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Abstract

Rigorous and universal relationships among radial expectation values of any D-dimensional

quantum-mechanical system are obtained, using Rényi-like position-momentum inequalities in an

information-theoretical framework. Although the results are expressed in terms of four moments

(two in position space and two in the momentum one), especially interesting are the cases that

provide expressions of uncertainty in terms of products 〈ra〉1/a〈pb〉1/b, widely considered in the lit-

erature, including the famous Heisenberg relationship 〈r2〉〈p2〉 ≥ D2/4. Improved bounds for these

products have recently been provided, but always restricted to positive orders a, b > 0. A novelty

in this work are inequalities for negative orders. A study of the aforementioned relationships is

carried out for atomic systems in their ground state. Some results are given in terms of relevant

physical quantities, including the kinetic and electron-nucleus attraction energies, the diamagnetic

susceptibility and the height of the peak of the Compton profile, among other.
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I. INTRODUCTION

The one-particle density ρ(~r) of many-fermion systems is an essential quantity for the

introspection on their main physico-chemical properties [1]. The study of this density has

attracted consequently the attention of many researchers, especially after the formulation of

the Hohenber-Kohn theorem [2] concerning the existence of a universal density functional

for the energy of these systems. The so-called ’frequency moments’ of the density play a

relevant role within such a Density Functional Theory framework [3, 4].

Much effort has been paid in order to get a similar formulation of this theory in the

conjugated space, i.e. in terms of the momentum one-particle density γ(~p), with many

succesful results [5–8].

Different studies based on the simultaneous use of quantities in the position and momen-

tum spaces have been carried out. The aim in most of them it to provide uncertainty-like

relationships. For instance, the well-known Heisenberg uncertainty principle [9–11] involves

variances (defined by means of radial expectation values) in conjugate spaces. Since the for-

mulation of the Heisenberg principle, many other uncertainty relations have been obtained,

with a diversity of expectation values and/or density functionals. Especially relevant are the

lower bounds to products of radial expectation values 〈rα〉 and 〈pβ〉 [12] emphasizing the

particular case α = β = 2. Bounds to the product of logarithmic uncertainties [12] and the

sum of Shannon [13] and Rényi [14] entropies are also known. Although these relationships

are usually applied in three-dimensional systems (i.e. with vectors of three components ~r

and ~p), all of them are valid for arbitrary dimensionality [15, 16].

This type of uncertainty relations are physically relevant, not only because of their impor-

tance in a theoretical quantum-mechanical framework [17–19], but also in the development

of quantum information and computation [20, 21].

The aforementioned inequalities in terms of radial expectation values of positive order

[12, 15] were obtained chaining the lower bound to the sum of Shannon entropies in conjugate

spaces [13], and variational upper bounds to the entropy in each space. A recent improvement

on those lower bounds to radial products has been achieved [22], using a similar inequality for

the sum of Rényi entropies. The Rényi entropy [23] includes the Shannon one as a particular

case. All previous inequalities for products of two moments (one in each conjugate space)

are valid subject to the constraint of positivity for orders α and β. However, there are not
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known bounds on uncertainty products involving radial expectation values of negative order,

to the best of our knowledge. It is worthy to remark also that uncertainty products have

been always defined in terms of exactly two factors.

The aim of this study is to present a generalized uncertainty inequality in terms of a

number of radial expectation values up to four, whose validity extends to arbitrary dimen-

sionality. Such inequality can handle radial expectation values of negative order, including

the simplest products of two factors. Lower bounds provided here are of universal valid-

ity (i.e. for any D-dimensional quantum mechanical system). For illustration, we carry

out a numerical study for selected inequalities of physical interest in atomic systems, and

the results are interpreted based on revelant physical properties, such as e.g. atomic shell

structure. Let us mention that some radial expectation values for atomic densities, in both

position and momentum spaces, are physically relevant and/or experimentally accessible.

The paper is structured as follows: Section II is devoted to the definition of the one-

particle densities from the wave function, as well as the main quantities we will deal with

(radial expectation values, frequency moments, Shannon and Rényi entropies). The uncer-

tainty relations associated to those quantities are provided also. In Section III, a universal

lower bound to uncertainty-like products of radial expectation values is obtained. Its expres-

sion has validity for arbitrary quantum systems of any dimensionality. Particular cases of

physical interest are discussed in detail in Section IV, first by providing rigorous inequalities

and then performing a numerical study for atomic one-particle densities. Some concluding

remarks are finally given in Section V.

