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An alternative one-parameter measure of divergence is proposed, quantifying the discrepancy among general1
probability densities. Its main mathematical properties include (i) comparison among an arbitrary number of
functions, (ii) the possibility of assigning different weights to each function according to its relevance on the
comparative procedure, and (iii) ability to modify the relative contribution of different regions within the domain.
Applications to the study of atomic density functions, in both conjugated spaces, show the versatility and
universality of this divergence.
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I. INTRODUCTION15

Many information-theoretic divergence measures between16

two probability distributions have been introduced and ex-17

tensively studied from their mathematical properties [1–5].18

The applications of these measures can be found in the19

analysis of contingency tables [6], the approximation of20

probability distributions [7], signal processing [8], inference21

problems [9], pattern recognition [10], biodiversity [11],22

classification [12], homology [13], neural networks [14],23

computational linguistics [15], study of electronic densities24

[16–20], molecular similarity [21,22], texture and image25

registration [23], sequence analysis [24], machine learning26

[25], artificial intelligence [26], fuzzy set theory [27], and27

quantum-information theory [28], in particular as a measure2 28

of entanglement [29].29

Among the proposed measures, the best known is the30

Kullback-Leibler [30] divergence based on Shannon entropy31

[31]. Since then, many other measures of divergence have32

been proposed and studied, in particular by using both33

local (Fisher) [32,33] and global (Shannon) [31] theoretic-34

information magnitudes. Some generalized entropies such as35

the Rényi one [34] have also been used to formulate deeper36

or more precise measures of discrepancy or distinguishability37

[35]. Applications of similarity and divergence measures to the38

study of atomic systems have been carried out in recent years,39

including the use of the quantum similarity index (QSI) [18]40

and the Jensen-Shannon divergence (JSD) [36].41

The recent development in knowledge-based chemical42

research has created a surge of interest in chemical similarity or43

dissimilarity. Molecular modeling, molecular similarity [37],44

and quantitative structure activity relationship (QSAR) are45

simple examples of such an interest [38]. More recently the46

molecular quantum similarity framework has been used to47

provide a new set of quantum quantitative structure-properties48

relationship procedures (QQSPR) [39].49

The aim of this work is to propose, study, and apply a new50

one-parameter generalized divergence measure, the geometric51

Rényi divergence (GRD(q)), which has important advantanges52

over other studied divergences. Such improvement mainly53

*Corresponding author: angulo@ugr.es

arises from the capability of GRD(q) to modify, by means 54

of its characteristic parameter q, the relative contribution 55

of relevant specific regions of the probability densities. The 56

mathematical definition and properties of GRD(q) allow us to 57

deal with arbitrary probability distributions, independently of 58

their meaning or the specific fields of research, including all 59

those previously mentioned. 60

We show the main properties of this divergence by compar- 61

ing and studying a simple but highly hierarchical and organized 62

set of quantum systems. We study the one-particle densities 63

of atomic systems, in both conjugated spaces, which contain 64

all the physical and chemical information through density- 65

functional theory [40]. The obvious motivation is that the 66

differences in the electronic charge densities of these species 67

could be related to the differences in their respective physi- 68

cal and chemical properties, according to density-functional 69

theory and the Hohenberg-Kohn theorem [41]. 70

In this sense, especially remarkable are the applications 71

carried out in this work by means of GRD(q), namely, 72

(i) comparison among neutral atoms and interpretation in terms 73

of shell-filling-patterns, (ii) study of ionization processes by 74

analyzing the geometric divergence between the initial and 75

final systems (neutral and cation) and its connection with 76

the value of the ionization potential, (iii) study of divergence 77

among densities, for a given system, computed with different 78

models, and (iv) discrimination of whether an atom belongs to 79

a set of systems with identical nuclear charges. The results here 380

provided improve some of the aforementioned applications 81

performed by using other measures, such as the quantum 82

similarity index [18] or the Jensen-Shannon divergence [36]. 83

Further applications to other systems and/or processes of 84

physicochemical relevance (e.g., molecules and reactions) will 85

be provided elsewhere. 86

The paper is organized as follows. In Sec. II we define the 87

geometric Rényi divergence, showing its main mathematical 88

properties. Section III is devoted to the application of GRD(q)
89

to the study of one-particle densities of atomic systems, and in 90

Sec. IV we summarize the main results of this work. 91

II. GEOMETRIC RÉNYI DIVERGENCE 92

The so-called Jensen-Rényi divergence (JRD(q)) was first 93

conceived [42] as a measure of dissimilarity or divergence 94

002500-11050-2947/2011/00(0)/002500(8) ©2011 American Physical Society

ACC. CODE AE10799 AUTHOR Antolı́n

http://dx.doi.org/10.1103/PhysRevA.00.002500


AE10799 PRA August 27, 2011 12:21
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between two distribution functions, say ρ1(�r) and ρ2(�r), both95

