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Fisher divergences �FDs� and Jensen-Shannon divergences �JSDs� are used in this work to quantify the
informational discrepancies between the one-particle electron densities of neutral atoms, singly charged ions,
and isoelectronic series. These dissimilarity magnitudes, computed for a set of 319 atomic systems in both
position and momentum spaces, provide relevant information concerning pattern, structure, and periodicity
properties of the ionization processes. In particular an apparent correlation between extremal values of the
atomic ionization potential and the divergences is found. Results are compared with those obtained by quantum
similarity techniques.
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I. INTRODUCTION

There is an extensive literature on measures of similarity
and dissimilarity between probability densities �1–12�, some
of them for arbitrary dimensionality, and they have been used
in a wide variety of scientific fields including, for instance,
sequence analysis �13�, pattern recognition �14�, diversity
�15�, classification �16�, homology �17�, neural networks
�18�, or computational linguistics �19�. The recent explosion
in knowledge-based chemical research has created a surge of
interest in chemical similarity. Molecular modeling and
quantitative structure activity relationship �QSAR� are
simple examples of such interest �20�.

Chemical similarity is often described as an inverse of a
measure of distance in the appropriate space. In particular
quantum similarity theory �QST� �12� was originally devel-
oped in order to establish quantitative comparisons between
molecular systems by means of their fundamental structural
magnitudes, i.e., electron-density functions. The obvious mo-
tivation was that studies of differences in the electronic
charge densities of these species could be related to differ-
ences in their respective physical and chemical properties,
according to density-functional theory and Hohenberg-Kohn
theorem �21�.

The simplest and most intuitive similarity measure is just
an overlap integral between the two electronic densities to be
compared �22–24�. On the other hand, some other similarity
indices based on the concept of an information distance have
been proposed and evaluated for different many-particle sys-
tems, such as, e.g., atoms, molecules, and nuclei �23,25–28�.

Most of the work on quantum similarity has been done in
the usual position representation r. Nevertheless, there has
also been interest in extending this technique to momentum-
space �p� atomic similarity. The reason underlying this inter-
est is due to the Fourier transform connection between the
conjugated r and p spaces, the momentum density containing

relevant information on the valence region at small momen-
tum p values, where this density tends to be large. So we
explore in this case the valence region in contrast to position
space in which we are mainly examining behaviors near the
core regions. This important result has been recently shown
for the case of atomic systems �29�, concluding that, when
using similarity overlap measures, comparison of two many-
electron systems in what concerns the shell structure requires
the consideration of the momentum-space variable p through
the associated one-particle density.

Therefore it is natural to be interested in searching for
new divergence or similarity measures based on information
theory that revealed the atomic structure and other properties
not only in the momentum space but also in the position one.
We adopt here this point of view by using two fundamental
information measures: Shannon entropy and Fisher informa-
tion, to be presented in Sec. II, and their related measures of
divergence, namely, Jensen-Shannon divergence �JSD� and
Fisher divergence �FD�.

The main objective of this work is to study, by using the
above mentioned relative measures, the dissimilarities be-
tween electronic densities corresponding to atoms and ions
in both conjugated spaces. Specifically, in Sec. III we carry
out a dissimilarity analysis for simple but strongly organized
N-electron systems �N�54� of neutral atoms and their singly
charged ions, exploring their outer electronic layer and
studying the behaviors accompanying the process of gain or
loss of one electron for an atom at constant nuclear charge Z.
The relationship between the atomic ionization potential
�AIP� and the dissimilarity measures among neutral systems
and charged species is also studied. Besides, in Sec. IV, we
explore the core regions of atoms by computing the isoelec-
tronic variation in these information divergences of over a
fairly extended range of nuclear charge Z values. The results
obtained by using these new divergence measures �FD and
JSD� are also compared to those obtained with QSTs based
on overlap measures. Conclusions and main results are col-
lected in the last section.*Corresponding author; angulo@ugr.es
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II. JENSEN-SHANNON AND FISHER
INFORMATION DIVERGENCES

The main aim of this work is to study the effect of ion-
ization processes on atoms from Li to Cs �3�Z�55� by
means of their one-particle densities, ��r�� and ��p��, in both
conjugated spaces, namely, position and momentum, respec-
tively. For the systems we are dealing with, i.e., neutral spe-
cies and ions in the absence of external fields, it is sufficient
to consider the spherically averaged densities ��r� and ��p�.

