation measures
and planes as well as complexities. For atomic systems imalteence of external
fields (as is the case of this work) it is sufficient to deal wfith spherically averaged
densitieso(r) andy(p). Main conclusions on the results will be given in Section V.

2 Complexity and Atomic Shell Structure

Complexity studies for atoms have also been carried outnost of them are only
for Z=1-54 [27, 64]. Recent complexity computations, ugialgtivistic wave func-
tions in the position space, were also done [70]. Some othraptexity works sim-
ply take the position density, not the momentum one, as basiable [71]. In this
sense, it is worthy to point out the different behaviors liged by some of these
quantities in position and momentum spaces for atomic systas we have recently
shown [50, 52].

In particular, it has been shown that it is not sufficient talgtthe above measures
only in the usual position space, but also in the complernmgm@mentum space, in
order to have a complete description of the information teégo internal structure
and the behaviour of physical processes suffered by thesersg. Some other new
proposals of product-type complexity measures (e.g., ErdRao complexity) have
been also constructed and computed for multielectronierys[60].

This section is devoted to the analysis and interpretaffom a physical point
of view, of the LMC, FS and CR complexity values and inforroatplanes cor-
responding to all neutral atoms throughout the PeriodideTakithin the range of
nuclear chargeg = 1— 103. Such a study is carried out in position, momentum and
phase/product spaces, which corresponding distribuodgheir complexities are
obtained by means of the accurate wavefunctions provid&#fn[68].

2.1 Comparison between Atomic LMC and FS Complexities

First, let us compare the LMC and FS complexities for thossesyis, as done in
Fig. 1 for position and momentum spaces (1(a) and 1(b), otispty). It is remark-
able, attending to the curves displayed in these figuresithiéar structure of LMC
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Fig. 1 LMC and FS complexities for neutral atoms with nuclear charge gosition (left) and
momentum (right) spaces. Atomic units (a.u.) are used.

and FS complexities in both spaces, in spite of their styodgferent definition,
mainly due to the information measure accompanying the igrafactor, namely
the 'global’ disequilibrium for LMC and the 'local’ Fishenformation for FS. It is
worthy to point out not only the almost identical magnituddeys of both complex-
ities, but also the strong correlation between their stmggtcharacterized by the
number and location of extrema, and the shell-filling precswell as the groups
the atoms belong to. Last comment is supported by the faichtth complexities in
the two conjugated spaces display local minima for noblegas well as for some
atoms involved in the so-called 'anomalous shell-fillinge{ng specially relevant
the system« = 24,29 46). Similar comments can be done concerning maximal
values.

2.1.1 LMC and FSInformation Planes
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Fig. 2 Disequilibrium-Shannon plane (D,L) for neutral atoms with leac charge Z in position
(left) and momentum (right) spaces. Atomic units (a.u.) are used.

Attending to the factors which compose complexities, it$®anteresting to an-
alyze the individual contribution of each one to the totahptexity. For illustration,
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the 'disequilibrium-Shannon plane’ is shown in Fig. 2, dnaiw terms of (D,L), as

components of the LMC complexity, in position and momentyraces (Figs. 2(a)

and 2(b), respectively). Both figures again reveal the dhiitlg patterns, much

clearly in momentum than in position space. In fact, theedédht pieces of curves
in momentum space belong to disjoint exponential entrapy Yalues. Adding a

new subshell makels, to increase, the disequilibrium, decreasing within each
subshell. Opposite behaviors are displayed in positioesgancerning not only
monotonicity, but also location of regions within the plamehere heavy atoms con-
centrate around: high disequilibrium in position space higth disorder (entropy)

in the momentum one.

2.2 Atomic CR Complexity
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Fig. 3 CR complexity for neutral atoms with nuclear charge Z in posifigoper left), momentum
(upper right) and product (lower) spaces. Atomic units (aeused.

Concerning Cramer-Rao complexity C(CR), main numericaiiits for atomic
systems are displayed in Fig. 3 for position, momentum andymt spaces. In ana-
lyzing their structure as functions of the nuclear chaggs interesting to observe
that most minima oG, (CR) and all of C,(CR) are the same of the LMC and FS
complexities, previously specified. In fact, shell struetpatterns are very similar
for the three complexities, in spite of being determined duyr fquantities (S, D, |
and V) of very different character. The same also occursdoresof those isolated
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factors in all spaces, such as e.g. the exponential entrapylthe variance V, which
figures are not shown for the sake of shortness.