of which are defined over the same d-dimensional domain96

� ∈ Rd . In doing so, the nonlinearity of the Rényi entropy [34]97

R(q)(ρ) ≡ 1

1 − q
ln ω(q)(ρ), (1)

according to the properties of the qth-order frequency mo-98

ments99

ω(q)(ρ) ≡
∫

�

ρq(�r) d�r, (2)

was taken into account. In this way, the deviation from linearity100

allows us to define the Jensen-Rényi divergence between two101

distributions as [42]102

JRD(q)(ρ1,ρ2) = R(q)

(
ρ1 + ρ2

2

)
− 1

2
[R(q)(ρ1) + R(q)(ρ2)],

(3)

which constitutes the difference between the Rényi entropy of103

the arithmetic mean and the arithmetic mean of the respective104

Rényi entropies of ρ1 and ρ2. Generalizations of this diver-105

gence have been provided very recently [35] by considering106

mean values for an arbitrary number of distributions and their107

associated weights:108

‘JRD(q)(ρ1, . . . ,ρn) = R(q)

(
n∑

k=1

αkρk

)
−

n∑
k=1

αkR
(q)(ρk),

(4)

with the weights verifying
∑n

k=1 αk = 1.109

In what follows, the integration domain � will be omitted110

in the notation unless necessary, for the sake of simplicity. We111

will deal with normalized-to-unity distributions, a condition112

which can be expressed as ω(1)(ρ) = 1.113

Regarding the definition of JRD(q), any order 0 < q �= 1114

can be considered, as far as the involved frequency moments115

converge. The limiting case q → 1 provides the so-called116

Jensen-Shannon divergence [43,44], JSD = JRD(1), defined117

as above but in terms of the Shannon entropy S(ρ) ≡118

− ∫
ρ(�r) ln ρ(�r) d�r [31] instead of the Rényi one. This is due119

to the limiting equality S = R(1) among entropies.120

However, an essential constraint in performing studies121

by means of JRD(q) has been the necessary condition of122

considering the order q not above unity. The reason is that123

the non-negativity of JRD(q) is guaranteed only for q � 1,124

while for q > 1 it does not have a definite sign. According125

to the interpretation of JRD(q) as a measure of distance or126

divergence among distributions, we must avoid values below127

zero, as usually done for arbitrary metrics in a given space.128

Let us recall Eqs. (1) and (4). We can express JRD(q) in129

terms of frequency moments as130

JRD(q)(ρ1, . . . ,ρn) = 1

1 − q
ln

ω(q)
( ∑n

k=1 αkρk

)
[ω(q)(ρ1)]α1 · · · [ω(q)(ρn)]αn

.

(5)

The non-negativity of JRD(q) for q < 1 arises from the value131

above unity of the fraction within the logarithm. The same132

property of JRD(q) for q > 1 would be verified in case of the133

fraction being below unity, what is not necessarily true.134

To get a Rényi-like divergence measure, non-negative for 135

arbitrary order, we apply a different procedure in the present 136

work. The well-known generalized Hölder’s inequality [45] 137

establishes that 138[ ∫
(f1f2)md�r

]1/m

�
[ ∫

f s
1 d�r

]1/s[ ∫
f t

2 d�r
]1/t

(6)

for any m,s,t > 0 verifying 1
m

= 1
s

+ 1
t
. An iterative use of 139

the above inequality allows us to assert that 140[ ∫
(f1 · · · fn)md�r

]1/m

�
[ ∫

f
p1
1 d�r

]1/p1

· · ·
[ ∫

f pn

n d�r
]1/pn

,

(7)

with
∑n

i=1
1
pi

= 1
m

. Through the identities fi = ρ
q/pi

i for a 141

given q > 0, we obtain 142∫
(gλ1

1 · · · gλn

n )q d�r �
( ∫

g
q

1 d�r
)λ1

· · ·
(∫

gq
nd�r

)λn

, (8)