In doing so we define and compute two divergence mea-
sures, one measuring differences on the global spread of the
distributions, the Jensen-Shannon divergence, and other of
local character, measuring differences on intrinsic changes in
the distribution, the Fisher divergence.

Several fundamental magnitudes have been introduced in
the literature as measures of information for general prob-
ability densities, but the most commonly used in information
theory is the Shannon entropy �S� �30,31�. It is a global
measure of the spread or delocalization of a distribution be-
ing defined as the expectation value of the logarithm of the
distribution:

S��� � −� ��r��ln ��r��dr� . �1�

Information-theoretic properties based on Shannon en-
tropy have been extensively employed in recent years for the
study of quantum-mechanical and multielectronic systems.
In particular, their use in atomic and molecular systems has
led to an insight in these fields, providing a wide variety of
results, including recent studies on complexity measures
�32–39�.

The relative entropy or Kullback and Leibler �KL� diver-
gence �2� is one of the pioneering global measures of the
difference between two probability distributions. It expresses
the amount of information supplied by the data for discrimi-
nating among the distributions being a “directed divergence”
and therefore not symmetric:

KL��1,�2� � � �1�r��ln
�1�r��
�2�r��

dr� . �2�

Its applications for different procedures in obtaining mini-
mum cross entropy estimations and the determination of
atomic and molecular properties �40,41�, among others,
make it to constitute an essential tool within the information
theory. Very recently, a quantum dissimilarity measure has
been constructed within the aforementioned informational
framework, allowing to study the relativistic effects on the
electron density �42�. These kind of KL measures have been
also employed to analyze molecular reaction paths �43�.

Won and You �44� introduced, somewhat implicitly, a
closely related information measure between two or more
distributions, the JSD �45�:

JSD��1,�2� �
1

2
�KL��1,

�1 + �2

2
	 + KL��2,

�1 + �2

2
	
 .

�3�

Consequently, JSD represents the mean dissimilarity �un-
derstood in terms of the KL measure� of each density respect
to the mean one. Attending to the JSD definition given
above, and using Eqs. �1� and �2�, the Jensen-Shannon diver-
gence can be also expressed in terms of the Shannon entropy
as

JSD��1,�2� = S��1 + �2

2
	 −

1

2
�S��1� + S��2�� , �4�

allowing to interpret also the JSD divergence as the “entropy
excess” of the mean density with respect to the mean entropy
of the individual densities.

Other important advantages of this divergence are that �i�
does not require the condition of absolute continuity for the
probability distributions involved, �ii� weights of each den-
sity can be different from 1/2 as appearing in Eq. �3�, and
�iii� can be generalized for an arbitrary number of distribu-
tions. During past years researchers interested toward para-
metric generalizations of these classical measures of infor-
mation �8,10,11,46–48�. The JSD also admits other kind of
generalizations as will be shown elsewhere.

This divergence has been widely applied to the analysis
and characterization of symbolic sequences or series, and in
concrete to the study of segmentation of DNA sequences.
However its use in the framework of quantum information
theory �49,50� or in the study of multielectronic systems
�51,52� is very recent.

Fisher information, I, is another important information
quantity �53�, being originally introduced as a measure of
intrinsic accuracy in statistical estimation theory. This is a
measure of the gradient content of a distribution and there-
fore is a “local” measure which explores deeply the changes
in the electronic distribution. Over the years, it has been
shown to be a very useful concept; e.g., the equations of
nonrelativistic quantum mechanics, the time-independent
Kohn-Sham equations and the time-dependent Euler equa-
tion of DFT have been derived using the principle of mini-
mum Fisher Information �54,55�. The Fisher information is
defined as

I��� � � ��r����� ln ��r���2dr� . �5�

This relevant magnitude is also a measure of the distribu-
tion localization, and it has not been used until very recently
to investigate directly electronic densities �36,38,56–59�.