2.2.1 CR Information Plane
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Fig. 4 Cramer-Rao plane (1,V) for neutral atoms with nuclear charge @osition (left) and mo-
mentum (right) spaces. Atomic units (a.u.) are used.

The Cramer-Rao (1,V) information plane is shown in Fig. 4 foe two con-
jugated spaces, in order check to which extent each congpdaator is respon-
sible of the shell-filling pattern displayed. In positionasp (Fig. 4(a)), adding a
new subshell makes Fisher informatipro appreciably increase, its values belong-
ing to disjoint intervals determined by the valence subiskidwever, the variance
V, ranges over a unique interval for all systems without digtishing their shell
structure, but displaying a monotonically decreasing biehdwith few exceptions)
within each specific subshell. Just the opposite behavoorihé corresponding mo-
mentum quantitie$, andV, are observed in Fig. 4(b), in what concerns ranges of
values and monotonicity.

It is worthy to notice how the three complexity measures toenesidered are
able to provide information not only on randomness or disgrbut also on the
structure and organization of the atomic systems. The san@ always true for the
individual factors, appearing relevant to deal simultarstp with the localization
and randomness factors, as well as the complementary aiejligpaces, in order
to have a more complete description of the information aurtéatomic systems.

Summarizing the results of this section, (i) a complete desan of the information-
theoretic characteristics of atomic systems requiresdahgtementary use of posi-
tion and momentum spaces, (i) LMC and FS complexities pl@imilar results
(qualitatively and quantitatively) for all neutral atoms hoth spaces, displaying
periodicity and shell-filling patterns as also CR complexibes, and (iii) such pat-
terns of the localization-delocalization planes in onecspare inverse to those of
the conjugated space.
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3 Effects of the lonization on Complexity

In this section the LMC, FS and CR complexities are analypediihgly charged
ions with a number of electrons up ko= 54, that is with a global charg@ = Z —

N = +1, Z being the nuclear charge. These quantities, together hatipteviously
discussed values for neutral atoms within siatange, provide us with information
on how complexity progresses in mono-ionization procef&s59]. In doing, we
are considering a global of 150 systems (53 cations, 43 a@iod 54 neutral atoms),
the computations on ions being performed by employing tbarate wavefunctions
of Ref. [69].

3.1 LMC and FS Complexities of Singly-Charged lons

A similar comparison between LMC and FS complexities as dmesiously for
neutral atoms in both conjugated spaces has been alsodcatrigor anions and
cations in the two spaces. Conclusions raised by the asajshese quantities for
ions are almost identical to those provided when discussiad-ig. 1 for neutral
atoms, in what concerns similarity between C(LMC) and C(¥8lies as well as
their connection with the shell-filling process by meanshef location of their ex-
trema, most minima of complexity corresponding to nobleegas the anomalous
shell-filling set of atoms.

3.2 CR Complexity of Singly-Charged lons and Neutral Atoms

1e+08
Crp(CR) * Anions ——
Neutrals -
1e+07 ¢ Cations 3

1e+06 |
100000 +

10000
Fig. 5 CR complexity in
product space neutral atoms

1000 *

and singly charged ions with 100 ¢
nuclear charge Z. Atomic 10 0** - o - o s
units (a.u.) are used. z

Concerning the Cramer-Rao complexity C(CR), its evolutibroughtout the
ionization is clearly displayed in Fig. 5, where its valuepi®vided for the three
considered species (anions, cations and neutrals) in tradietermine to which ex-
tent the ionization processes (by adding or removing elastkeeping fixed the
nuclear charg&) modify the atomic complexity. For illustration, this coamson is
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carried out for the Cramer-Rao complex@y,(CR) in the product space as shown
in Fig. 5. Again, it is clearly observed the correlation ofrqaexity with the atomic
shell structure for all species. Additionally, it is appeged that (i) complexity in-
creases as the system loses an electron, and (ii) maximéarly@ssociated to 's’
valence subshells (those involved in ionization) while imia correspond to noble
gases or some anomalous 'd’ subshells filling.