where λi ≡ m/pi summing up to unity as
∑n

i=1 λi = 1. We 143

can now provide, for arbitrary q > 0, a quotient above unity 144

and consequently with its logarithm being above zero. The 145

logarithm of the quotient is expressed in terms of frequency 146

moments as 147

λ1 ln ω(q)(ρ1) + · · · + λn ln ω(q)(ρn)−ln ω(q)
(
ρ

λ1
1 · · · ρλn

n

)
� 0,

(9)

or in terms of the Rényi entropies defined in Eq. (1) as 148

GRD(q)(ρ1, . . . ,ρn) ≡ (q − 1)

[
R(q)

(
ρ

λ1
1 · · · ρλn

n

)

−
n∑

i=1

λiR
(q)(ρi)

]
� 0, (10)

where the quantity GRD(q) will be referred to as the geometric 149

Rényi divergence of order q for the set of distributions {ρi} 150

with weights {λi}. 151

Some comments are in order: 152

(1) Let us notice the strong resemblance between the terms 153

within brackets in Eq. (10) and those of the definition of 154

the Jensen-Rényi divergence (JRD(q)) in Eq. (4). In fact, all 155

terms associated with individual distributions are identical, the 156

difference between both expressions being determined by the 157

multicomponent term. That term corresponds to the frequency 158

moment of the arithmetic mean of the distributions in the 159

JRD(q) case, while the geometric mean, instead, in GRD(q). 160

(2) The additional factor (q − 1) guarantees the non- 161

negativity of GRD(q) for any q > 0, including the nonzero 162

and finite-valued limiting case q = 1. Adding the same factor 163

in the definition of JRD(q) would not solve the problem of the 164

indefiniteness of sign for q > 1, as will be shown in Sec. III A. 165

(3) A particular case of physical relevance is obtained for 166

q = 2: 167

GRD(2)(ρ1, . . . ,ρn) = ln
[D(ρ1)]λ1 · · · [D(ρn)]λn

D
(
ρ

λ1
1 · · · ρλn

n

) , (11)

where the functional D(ρ) is the so-called disequilibrium, a 168

measure of departure of the distribution from uniformity [46]. 169
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So, GRD(2) for a set of distributions is expressed in terms of170

the quotient between the geometric mean of their respective171

disequilibria and the disequilibrium of the geometric mean172

of the distributions. Let us mention that the disequilibrium173

plays a relevant role also in what concerns the concept of174

shape complexity [47,48] and its physical interpretation for175

atomic [49] and molecular [50] systems.176

(4) For clarity, we give below the simplest case of two177

densities with uniform weights, namely,178

GRD(q)(ρ1,ρ2) = (q − 1)
{
R(q)(

√
ρ1ρ2)

− 1
2 [R(q)(ρ1) + R(q)(ρ2)]

}
, (12)