Taking into account the divergence character of the sym-
metrized Kullback-Leibler measure, we define a similar mag-
nitude using now Fisher information. It can be readily veri-
fied that the symmetrized relative Fisher information,

FD��1,�2� � � �1�r����� ln
�1�r��
�2�r��

�2

dr�

+� �2�r����� ln
�2�r��
�1�r��

�2

dr� , �6�

fulfills the basic properties of a divergence �positivity, sym-
metry and zero value in case of equal distributions�. The
local or intrinsic character of Fisher information is trans-
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ferred to the FD so we have at our disposal two complemen-
tary measures of discrepancy between distributions: one of
global character �JSD� and another of local one �FD�. We
apply in the next sections these two dissimilarity measures to
the study of atomic ionization processes �in the sense of
comparing the one-particle densities of the involved initial
and final systems� as well as isoelectronic series.

In the computations the accurate Near-Hartree-Fock
atomic wave functions of Koga et al. �60,61� was employed
in order to calculate the atomic densities and their corre-
sponding informational measures for all atoms and ions.
Relativistic effects are not relevant for the nonheavy systems
considered in this work.

III. DIVERGENCE ANALYSIS OF MONOIONIZATION
PROCESSES

In this section we focus in the outer electronic layer of the
atom and study the dissimilarities between the neutral sys-
tems and the singly charged ones, with identical nuclear
charge, by means of their corresponding electronic densities.
In doing so we calculate the Jensen-Shannon and Fisher di-
vergences associated to the corresponding monoionization
processes to analyze a set of 148 atomic systems including
anions, neutral species, and cations with a number of elec-
trons up to N=54. We also compute, for the sake of com-
pleteness, other information-theoretic magnitudes by using
well known QSTs in order to better interpret and compare the
aforementioned systems and processes. In what follows, let
us keep in mind that all definitions and equations are valid
for arbitrary density functions and, consequently, for both
position and momentum spaces in what atomic one-particle
density concerns. All computations in the present work will
be also done in the two conjugated spaces.

A. Quantum similarity techniques

First of all, let us show the results concerning QST. As we
have pointed out before, these techniques are based on over-
lap integrals and use the quantum similarity index �QSI� to
measure the proximity of two electronic distributions �1�r��
and �2�r��. The QSI is defined as

QSI��1,�2� �
�1�r���2�r��dr�

�1
2�r��dr��2

2�r��dr�
. �7�

It is clear that a closely related divergence, the quadratic
distance �QD�, can also be defined by simply integrating the
square of the difference between these two densities. In fact
it can be also expressed in terms of the same three overlap
integrals:

QD��1,�2� � � ��1�r�� − �2�r���2dr�

=� �1
2�r��dr� +� �2

2�r��dr� − 2� �1�r���2�r��dr� .

�8�

We have computed, in r and p spaces, QD and QSI between

neutral species �N=1–54� and their singly charged cations
�NC pairs� or anions �AN pairs� and also between anions and
cations �AC�. The results confirm and expand some basic and
preliminary results obtained for these charged systems �62�.

Concerning position space, all computed values of QDr,
for the aforementioned pairs of atomic systems as shown in
Fig. 1�a�, provide a very smooth curve versus Z, whatever
the type of process suffered by the atom might be. The
monotonic decreasing behavior of the curves shows how
QDr between atoms and ions are simply smaller as the
nuclear charge, Z, grows. Therefore QD in position space
masks any information concerning periodicity properties,
groups which the systems belong to and so on.