3.2.1 CR Information Plane for Monoionization Processes
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Fig. 6 Cramer-Rao plane (1,V) in position (left) and momentum (righBcsgs, for neutral atoms
and singly charged ions with nuclear charge Z. Atomic units.f@&re used.

The Cramer-Rao informational plane substended by the itainst factors (1,V)
also provides interesting results interpreted accordirpe atomic shell structure.
Fig. 6 displays this plane in both conjugated spaces (6¢g)dsition and 6(b) for
momentum) for the systems here considered. Appart fromathefdl reproduc-
tion of shell structure, it is worthy to remark that, as shawrkig. 6(a), systems
of large Z are highly localized and organized in positioncgpahile the light ones
appear much more delocalized. Location at the positipiV;) plane after an ion-
ization process slightly changes for heavy atoms as to ¢fiet eines. Additionally,
for fixed nuclear charge Z complexi; (CR) decreases following the sequence
anion-neutral-cation, that is as losing electrons, bdiegchanges associated to 's’
electrons considerably higher to those of 'p’ or 'd’ subshel

Exactly the opposite trends to those discussed in posipanesare observed in
the momentum one, as shown in Fig. 6(b): large Z systems aréass localized and
with a greater variance than the light ones, and lossindrelex makes the variance
to increase and Fisher information to decrease, just thpromal that happens in
position space.
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4 | soelectronic Series: Dependence of Complexity on the Nuclear
Charge

After carrying out the analysis of complexity dependencettom outermost sub-
shells, as done in the previous section by considering &ioiz processes, let us
now focus in the atomic core as source of the attractive foarel their effects on
complexity values.

4.1 Composition and Number of Isoelectronic Series

We start by considering a neutral atom, that is a system wdéhtical values of the
nuclear charg& and the number of electrolg from which we give rise to a set of
cations by progressively increasing one-by-one the nucleargeZ keeping fixed
the number of electrons (or, equivalently, starting froml@bgl chargeQ = Z —

N = 0 until reaching a maximum positive value, beiQgax = 20 in the numerical
application here considered). Such a set of cations togefitiethe neutral atom is
known as an 'isoelectronic series’, characterized by tregfixumber of electrors

as well as the maximum val@.x. Studying the previously considered complexity
measures for a given isoelectronic series provides infoboman their dependence
on the nuclear chargg for fixed N electrons. In this section, such a study will
be carried out for nine isoelectronic series, namely thaseesponding taN =
2—10, within a Hartree-Fock framework [69]. Each series catissdf 21 members
(a neutral atom and 20 cations), giving rise consequeniysdyze complexities of
a global of 189 atomic systems.

4.2 Complexities and Information Planes of Isoelectronic 1Ses

As in Section I, we consider here (i) LMC, FS and CR comgiesi, (ii) the as-
sociated information planes (D,L), (1,J) and (l,V), and) @istributions in position,
momentum and product spaces.

4.2.1 LMC Complexity and Information Plane

In Fig. 7 the disequilibrium-Shannon plane (D,L) is showmasition, momentum
and product spaces (Figs. 7(a), 7(b) and 7(c), respectifalyhe isoelectronic se-
riesN = 2— 10. For the individual spaces (position and momentum), sacies
roughly follows a linear trajectory in a double logarithrsitale. In fact, the Helium
series N = 2) displays an almost consta®d{LMC) = DL line in both spaces, what
means that increasing the nuclear charge produces, agidtmekpected, a higher
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Fig. 7 Disequilibrium-Shannon plane (D,L) in position (upper leftiomentum (upper right) and
product (lower) spaces, for isoelectronic series Wtk 2 — 10 electrons. Atomic units are used.

localization D and a lower uncertainty, both effects congatimg each other propor-
tionally and providing an almost constant product whichreegiLMC complexity.
Concerning product space, the corresponding Disequilit$hannon plane (D,L)
is shown in Fig. 7(c). It is worthy to notice the strong change the slopes of
all series as compared to those of the isolated spaces. Whillkeigt entropy does
not suffer drastic changes, localization appears verewifft within each series.
Additionally, shell-filling patterns are clearly displajjewith systems having 2s as
valence subshell having a higher complexity than thosadilthe 2p one. It is also
remarkable that th&l = 2 series displays a very different behavior as compared
to the other series. This can be interpreted by taking intmaat that those sys-
tems are the unique ones here considered consisting onlycoreashell. From all
these comments it should be concluded that the product gace is relevant in
order obtain an interpretation of the Disequilibrium-Siam plane values in terms
of shell structure.