to be compared with Eq. (3). The arithmetic mean is replaced179

by the geometric one, obtaining a non-negative divergence180

measure after including the factor (q − 1).181

(5) GRD(q) keeps other relevant properties of JRD(q),182

including (i) invariance under exchange of distributions,183

(ii) additivity, and (iii) reaching the minimal value zero if184

and only if all distributions are identical.185

(6) Nevertheless, GRD(q) possesses an additional property186

not shared with JRD(q). The geometric divergence of a set187

of distributions is independent of the normalization of each188

one within the set. Such an invariance under changes of189

normalization also holds for JRD(q) as far as those changes190

are identical for all distributions. In this sense, the comparison191

among distributions established by means of GRD(q) is based192

on a dissimilarity according to the shapes of the distributions,193

rather than on sizes, masses, charges, or any other quantity for194

which normalization is relevant.195

(7) The main usefulness of the geometric Rényi divergence196

arises from its ability to modify the relative contribution of197

specific regions within the domain of definition in obtaining198

the divergence value, by varying appropriately the order q. This199

is a fundamental feature in applications to atomic systems, as200

will be discussed in the numerical analysis performed in the201

next section.202

An illustrative example will allow us to understand better203

the role played by the order q of GRD. Let us consider204

two one-dimensional Gaussians, one of them centered at the205

origin, f (x) = e−x2
, and the other one centered at an arbi-206

trary point, g(x) = e−(x−a)2
. Both have identical long-range207

behaviors, but short-range dissimilarity will be determined208

by the amount of the shift a. We compute straightforwardly209

GRD(q)(f,g) = a2q/4. We notice that for fixed a �= 0, the210

geometric divergence increases as q does, because of the211

emphasis in the comparison based on short-range values. For212

any fixed q, the saturation GRD(q)(f,g) = 0 occurs for a = 0,213

that is, f = g.214

III. NUMERICAL ANALYSIS WITH ATOMIC215

ONE-PARTICLE DENSITIES216

The geometric divergence introduced in this work possesses217

useful features, especially relevant when compared to previous218

measures of divergence. Let us remark that, on the one hand,219

the characteristic parameter q (order) enables us to modify the220

relative contribution of specific regions for the comparative221

process among densities. On the other hand, its non-negativity222

makes possible the interpretation as a “mean distance” (not in223

a strict mathematical sense) among the distributions under 224

comparison. The latter is true for any q > 0. Such is not 225

the case for the pioneering measure of divergence built up 226

by means of the Rényi entropy, namely, the Jensen-Rényi 227

divergence. In Sec. II we mentioned that its non-negativity 228

(necessary to be interpreted as a divergence) is guaranteed 229

only for q � 1. 230

For illustration, both the Jensen-Rényi and the geometric 231

Rényi divergences between the one-particle densities of neutral 232

atoms He and Fr are displayed in Fig. 1 for 0 < q � 6, in both 233

position and momentum spaces. The one-particle densities 234

of N-electron systems are defined from the wave function 235

�(�r1, . . . ,�rN ) and its Fourier transform �̃( �p1, . . . , �pN ) as 236

follows: 237

ρ(�r) =
∫

|�(�r,�r2, . . . ,�rN )|2d�r2 · · · d�rN (13)

in position space, and 238

γ ( �p) =
∫

|�̃( �p, �p2, . . . , �pN )|2d �p2 · · · d �pN (14)

in momentum space. Computations of ρ(�r) and γ ( �p) for 239

neutral and ionized atomic systems will be done, throughout 240

this section, by means of accurate near-Hartree-Fock wave 241

functions [51,52]. Atomic units (a.u.) will be used. 242

It is observed in Fig. 1 that, as we should expect, 243

GRD(q)(He,Fr) remains positive (in both spaces) within the 244

whole interval, in fact, for any q > 0. However, JRD(q)(He,Fr) 245

reaches negative values for values of the order q above unity. 246

In this example, negativity of the Jensen-Rényi divergence is 247

observed for q � 1.26 in position space, and 1.08 � q � 3.00 248

in the momentum one. Let us notice the existence of values 249

of q for which JRD(q)(He,Fr) = 0, in spite of dealing with 250

two different distributions. So, the requirement of having null 251

divergence if and only if the distributions under comparisons 252

are identical is also violated. 253
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FIG. 1. Jensen-Rényi (JRD(q)
r ) and geometric Rényi (GRD(q)

r )
divergences between charge densities of He and Fr neutral atoms,
for q = 0.4 and q = 2.
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FIG. 2. GRD(q)
r (Ar,Z) and GRD(q)(Ca,Z) in position space, for

q = 0.4 and q = 2 of both argon and calcium with respect to neutral
atoms 1 � Z � 103.