II. FREQUENCY MOMENTS AND RÉNYI ENTROPIES OF QUANTUM SYS-

TEMS

Let us a consider the one-particle density of a D-dimensional N-fermion system, defined

by

ρ(~r) =

∫

|Ψ(~r, ~r2, . . . , ~rN)|2d~r2 . . . d~rN , (1)

with Ψ its spinless wave function. The one-particle density in momentum space is defined

similarly,
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γ(~p) =

∫

|Ψ̃(~p, ~p2, . . . , ~pN)|2d~p2 . . . d~pN , (2)

now in terms of the DN-dimensional Fourier transform Ψ̃ of Ψ. In what follows, (i) normal-

ization to unity will be considered, so that
∫

ρ(~r)d~r =
∫

γ(~p)d~p = 1, (ii) it is understood

that all integrals are performed over the whole D-dimensional space R
D, and (iii) atomic

units (a.u.) will be used, so ~ = m = e = 1.

These densities are interpreted, taking into account the aforementioned normalization,

as probability distributions of finding a particle at a specific region within the respective

domains of the densities (position or momentum).

Different expectation values and density functionals have been considered in order to

quantify the extent to which a one-particle density is more or less localized/delocalized. The

last concept is strongly related to that of ’uncertainty’, in the Heisenberg sense, regarding

the accuracy in the knowledge of the particle’s position and momentum at a given time.

The well-known Heisenberg relation, given by [9–11]

〈r2〉〈p2〉 ≥
D2

4
(3)

for arbitrary D-dimensional quantum systems, is expressed in terms of second order ’radial

expectation values’ of the one-particle densities, where

〈ra〉 ≡

∫

raρ(~r)d~r (4)

with r ≡ |~r|, and similarly for 〈pa〉. The real exponent a will be referred as ’order’ of the

radial expectation value, whose range of allowed values will be imposed by the conditions

of convergence of the involved integrals. For densities with finite value at the origin, the

condition a > −D has to be taken into account, according to the expression of the volume

element d~r = rD−1dr dΩD, where ΩD = 2πD/2/Γ(D/2) is the D-dimensional solid angle.

The previous Heisenberg relation was later generalized to arbitrary uncertainty products

〈ra〉1/a〈pb〉1/b with positive orders a and b, firstly for three-dimensional systems [12] and later

extended to arbitrary dimensionality D [15]. Thus, two different steps were considered, both

them based on the concept of ’Shannon entropy’, a density functional defined by [24]

S(ρ) ≡ −

∫

ρ(~r) ln ρ(~r)d~r (5)
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which is a measure of ’spreading/delocalization’ of the probability distribution. As suggested

by the notion of uncertainty previously discussed, the Shannon entropies in position and

momentum spaces, namely S(ρ) and S(γ), fulfil the uncertainty relation given in Ref. [13]:

S(ρ) + S(γ) ≥ D(1 + ln π), (6)

what means that it is not possible to deal, simultaneously, with arbitrary low values of both

entropies or, in other words, with extremely accurate values of the position and momentum

variables. The above inequality will be referred as BBM, because of its pioneering authors

Bialynicki-Birula and Mycielski.

On the other hand, variational upper bounds to each one of the above entropies, in terms

of one radial expectation value of positive order, were known [25] for three-dimensional

distributions. Nevertheless, the variational procedure allows a straightforward extension to

arbitrary dimensionality, giving rise to upper bounds S∗

a(ρ) and S∗

b (γ) in terms of 〈ra〉 and

〈pb〉 respectively. The use of these bounds together with the BBM one provide us with a set

of lower bounds to uncertainty products [15]

〈ra〉1/a〈pb〉1/b ≥ C(a, b,D), a, b > 0 (7)

with C(a, b,D) an analytical expression provided in Ref. [15]. A very recent improvement to

the above inequality has been achieved [22] by considering a Rényi-like inequality instead of

the Shannon-like BBM one, giving rise to a lower bound C(a, b, q,D) with a new parameter

’q’, providing the original bound as C(a, b, q = 1, D) = C(a, b,D). The optimization of this

new bound with respect to the parameter q improves the results provided for the particular

value q = 1.