However, results are completely different in momentum
space where the shell structure of the periodic table is clearly
displayed in Fig. 1�b�. The ranges of values for QDp are
strongly dependent on the orbital angular momentum “l” of
the subshells affected by the change in the number of elec-
trons, and the great structure of the curves in this space con-
trasts deeply with the monotonous behavior displayed in po-
sition space. These very different trends in the conjugated
spaces are shown in Fig. 1 for the three studied processes:
A→N, N→C, and A→C. It is worthy to note also that �i�
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FIG. 1. Quadratic distance QD among neutral atoms �N� and
singly charged anions �A� and cations �C� with nuclear charge Z in
�a� position and �b� momentum spaces. Atomic units are used.
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the three curves in momentum space �Fig. 1�b�� are com-
pletely fitted, in spite of their picked structure, �ii� distances
between these three couples are always increasing when Z is
fixed in the sense that QD�AN��QD�NC��QD�AC� in both
spaces, and �iii� an average decreasing trend, with the size of
the atom, modulates this rich structure, i.e., changes in the
ionization processes of heavy atoms are, overall, smaller
than those suffered by light atoms.

Analogous results are found for the corresponding QSI,
where all computed values, in position space, almost reach
the maximum value 1, whereas a much richer structure is
shown in p space, as displayed in Fig. 2, for illustration, in
the NC process. As expected, minimum values of QSIp cor-
respond, overall, with maximum ones of QDp. Besides the
AIP, which is the basic experimental magnitude to be com-
pared with the divergences we have computed, is also dis-
played in the figure. It is worthy to mention here the coinci-
dence of minima for QSIp with relevant ones for AIP
�corresponding to ionization related to “s” subshells� and
also the apparent constant �almost equal to 1� values of QSIp
for atoms suffering ionizations in “p” subsells.

The strong differences found concerning the level of
structure for both the QD and QSI measures in the two con-
jugated spaces are understood by analyzing their definitions
as well as the short- and long-range behaviors of the one-
particle densities. The exponential decreasing of the position
space density ��r� makes the values of the three overlap
integrals to be mainly quantified by the region around the
nucleus, where the nuclear charge Z determines the value of
the density. Consequently, both QDr and QSIr are strongly
dependent on the nuclear charge of the compared systems,
much more than the outermost regions where the valence
subshell determine the shell-filling pattern. On the other
hand, such a valence region corresponds to the low-speed
electrons, i.e., those associated with the momentum density
around the origin and, consequently, to the main contribu-
tions on evaluating the overlap integrals and the correspond-
ing QDp and QSIp measures.

B. Fisher and Jensen-Shannon divergences

Figures 3�a� and 3�b� show, in r and p spaces, respec-
tively, the results obtained by comparing the informational
divergences defined in Sec. II, namely, FD and JSD, when an
electron is removed from the neutral species �N→C�, as well
as the atomic ionization potential AIP needed for performing
such process. We note first that both divergences show in
position space a notable structure in contrast to QD �Fig. 1�
or QSI measures, and second that, in spite of being of very
different character �local �FD� or global �JSD� ones�, both
divergences not only follow similar general trends in the two
conjugated spaces, but each one also belong to a similar
range of values independently of the considered space. These
are important facts that reveal the power of these two diver-
gences over those computed by QST.

Carrying out the same analysis for other ionization pro-
cesses, namely, those in which the compared systems are a
singly charged anion and the resulting one after removing
one �A→N� or two �A→C� electrons �the neutral atom of
the singly charged cation, respectively� provide similar con-
clusions.
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FIG. 2. Quantum similarity index QSIp�NC� between neutral
atoms �N� and singly charged cations �C�, and atomic ionization
potential AIP of neutral atoms with nuclear charge Z. Atomic units
are used.
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FIG. 3. Fisher and Jensen-Shannon divergences, FD �NC� and
JSD �NC�, between neutral atoms �N� and singly charged cations
�C�, in �a� position and �b� momentum spaces, and atomic ioniza-
tion potential AIP of neutral atoms with nuclear charge Z. Atomic
units are used.
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However it is important to note and analyze the pointed
and fluctuant structure of these divergences in each period
comparing their extremal values to those of AIP. In Table I,
values of the nuclear charge Z for which all divergences
considered in this work display local extrema are given. In
addition, minimum values of the AIP are associated to sys-
tems with a single electron in the valence subshell, making
consequently such a subshell to disappear after ionization
and the resulting system to strongly differ from the initial
one. This relevant difference is usually revealed in terms of a
high divergence and dissimilarity between the initial and the
final systems.