A. Neutral atoms254

The purpose of a study based on the divergence among255

atomic one-particle densities is to give an answer to the follow-256

ing question: to what extent is the similarity or divergence of257

those densities related to how similar or different the physical258

and chemical properties of the corresponding atomic systems259

are? The same question is appropriate in the frameworks of260

a great variety of scientific and technological fields, such as261

molecular systems, reaction processes, image registration, and262

analysis of DNA sequences.4 263

Let us consider, at a first stage, two significantly different264

atoms, such as argon (a noble gas, nuclear charge Z = 18)265

and calcium (an alkaline earth metal, Z = 20). We compare,266

in Fig. 2, each of their charge densities ρ(�r) with all those of267

neutral atoms throughout the whole Periodic Table (Z = 1–268

103). In doing so, the uniformly weighted geometric Rényi269

divergence (GRD(q)) in Eq. (12) is employed for orders q =270

0.4 and q = 2. Differences among the results obtained for each271

value of q are apparent: very “soft” and almost identical curves272

for both Ar and Ca are obtained with q = 2, while numerous273

local extrema appear for q = 0.4 with the structures of the274

curves being extremely different from one another.275

To justify these results from a physical point of view,276

it is worth remarking that the main atomic physical and277

chemical properties are determined by the shell structure278

and, in particular, by the characteristics (quantum numbers,279

occupancy, etc.) of the outermost subshell (valence region).280

The computation of GRD(q) requires the computation of the281

qth-order frequency moments of each density and also of their282

geometric mean. Due to the exponential long-range behavior5 283

of the atomic charge densities, the relative contribution of the284

outermost region to the computation of the integrals involved285

is very small compared to that of the core. Such a contribution286

can be enhanced by raising the density to a relatively small287

power, as done when considering frequency moments of lower288

orders. Diminishing the value of q = 2 up to q = 0.4 allows289

us to gain enough information regarding valence features such290

that GRD(q) reveals in most cases whether the systems under291

 0
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FIG. 3. GRD(q)
r (Z,Z′) of order q = 0.4, in position space, of each

alkali metal (Z′ = 3,11,19,37,55,87) and neutral atoms 1 � Z �
103.

comparison share the above-mentioned features (e.g., if they 292

belong to the same group of the Periodic Table). However, 293

the closeness between both curves for q = 2 is due to the 294

similar values of their nuclear charges (18 and 20), together 295

with the enhancement, for the computation of integrals, of 296

the surroundings of the nuclei, where the attractive potential 297

governed by the nuclear charge Z determines (roughly) the 298

shape and magnitude of the electronic cloud. A detailed 299

discussion on the patterns for the appearance of extrema is 300

carried out in the next figure. 301

Six curves are drawn in Fig. 3, corresponding to the 302

position-space GRD(q)
r with q = 0.4 between each alkaline 303

metal (group IA) and all neutral atoms with 1 � Z � 103. 304

The similar structure of all curves, appearing almost perfectly 305

embedded, is clearly observed. A detailed analysis of the 306

location of maxima and minima results in the following 307

observations: 308

(1) An almost systematic appearance of local minima occurs 309

when comparing any of the above-mentioned systems with an- 310

other one belonging to its own group (Z = 3,11,19,37,55,87). 311

These minimum values should be interpreted as a low 312

divergence among systems that share the fundamental features 313

at the valence region and, consequently, have similar physic- 314

ochemical properties. Those minima correspond to the main 6315

ones observed in Fig. 3. 316

(2) The opposite occurs when comparing alkali metals with 317

noble gases, with higher values (local maxima) of divergence. 318

Let us recall the predisposition of alkali metals for reactivity, 319

while noble gases (Z = 2,10,18,36,54,86) are conformed 320

so as to keep their closed-shell structure. According to the 321

meaning of the divergence measure here considered, a high 322

divergence should be expected , based on the one-particle 323

densities, when comparing a pair of systems that are so 324

different from a physical point of view. The appearance of 325

local maxima when comparing alkali-metal–noble-gas atoms 326

is absolutely systematic now. 7327

(3) A number of additional extrema, not so relevant as 328

for the above discussed, appear in each curve. The systems 329

corresponding to minima can be classified, roughly, in two 330
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different groups: (i) non-alkali-metal systems with a unique331