The Rényi entropy [23] constitutes a generalization of the Shannon one, and it is defined

as follows:

Rq(ρ) ≡
1

1 − q
ln ωq(ρ) (8)

where the quantity

ωq(ρ) ≡

∫

ρq(~r)d~r (9)
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is the ’frequency moment of order q’ [26] of the distribution. The frequency moments play a

central role in the description of many-fermion systems in terms of the one-particle density.

In this sense, it is worthy to remark the relevance, within a Density Functional Theory

(DFT) framework, of those with orders q = 4/3 and 5/3. They correspond, essentially, to

the exchange and kinetic energy terms of the energy functional [1]. The frequency moment

of order 2, namely ω2(ρ) =
∫

ρ2(~r)d~r is known as the ’disequilibrium’ [27] of the probability

distribution, which quantifies the departure from the equiprobability situation (equilibrium).

In addition, the problem of fully characterize the distribution by frequency moments was

also addressed by considering the so-called Hausdorff moment problem [28].

Concerning the Rényi entropies Rq(ρ), two comments are in order: (i) the limiting case

q → 1 provides the Shannon entropy as R1(ρ) = S(ρ) [23], and (ii) similarly to the uncer-

tainty inequality BBM, there exists a Rényi-like one given by [14]

Rq(ρ) + Rt(γ) ≥ ln
[

(2π)(2q)
1

2(q−1) (2t)
1

2(t−1)

]D

as far as
1

q
+

1

t
= 2 (10)

The BBM inequality is recovered for the particular case q = t = 1. Apart from the just

mentioned case, it is clear that one of the orders must be above unity while the other is

below one. In what follows, let us choose the parameters in such a way that q ≥ 1 ≥ t. The

opposite order will be considered by exchanging the distributions ρ and γ.

III. LOWER BOUNDS TO UNCERTAINTY PRODUCTS

Let us notice that Eq. (10) can be expressed in terms of frequency moments as follows:

ω
1

1−t

t (γ)

ω
1

q−1
q (ρ)

≥
[

(2π)(2q)
1

2(q−1) (2t)
1

2(t−1)

]D

(11)

Due to the physical interest of the frequency moments, the variational procedure has been

also employed in order to bound them in terms of physical observables. In Ref. [29], lower

(upper) bounds on the D-dimensional frequency moments of order above (below) unity are

given, in terms of two radial expectation values, not necessarily of positive order. These

two bounds (ω∗

q and ω∗

t ) translate into upper ones once writen in terms of Rényi entropies,

because of the sign of the factors appearing before the logarithms. In this way we obtain

6



[ω∗

t (γ)]2q−1ω∗

q (ρ) ≥

[

(

π

q

)q−1

(2q − 1)q− 1
2

]D

≡ f(q,D) (12)

where

ω∗

q (ρ) = F (a, b, q,D)

[

〈rb〉q(a+D)−D

〈ra〉q(b+D)−D

]1/(a−b)

, a > b > −D
q − 1

q
(13)

and

ω∗

t (γ) = G(c, d, t,D)
[

〈pc〉−t(d+D)+D〈pd〉t(c+D)−D
]1/(c−d)

, c > D
1 − t

t
> d (14)

for any 0 < t ≤ 1 ≤ q verifying
1

q
+

1

t
= 2. The analytical expressions of both F (a, b, q,D)

and G(c, d, t,D) can be found in Ref. [29].

We observe that Eq. (12) together with the expressions (13)-(14) provide a relationship

including four radial expectation values, two in position space (〈ra〉 and 〈rb〉) and the other

two in momentum space (〈pc〉 and 〈pd〉). Such a so general expression is given by

〈ra〉ǫa〈pc〉ǫc〈pd〉ǫd

〈rb〉ǫb
≥ H(a, b, c, d, λ,D), (15)

The notation employed and the constraints on the parameters are detaileded below.