In position space, systems with large nuclear charfye any isoelectronic series
display a highly localized structure (large D) as shown ig. Fi(a). In such a large
D area, trajectories are almost linear which correspond &iranst constant prod-
uct measure. Deviations from this linear shapes are bets®reed for low nuclear
charge systems, possesing a greater complexity. Biggsgtquospace complexi-
ties correspond to neutral systems, with a relatively lolwerer localization and
greater uncertainty as compared to its cations. All thosengents are just the op-
posite ones in momentum spaces, as can be readily realizelosieyving Fig. 7(b).
Heavy systems are characterized by a low localization agid &ntropy in mome-
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tum space, and neutrals deviate from isoproduct lines asepogy a higher level
of structure. It is worthy to remark also that spacing betweensecutive systems
within each isoelectronic series decreaes as increasibgcause of a higher sim-
ilarity between systems with large nuclear charge as coentpethose with low Z,
which progressively separate among themselves.

4.2.2 FS Complexity and Information Plane

1 1000

ar »

0.1

10 |

0.001

0.01 0.1 1 10 1p

or pe————— "
3

W

100 Irp

Fig. 8 Fisher-Shannon plane (1,J) in position (upper left), momentuppgu right) and product
(lower) spaces, for isoelectronic series with= 2 — 10 electrons. Atomic units are used.

A similar analysis has been also carried out for the Fistem8on plane (1,J)
in position, momentum and product spaces (Fig. 8). It is lmjotb remember the
rigorous lower bound to the associated FS complegitiFS) = | - J > constant
(the constant being 3 for the conjugated spaces am 1& the product space)
in order to verify such a bound for the systems here congidériee straight line
| -J = constant drawn in the plane by using a double logarithmitesdizides it
into an "allowed’ (upper) and a 'forbbiden’ (lower) partsargllel lines to that one
represent isocomplexity points, and higher deviationmfthis frontier are associ-
ated to greater FS complexities. Such a parallel shape ghtpualisplayed by all
isoelectronic series in both position and momentum spaseshown respectively
in Figs. 8(a) and 8(b). Similar comments to those providedisoussing Fig. 7 in
what concerns location areas of systems at the plane, désamithin a series be-
tween consecutive systems, deviation from minimal comple@alues and opposite
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behaviors in conjugated spaces are also valid for the pasitihd momentum (1,J)
planes as concluded by analyzing Figs. 8(a) and 8(b).

For the sake of briefty, results on the Cramer-Rao plané @re not displayed,
but conclusions obtained from their values are the sameose flast discussed for
disequilibrium-Shannon and Fisher-Shannon planes.

5 Concluding Remarks

Different information-theoretic quantities as well as qoexities defined as the
product of a couple of localization-delocalization fasttiave been shown to pro-
vide relevant information not only on the shell structurd anganization of a great
variety of atomic systems, but also on ionization proceaselstheir dependece on
both the nuclear charge and the number of electrons. In dsmng appears nec-
essary to deal simultaneously with the conjugated posdimth momentum space
electron densities, being also important to consider tloglymt space in order to
get a more detailed and complete description of such systéhes method here
employed for carrying out the present study is also appé/abthe analysis of ad-
ditional multifermionic systems, as is the case of molesw@dad many others, as
well as physical or chemical processes, such as reactigpeanization among oth-
ers. Some of these subjects are now being studied and wiltdsepted hopefully
elsewhere.

It has been also shown the interest of studying the assddi#tamation planes
substended by two information functionals, which for thenait case clearly dis-
play the characteristic shell-filling patterns throughttie whole periodic table. It
still remains open the question of the existence of addititumctionals, planes and
complexities providing further information on the atomtousture and the ioniza-
tion processes, among others
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