electron at the valence subshell (Z = 13,31,49,81), and332

(ii) systems suffering from anomalous shell filling (Z =333

29,79,93). This similarly occurs for maxima, some of334

them corresponding to (i) closed-subshell systems (Z =335

12,30,48,80) and (ii) anomalous shell filling again (Z =336

42,44,46,58,64,90,97).337

In comparing a given system with all others throughout the338

Periodic Table, the structural features of the curves in position339

space, in what concerns the number and enhancement of340

extrema, are very apparent as far as q decreases. The opposite341

trend is observed in the momentum-space comparison, in the342

sense of having curves with a higher structure as far as q343

becomes higher. The reason for those trends in opposite spaces344

requires us again to consider the enhancement of the relative345

contributions of the valence and core regions.346

B. Ionization processes347

Our next purpose is to analyze the effects arising from348

the physical process of atomic ionization, attending to the349

changes experienced by the one-particle densities of the system350

considered. In doing so, we employ the geometric Rényi351

divergence in order to compare the respective densities of352

the initial and final products (that is, the neutral atom and353

the singly charged cation) involved in this physical process.354

Within this context, we employ the notation GRD(q)(NC) for355

the neutral-cation comparison in a given space.356

For illustration, we consider the analysis in position357

space, i.e., for the quantity GRD(q)
r (NC), with NC pairs of358

nuclear charges 3 � Z � 55, and consequently each system359

containing a number of electrons up to 54. This quantity is360

displayed in Fig. 4 for different values of q, together with an8 361

algebraic function of the atomic ionization potential (AIP).362

This function of AIP is considered, instead of the actual AIP,363

in order to make easier the interpretation of the correlation9 364

observed among the divergence and AIP values.365

In what concerns GRD(q)(NC) for the considered q’s, some366

comments are in order:367

(1) Systems displaying (in Fig. 4) higher values (local368

maxima) of divergence between the neutral and ionized species369

can be classified as follows:370

(a) Z = 3,11,19,37,55 (alkali metals) for which the ioniza-371

tion left empty the valence s subshell of the neutral atom,372

and the resulting cation possesses a closed-shell structure.373

These maxima occur in all curves with the exception of374

q = 2, a value too high to avoid the masking effect arising375

from the relatively sparse information on the valence376

features compared to the core ones.10 377

(b) Similarly for Z = 5,13,31,49, but with the p subshell378

disappearing. The previous comment regarding the excep-379

tion q = 2 applies also to these systems. Additionally, a d380

subshell becomes empty for Z = 39, but a value as low as381

q = 0.2 is needed r to detect it as a local maximum. Each382

of these systems provides (or not) a maximum according383

to the value of q.384

(c) Z = 8,16,34,52 correspond to systems for which the385

outermost p subshell becomes half-filled. In this sense,386

we should emphasize the capability of GRD(q)(NC) to387

discriminate systems with hall-filled valence subshells388
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FIG. 4. GRD(q)
r (NC) between a neutral atom (N) and its singly-

charged cation (C) with 3 � Z � 55, and phenomenological corre-
spondence with the atomic ionization potential (AIP) of the neutral
system.

from others with a number of electrons (there) different 11389

from half the occupation number. These systems are 390

displayed as maxima for all q < 1, while none for q = 2. 391

(d) Additional maxima are found for Z = (23 or 24), 392

(one of 27,28,29),42,45,47, depending on the curve. All 393

these systems are characterized by an ionization process 394

with the ejection of an electron from an inner s subshell, 395

instead of the outermost one (3d or 4d). The only ones 396

associated with maxima for q = 2 are Z = 23,27,42. The 397

others require values of q below unity. 398

(2) The display of low divergence (some local minima) of 399

divergence in Fig. 4 corresponds to closed-shell and closed- 400

subshell systems (Z = 4,10,12,18,30,3648,54), the range of 401

q for which they appear as minima depends on the specific 402

systems considered. The subshell from which the electron is 403

ejected remains occupied in the cation, and, consequently, 404

changes in one-particle densities arising from the ionization 405

are not so strong because of the presence of exactly the same 406

occupied orbitals in the neutral atoms and its cation. 407

(3) There exists a clear resemblance between the divergence 408

of pairs NC and the value of the AIP of the neutral system. 409

The complete list of the 15 local minima of AIP for the 410

systems here considered (displayed in Fig. 5 as maxima in 411

the corresponding curve, due to the functional fit employed) is 412

Z = 3,5,8,13,16,19,23,28,31,34,37,47,49,55. Let us notice 413

that all these systems are included in the total list of high- 414

divergence pairs. 415

To justify these results, let us notice that most systems with 416

low AIP possess a valence subshell (independent of being 417

the outermost one or not) containing a unique electron. Their 418

ionization provokes the disappearance of that subshell, which 419

translates in terms of changes experienced by the one-particle 420

densities into a high value of the neutral-cation divergence. 12421

Regarding the ionization analysis, we finally mention that 422

similar conclusions to those here discussed, on the basis of the 423

position-space densities, are obtained from the same analysis 424

in momentum space. 425
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J. ANTOLÍN, P. A. BOUVRIE, AND J. C. ANGULO PHYSICAL REVIEW A 00, 002500 (2011)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80  90  100

G
R

D
(2

.0
)

r 
   

 (
Z

+
,Z

2+
,Z

’)

Z’

Z=3
Z=4
Z=5
Z=6
Z=7
Z=8
Z=9

Z=10
Z=11
Z=12

0

0.5×10-3

1.0×10-3

1.5×10-3

 2  4  6  8  10  12

FIG. 5. GRD(q)
r (Z+,Z2+,Z′) among singly and doubly charged

cations with nuclear charge 3 � Z � 12, together with a neutral
system of nuclear charge 1 � Z′ � 103. A threshold of GRD values
appears amplified in the inset.