• Defining λ ≡
q − 1

q
=

1 − t

t
∈ (0, 1), the orders of the expectation values are con-

strained as a > b > −Dλ and c > Dλ > d. Because of the one-to-one correspondence

between λ and each of the parameters q and t, we will replace both them by the new

λ, whose non-negativity is worth noting. The limiting case λ = 0 corresponds to the

choice q = t = 1, for which results derived from the BBM inequality are recovered.

• The lower bound H(a, b, c, d, λ,D) is defined from those of the frequency moments (F

and G) and that of the Rényi sum (f) as

H(a, b, c, d, λ,D) =

[

f
(

D
D−λ

, D
)

F
(

a, b, D
D−λ

, D
)

G
D+λ
D−λ

(

c, d, D
D+λ

, D
)

]
D−λ

D

(16)

• Concerning the powers ǫi (all positive) to rising the radial expectation values, they are

given by
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ǫa =
Dλ + b

a − b
, ǫb =

Dλ + a

a − b
, ǫc =

Dλ − d

c − d
, ǫd =

c − Dλ

c − d
(17)

Especially remarkable are the equalities ǫb − ǫa = ǫc + ǫd = 1.

• The unique order with definite sign is c > 0 because of the constraint c > Dλ. All

others {a, b, d} can be either positive or negative.

• For a given choice of orders {a, b, c, d} fulfilling the appropriate constraints, it would

be desirable to know the optimal allowed λ. We use the word ’optimal’ in the sense of

providing the highest bound allowed, attneding to the set of orders considered. Such

an optimal value cannot be obtained analytically due to the functional dependence of

the bound H(λ), but it can be determined numerically instead.

• Nevertheless, any value λ ∈ (0, 1) verifying a > b > −Dλ and c > Dλ > d is valid

in order to get a lower bound for the four-moment uncertainty product. We will

choose appropriate values, within those allowed, in order to get not very complicated

expressions. The numerical optimization will be provided elsewhere.

The most general bound obtained by following the above procedure is

H(a, b, c, d, λ,D) = (a−b)1+λ

(c−d)1−λ

[

Γ2(D/2)

4B( c−Dλ
λ(c−d)

, Dλ−d
λ(c−d))B( Dλ+b

λ(a−b)
,1+ 1

λ)

]λ
[

(1+λ)1+λ

(1−λ)1−λ

]D/2

×

×
[

(Dλ+b)Dλ+b

(Dλ+a)Dλ+a

]
1

a−b [

(Dλ − d)Dλ−d(c − Dλ)c−Dλ
]

1
c−d

(18)

where the symbol B(x, y) denotes the beta function.

It is worthy to remark that the inequality obtained also holds after exchanging the position

(r) and momentum (p) variables. This is equivalent to the choice of the parameters as

t > 1 > q in the initial stage, the uncertainty product having both r expectation values at

the numerator as well as one of the p ones, with the other at the denominator.

IV. PARTICULAR CASES OF PHYSICAL INTEREST

The last inequality in the previous section provides us with a extremely wide set of lower

bounds on uncertainty products. The general expression contains four radial expectation

values, but particular cases with only three or two will be considered also. Emphasis will
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be made on the products 〈rα〉1/α〈pβ〉1/β, having one of the orders negative, because the only

known results in this sense, to our knowledge, correspond to products with both positive

orders, as done e.g. in Refs. [15] and [22].

In addition, physically relevant products with three and four radial expectation values will

be also analyzed. It is worth mentioning that some of these quantities are physically relevant

and/or experimentally accesible in three-dimensional atomic systems. Some examples are

[30]:

• The kinetic energy T , given by T =
〈p2〉

2
, with its relativistic correction, proportional

to 〈p4〉.

• The height of the peak of the Compton profile J(q), experimentally accessible from

electron scattering experiments, is J(0) =
〈p−1〉

2
.

• The diamagnetic susceptibility χ, proportional to 〈r2〉.

• The electron-nucleus attraction energy (absolute value) EeN = Z〈r−1〉, with Z being

the nuclear charge.

For illustration, the accuracy of the universal bounds to uncertainty products will be

analyzed for ground-state neutral atoms throughout the whole Periodic Table (nuclear charge

Z = 1 − 103). In doing so, accurate near-Hartree-Fock wavefunctions [31, 32] will be

employed to compute the radial expectation values.