Attending to the above discussion, Table I contains the
values of Z for which both the AIP and the QSIp display local
minima and also those corresponding to local maxima of
momentum space QDp as well the divergences FD and JSD
in both position and momentum spaces. Let us remember at
this point the structureless of both QD and QSI in position
space, being consequently not included in the table. Addi-
tionally, two cases have been distinguished according to the
involvement of any s electron on the ionization process or
else only p and d ones. This is done due to the relevant role
played by the first ones in conditioning the associated diver-
gence and similarity values.

However, there is only one exception for the rules previ-
ously given in order to choose the kind of extrema �maxima
or minima� to be considered: instead of maxima, the Z values
provided for the FDr�AN� divergence correspond to its
minima. The fact that this particular quantity displayed such
a behavior can be explained attending to the long-range be-
havior of the position space atomic densities. Denoted by �
the AIP of a given system �for the sake of simplicity� is well
known �63,64� that the charge density behaves as ��r�
�e−�8�r for large r. The FD definition given by Eq. �6� al-
lows to assert that FD��1 ,�2����1−�2�2. For alkaline-earth

metals, the AN process makes a completely filled s valence
subshell to be half filled, while the other two processes �NC
and AC� completely remove the initial nonempty s subshell,
giving rise to a final closed-shell system �namely, the singly
charged cation� with a much higher AIP than the final system
�neutral atom with s1 valence subshell� in the AN process.
So, the difference between their AIPs, which determines the
behavior of the FD divergence, is much higher when the final
system is a cation than a neutral atom. In this analysis it has
been essential the presence of the logarithmic derivative in
the FD definition, which provides the aforementioned depen-
dence on the ionization potential in position space. This is
not the case of neither the momentum space nor the other
measures.

In all the aforementioned cases there exist a strong corre-
lation also with the structure displayed by the atomic ioniza-
tion potential AIP in the NC ionization process in which an s
electron is removed, as shown in the corresponding column
of the table, as well as in Figs. 3�a� and 3�b�. However, the
same is not true when the removed electron is of p or d type,
where such a connection with the AIP extrema only remains
for the position space Fisher divergence FDr. Concerning the
QST and divergence measures, these comments are also
valid for the AN and AC ionization processes.

The above-mentioned goodness of the Fisher divergence
in position space FDr on displaying such a richer structure as
compared to the other measures as well as the Fisher itself in
momentum space can be better understood by turning up to
the long-range behavior of the charge density in terms of the
atomic ionization potential, being the connection between
the extrema of FDr and AIP the closest one within the mag-
nitudes enclosed in Table I.

In order to better interpret the number and location of
extrema of these quantities, the corresponding ionization
processes are detailed in Table II for all systems considered

TABLE I. Nuclear charge Z of local extrema for the atomic ionization potential AIP of neutral atoms
and/or the Fisher and Jensen-Shannon divergences in position �FDr and JSDr� and momentum �FDp and
JSDp� spaces and the quadratic distance QDp and the quantum similarity index QSIp in momentum space for
ionization processes among neutral atoms �N� and singly charged anions �A� and cations �C�. Atomic units
are used.