C. Further applications426

1. Computational models427

We consider the extent to which the use of more simplified428

or sophisticated models for computing the wave function429

provokes more or less significant differences among the430

corresponding one-particle densities. To give a well-posed431

answer, it is first necessary to establish a quantitative measure432

of difference among densities. The GRD(q) divergence has433

been employed, both theoretically and numerically through434

this work, with the aim of quantifying how different two (or435

more) densities are.436

In this sense, we could assert with a quantitative basis if, for437

instance, taking into account relativistic effects or correlations438

is worth doing in the study of multielectronic systems in terms439

of one-particle densities. Perhaps differences could be relevant13 440

when comparing wave functions, but not so important when441

dealing with densities. Similar analyses would be useful also442

for a comparative study of relevant distributions in physical443

systems (e.g., molecules and clusters), arising within different444

theoretical and/or numerical frameworks.445

Let us analyze the effect of the interelectronic repulsion in446

the structural properties of the atomic charge and momentum447

densities. In doing so, we compute the densities using two448

different models: the accurate near-Hartree-Fock (HF) one449

employed for previous applications in this work, and the450

so-called bare Coulomb field (BCF) model [54], in which the451

interelectronic repulsive term of the Hamiltonian is neglected.452

This simplification provides a description of the multielec-453

tronic system as a superposition of hydrogenlike orbitals, in454

both spaces. The BCF system consists of a number of electrons455

within the attractive nuclear attraction, but noninteracting456

among themselves via repulsive forces.457

Neglecting the interelectronic repulsion will provoke more458

or less significant changes in going from the HF situation459

to the BCF one. According to the previous description of460

these models, one should expect a more significant divergence461

among the HF and BCF densities as the number of electrons462

N increases (with N = Z for neutral atoms, that is, those here 463

considered). This would result from the much higher neglect 464

of interelectronic repulsive forces that occurs for high N . 14465

Certainly an increasing trend is observed for the HF-BCF 466

divergence curves. However, none is strictly increasing, but 467

local extrema appear whose number and enhancement depend 15468

on the order q considered. Locations of maxima and minima 469

are determined by the shell structure, as also observed in 470

the two previous applications. These comments apply in both 471

spaces. 472

The main conclusion regarding the present comparison 473

among densities computed within the HF and BCF models 474

is that the effects of the interelectronic repulsion on the atomic 475

one-particle densities depend not only on the total number of 476

electrons but also on the shell-filling features of the systems 477

considered. 478

2. Discrimination of nuclear charges 479

It is worth remembering the capability of the geometric 480

Rényi divergence to quantify the divergence of a number 481

of functions higher than 2. The interpretation as a “mean 482

distance” among two or more functions remains, independent 483

of the number of densities considered. For simplicity, we 484

restricted all previous applications in this work to one-to-one 485

comparisons. 486

Nevertheless, there exist additional applications of GRD(q)
487

among a set of distributions. We find it interesting to show one 488

of them in the present work, but additional applications will 489

be provided elsewhere. 490

Let us consider a number of atomic one-particle densities 491

corresponding to systems sharing a specific property. Now we 492

include in that set an additional distribution. A new question 493

appears appropriate within this context: could we determine, 494

in terms of the GRD(q) values, if the system added to the initial 495

set shares the specific features which characterize the initial 496

set? We provide here an example for which GRD(q) appears 16497

able to discriminate if the system added belongs or not to the 498

initial set according to the features which characterize the set. 499

Consider a pair of cations with identical nuclear charge Z, 500

one of them singly charged and the other doubly charged. 501

We denote them as Z+1 and Z+2, where the superscripts 502

correspond to the respective global charges. Let us notice that 503

a pair of systems as chosen above share the property of having 504

the same nuclear charge Z. Now we add to this two-element 505

set a third system: a neutral atom (global charge zero) with 506

nuclear charge Z′. To perform the study of the uniformly 507

weighted three-density divergence GRDq
r (Z+1,Z+2,Z′), we 508

choose q = 2 for illustration. For the doubly charged ion, 509

we use the near-Hartree-Fock wave functions of Ref. [53] 17510

for isoelectronic series with a number of electrons N = 2–10. 511

They allow us to consider, for the present comparative purpose, 512

values of the nuclear charges in the range Z = 3–12 for the 513

systems comprising the initial set. 514

In Fig. 5, each curve corresponds to the election of Z for 515

the initial two cations. Consequently, ten curves are displayed 516

(Z = 3–12), each one as a function of 1 � Z′ � 103, the 517

nuclear charge of the neutral atom added to the previous set. 518

The first observation from Fig. 5 is the unimodal shape of 519

all curves, decreasing quickly as Z′ increases, until reaching 520
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a minimum value (which is shown amplified in the inset)521