A. Two-moment products

Much attention has been paid to the products 〈rα〉1/α〈pβ〉1/β with α, β > 0. Let us notice

that we can provide lower bounds on them by using Eq. (18), choosing appropriately two

powers (orders) as zero, what simplifies the expression to a two-moment one because of the

normalization to unity.

We distinguish the following three cases, according to the signs of α and β:

1. Both orders positive: the procedure here considered, based on the extremization of

frequency moments with two constraints, would be equivalent to the extremization

of the Rényi entropies with one-moment and normalization constraints. Such is the
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technique employed in Ref. [22] and, consequently, the results in that case are here

the same as in the aforementioned reference.

2. Both orders negative: such a choice is no longer possible, according to the constraints

on the orders of the radial expectation values considered. Let us remind that neces-

sarily c > 0, and consequently we cannot choose two negative orders and the other

two equal to zero.

3. One positive and one negative: such a choice is allowed, providing results which con-

stitute a novelty to our knowledge. Now we obtain lower bounds to the products

considered in this section, with α > 0 > β or conversely.

If we choose a = d = 0 in Eq, (18), then

〈rb〉1/b〈pc〉1/c ≥
[

(−b)1+λ

c1−λ

]
1

Dλ

[

Γ2(D/2)

4B( c−Dλ
λ(c−d)

, Dλ−d
λ(c−d))B( Dλ+b

λ(a−b)
,1+ 1

λ)

]
1
D [

(1+λ)1+λ

(1−λ)1−λ

]
1
2λ

×

×(Dλ + b)−
1
b
−

1
Dλ (Dλ)

1
b
+ 1

c (c − Dλ)
1

Dλ
−

1
c

(19)

for any c > Dλ > −b > 0. The analogous relationship also holds after exchanging the

variables r and p.

Attending to the above comments on the physical relevance of radial expectation values,

especially interesting appears the three-dimensional (D = 3) bound

〈p2〉1/2

〈r−1〉
≥

77/4

22/3311/1254/3
= 0.81080 (20)

This equation involves the kinetic and the electron-nucleus attraction energy. Exactly the

same bound is valid for the quotient 〈r2〉1/2/〈p−1〉, essentially between the diamagnetic

susceptibility and the peak of the Compton profile.

According to the chosen orders, the parameter λ must belong to the interval

(

1

3
,
2

3

)

.

The bound just provided corresponds to the particular value λ = 2/5. An improvement on

the accuracy of this bound can be achieved by optimizing the corresponding expression over

the whole allowed interval.

In Figure 1 the aforementioned quotients are displayed, as well as their lower bound

in Eq. (20), for neutral atoms Z = 1 − 103. It is observed the similar path followed by

both curves (computed from Eq. (20) and the corresponding one exchanging the conjugated

variables), with a slightly higher structure observed in the curve defined in terms of 〈r2〉 and
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〈p−1〉 as compared to the conjugated one. The reason behind last comment is that these two

expectation values enhance the contribution of the outermost (valence) region. This occurs

because the factor r2 enhances the contribution from electrons far from the nucleus, and the

factor p−1 enhances that of low-speed electrons, that is those in the outermost region. An

opposite effect occurs with operators r−1 and p2, both them enhancing the surround of the

nucleus (short distance and high speed).

The analysis of the presence of local extrema in these curves reveals (i) the sys-

tematic display of alkaline elements (Z = 3, 11, 19, 37, 55, 87) as local maxima, (ii) the

same effect regarding most systems suffering from the so-called anomalous shell-filling

(Z = 24, 29, 42, 46, 78, 93, 97), and (iii) all alkaline-earths (Z = 4, 12, 20, 38, 56, 88) corre-

spond to local minima.

Additionally it is worthy to mention the behavior of the aforementioned products as

(roughly) Z0.27, induced numerically from Figure 1.

On the other hand, it is interesting to notice that the well-known lower bound 〈r2〉〈p2〉 ≥

9/4 can be improved by considering additional expectation values, from the use of Eq. (18)

with an appropriate choice of the parameters. This will be discussed in Subsection IV.C.

B. Three-moment products

Relationships involving more than two radial expectation values have been obtained by

means of different methods (Hölder’s inequality [33], Stieltjes moment problem [26]). How-

ever, they are restricted to a given space (either position either momentum), but not com-

bining simultaneously both conjugated spaces, as in the two-moment products of this work.