Measure N→C A→N A→C

AIP �s� 3,11,19,23,28,37,47,55

�p ,d� 5,8,13,16,31,34,49

FDr �s� 3,11,19,23,28,37,42,45,47,55 3,11,19,24,37,41,45 3,11,19,24,29,37,42,47

�p ,d� 5,8,13,16,31,34,39,49 6,14,32,50,53 8,16,34,52

JSDr �s� 3,11,19,23,27,37,41,45,47,55 3,11,19,24,29,37,42,44,46 3,11,19,23,27,37,41,44

�p ,d� 31,49

FDp �s� 3,11,19,23,27,37,41,44,47,55 3,11,19,37,46 3,11,19,23,27,37,41,44

�p ,d� 25,33,40,43,51 33,51

JSDp �s� 3,11,19,23,27,37,41,45,47,55 3,11,19,24,29,37,42,44,46 3,11,19,23,27,37,41,44

�p ,d� 8,52 7,15,33,51

QDp �s� 3,11,19,23,25,27,37,40,43,47,55 3,11,19,24,29,37,41,44,46 3,11,19,23,27,37,41,44

�p ,d�
QSIp �s� 3,11,19,23,27,37,41,45,47,55 3,11,19,24,29,37,42,44,46 3,11,19,24,29,37,42,47

�p ,d� 16,34,52 7,15,33,51 8,15
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in the present section. It is observed the systematic presence
of the alkaline atoms �Z=3,11,19,37,55� for which only s
electrons are removed from the initial system. Additionally,
many of the other extrema shown in Table I correspond to
systems involved in the so-called “anomalous shell filling”
as well as for ionizations concerning nonvalence subshells
�see Table II�. Sometimes there appear extrema for processes
concerning p subshells when they become half filled or com-
pletely removed after the ionization.

Let us remark here that some recent works have dealt
previously with the correlation between information mea-
sures and the atomic ionization potential, according to its
role in describing the single ionization processes. The net
Fisher information measure, defined as the product of both
the position and momentum Fisher information, is found to
be correlated, at least qualitatively, with the inverse of the
experimental ionization potential �65�, as similarly shown to
occur with Onicescu information energy �37�. However,
those and other works only deal with pairs of neutral systems
within a given model or a unique system described within
different models �40� contrary to the case considered in the
present work, namely, the correlation with dissimilarities be-
tween neutral and charged species.

IV. DIVERGENCE ANALYSIS OF
ISOELECTRONIC SERIES

The isoelectronic series provide a well-known benchmark
for the study of atoms and molecules. In this section results
concerning the application of the informational divergences
defined previously are presented. We have analyzed nine iso-
electronic series of neutral atoms and some of their cations.
Each series consists of 21 systems, all of them with equal
number of electrons N and their nuclear charge running from

Z=N to Z=N+20. In this form we study how these diver-
gence measures characterize, from the informational point of
view, this set of 189 different systems, corresponding to the
series with N–2−10. On one hand, the effect of increasing/
decreasing the nuclear charge can be studied and on the other
the electronic organization of each isoelectronic series can be
investigated. In doing so, all the divergences �QSI, QD, FD,
and JSD� between the neutral species �Z=N� and each mem-
ber of the isoelectronic series �Z=N+1, . . . ,N+20� have
been computed.

Double Fig. 4 shows the global JSD in r and p spaces.
This global divergence works equally well in position and
momentum space and results in both spaces are not very
different.

Some monotonic trends are also shown in these figures:
�i� the divergence between the neutral system and each mem-
ber of the isoelectronic series increases with Z as it could be
expected, showing that distances increase when the nuclear
charge is larger; �ii� this increasing behavior with the size of
the nucleus is progressively less notable; and �iii� the loca-
tion of each isoelectronic curve is ordered according to N so
that divergences decrease with the number of electrons N. In

TABLE II. Initial and final occupation numbers of outermost
atomic subshells for some ionization processes among neutral at-
oms �N� and singly charged anions �A� and cations �C�.