and increasing hereinafter. It is observed that the absolute522

minima occur when Z′ = Z in each curve. The horizontal523

line establishes a threshold in the following sense: values524

of GRD(2)
r (Z+1,Z+2,Z′) above the aforementioned threshold525

allow us to assert that the neutral system added does not share526

the nuclear charge of the first two cations, that is, Z′ �= Z.527

However, any value below the line corresponds, necessarily,528

to the comparison of three systems with the same nuclear529

charge, which means that Z′ = Z.530

Summarizing this application, GRD(q) has been shown to531

be a useful tool for discriminating atomic systems, in the sense532

of the ability to determine if a system added to a set of atoms533

characterized by some physical properties should belong to534

that set, or, in other words, if the new atom included in the set535

shares the properties common to all the others.536

Further applications will be provided elsewhere. They537

should include (i) the use of different values of q,538

(ii) employment of weights other than the uniform ones, and539

(iii) a study based on properties (e.g., long-range behaviors)540

associated with the outermost regions, instead of the inner ones541

as done here.542

IV. CONCLUSIONS AND OPEN PROBLEMS543

An alternative measure of dissimilarity among probability544

distributions, the geometric Rényi divergence has been intro-545

duced in the present work. It is expressed in terms of the Rényi546

entropy, as also happens with the well-known Jensen-Rényi547

divergence. Both measures include a positive characteristic548

parameter in their definitions. The interpretation of JRD as a549

divergence measure constrains the parameter to values below550

unity, while no constraints at all are imposed on the GRD551

divergence.552

The GRD statistical measure of divergence is used to553

compare atomic one-particle densities. The capability of GRD554

to gain physical insight into the structural properties of555

many-electron systems has been shown. In doing so, we have556

taken advantage of its characteristic parameter in order to557

enhance or diminish the short- and long-range contributions in558

a divergence-based analysis. The geometric Rényi divergence559

allows us to deal with a set of an arbitrary number of560

density functions, assigning different weights to each one in 561

accordance with their roles within the comparative purpose 562

considered. For atomic systems, a study based on one-particle 563

densities in both position and momentum spaces provides 564

clearly an interpretation by means of shell structure. 565

A detailed numerical analysis clearly established the re- 566

lationship between valence subshell properties of the systems 567

under comparison and the GRD values, as well as the detection 568

of the presence of systems suffering from anomalous shell 569

filling. The usefulness of the tool here defined has been shown 570

in the study of ionized systems, by considering the analysis 571

of atomic neutral-cation pairs. A strong resemblance appears 572

among the extrema of divergence and those of the atomic 573

ionization potential, mostly determined by occupancy numbers 574

of the outermost subshell in neutral and cationic systems. 575

Further applications of the generalized index, arising from its 576

rigorous mathematical properties here described, have been 577

carried out in this work, including studies (i) on the ability 578

in comparing different quantum models, and (ii) detection of 579

systems which do or do not share specific physical properties 18580

with their partners within an atomic set. 581

Additional studies are planned to be performed in a near 582

future: (i) use of more sophisticated atomic models including 583

relativistic effects and/or correlations, (ii) comparing more 584

that two functions, e.g., sequence anion-neutral-cation, groups 585

or periods of the Periodic Table, isoelectronic series, and 586

subsystems of a given composite system, (iii) assigning 587

appropriate weights to each system according to relevant 588

physical and/or chemical properties, such as mass, number of 589

electrons, and volume, and (iv) other quantum systems (e.g., 590

molecules) and processes (reaction or excitation). It is worth 591

remarking that the universality of GRD, in what concerns its 592

definition and mathematical properties, allows its use in a wide 593

variety of fields. systems, and processes, far beyond atoms, 594

molecules, or reactions. 595
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