Restricting ourselves, for the sake of simplicity, to the four moments with orders -1 and

2 in both spaces, we have at our disposal four different three-moment combinations. Each

one avoids the presence of one of these moments. We should keep in mind the validity of

those bounds by exchanging the conjugated variables.

As in the two-moment case, there exists an allowed interval for the parameter λ according

to the chosen orders. Nevertheless, we choose a particular value in each case, in order to get

expressions as simple as possible. Some of those inequalities are given below:

〈r2〉3/2〈p2〉2〈p−1〉 ≥
4480

315/2
= 1.18258, with

1

3
= λ ∈

(

0,
2

3

)

(21)
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〈p2〉1/3〈r2〉3/2

〈p−1〉7/3
≥

(3/2)6

74/3
= 0.85065, with

1

2
= λ ∈

(

1

3
,
2

3

)

(22)

〈p2〉5/3〈p−1〉1/3

〈r−1〉3
≥

27

512
55/3 = 0.77098, with

1

2
= λ ∈

(

1

3
,
2

3

)

(23)

From Figure 2 the accuracy of the above bounds can be analyzed. Consider also the three

inequalities exchanging the variables. Each of the above three inequalities and their conju-

gated counterparts are displayed, respectively, in Figures 2a, 2b and 2c.

It is observed that, as discussed for the two-moment products, the local extrema displayed

in these figures follow the same trends according to the shell-filling pattern. Especially re-

markable are the maxima associated to alkaline elements or some of those elements suffering

an anomalous shell filling, while most minima correspond to alkaline-earths.

C. Four-moment products

There are two inequalities involving the four moments considered. Each inequality can

be obtained from the other after exchanging the variables. We give here one of them:

〈r2〉1/3〈p2〉5/3〈p−1〉1/3

〈r−1〉7/3
≥

243

256
(55/74)1/3 = 1.03638, with

1

2
= λ ∈

(

1

3
,
2

3

)

(24)

This product and its conjugated version are displayed in Figure 3. It is observed again

the extreme similarity between the conjugated products, as well as their rough behavior as

Z5/4. The structure of the curves is justified with similar arguments to those previously

done regarding other uncertainty products, according to the atomic shell-filling patterns.

It should be noticed the possibility of obtaining a lower bound on the Heisenberg product

〈r2〉〈p2〉 other than the constant one 9/4, but in terms of other two radial expectation values

instead. In doing so, an appropriate choice of the orders and the (almost) free parameter in

Eq. (18) may be done. In this sense, the aforementioned constant bound could be improved

from the knowledge of the values of two radial expectation values other than those of order

two.
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V. CONCLUSIONS

The variational bounds on frequency moments in terms of radial expectation values,

together with the Rényi uncertainty inequality, allow to obtain a great variety of lower

bounds on uncertainty products defined in terms of radial expectation values. These bounds

are of universal validity, and the main novelties are (i) the possibility of dealing with moments

of negative order, and (ii) the collection of results for products of more than two expectation

values. The analysis for ground state atomic systems reveals (i) the deep similarity between

results obtained from a given inequality and its conjugated one, and (ii) the display of atomic

shell-filling patterns according to the location of local extrema in the curves displayed. Some

of the results here studied are based on a specific choice of the (almost) free Rényi parameter,

but they can still be improved by carrying out a numerical optimization on such a parameter.

This will be done elsewhere.
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Figure Captions

Figure 1 Two-moment uncertainty products, one with order -1 and the other with order

2, and fit in terms of the nuclear charge Z, for one-particle densities of neutral atoms with

Z = 1 − 103. Atomic units are used.

Figure 2 Three-moment uncertainty products with orders -1 and 2 as given by (a) Eq. (21),

(b) Eq. (22) and (c) Eq. (23), and fits in terms of the nuclear charge Z, for one-particle

densities of neutral atoms with Z = 1 − 103. Atomic units are used.

Figure 3 Four-moment uncertainty products with orders -1 and 2 in both conjugated

spaces, and fit in terms of the nuclear charge Z, for one-particle densities of neutral atoms

with Z = 1 − 103. Atomic units are used.
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