Z A→N→C

3–4 2sj+1→2sj→2sj−1

5–10 2pj+1→2pj→2pj−1

11–12 3sj+1→3sj→3sj−1

13–18 3pj+1→3pj→3pj−1

19–20 4sj+1→4sj→4sj−1

21–22,25–26,30 4s23dj+1→4s23dj→4s13dj

23,27–28 4s23dj+1→4s23dj→4s03dj+1

24,29 4s23dj→4s13dj→4s03dj

31–36 4pj+1→4pj→4pj−1

37–38 5sj+1→5sj→5sj−1

39 5s24d15p1→5s24d1→5s24d0

40,43,48 5s24dj+1→5s24dj→5s14dj

41–42,44–45,47 5s24dj→5s14dj→5s04dj

46 5s24d9→5s04d10→5s04d9

49–54 5pj+1→5pj→5pj−1

55 6s1→6s0
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FIG. 4. Jensen-Shannon divergence JSD between N-electron
neutral atoms and cations for the isoelectronic series with N
=2–10 and nuclear charge Z within the range N�Z�N+20 for
each series, in �a� position and �b� momentum spaces. Atomic units
are used.
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other words divergences are less relevant when the size of
the electronic cloud is bigger.

Double Fig. 5 shows the FD for the same isoelectronic
series studied above. In this case it is important to note a
very different behavior than JSD shows. First of all the
trends of this local divergence, FD, in r and p spaces are very
different as FDr displays a clearly increasing behavior with
Z, but FDp tends toward a constant value when the size of the
nucleus grows. Besides FDr has the following characteris-
tics: �i� inside each series, it increases with Z as JSDr does,
but now this increasing is more and more notable according
to the size of the nucleus and �ii� a monotonic decreasing
ordering of the isoelectronic curves with N is once again
observed. On the contrary the most important characteristics
of FDp are the following: �i� it increases at lesser extent as
the nucleus becomes larger, and at the end of the series it is
almost insensitive to the size of the nucleus, and �ii� the
monotonic behavior of the curves with N is broken by the
N=2 isoelectronic series.

This much more sensitive trend of FD versus JSD can be
understood if we look at the local character of this diver-
gence in comparison with the much more global one of JSD.
Therefore this divergence is much more sensible to the local

form �near the origin, asymptotic behavior, etc.� of the den-
sities we are comparing. In particular, it is worthy to remem-
ber the hydrogenlike behavior of the position space density
around the nucleus, which translates into the so- called “cusp
condition” �66�, valid for any atomic system:

���0�
��0�

= − 2Z , �9�

which reveals a proportionality of the logarithmic derivative
at the nucleus and the nuclear charge. Taking into account
that the main contribution to the integrals defining FDr
comes from the region surrounding the nucleus �due to the
fast exponential decay of the density�, the aforementioned
condition translates into a dependence of such a divergence
between these systems on their nuclear charges as

FD��1,�2� � �Z1 − Z2�2, �10�

which makes, as expected, the Fisher divergence to consid-
erably increase as comparing the neutral system with a
highly charged one. In fact, increasing the nuclear charge
makes the slope of the logarithmic derivative of the density
around the nucleus to proportionally increase and, conse-
quently, also the Fisher information itself due to the high
“content of gradient” in that region. Additionally, it is worthy
to point out how both divergences behave in a strongly dif-
ferent or similar fashion according to the space we are deal-
ing with, namely, position or momentum, respectively.

Similar comments on the QD and QSI measures can be
done concerning monotonicity and ordering of the curves. In
fact, the shape of the quadratic distance QD is found to be
very similar to that of the Fisher divergence, sharing also the
previously discussed opposite trends in both conjugated
spaces. In what concerns the quantum similarity index QSI,
it displays a monotonically decreasing behavior as increasing
the nuclear charge. This means that the similarity index
along a given isoelectronic series mainly depends on the dif-
ference between the nuclear charges of the compared sys-
tems.

V. CONCLUSIONS

The comparison of ionized and neutral atomic systems by
means of quantum similarity techniques provides only rel-
evant information on periodicity properties and shell struc-
ture when dealing with one-particle densities in momentum
space. However, the corresponding values in position space
are only concerned by, at most, how large the nuclear charge
is.

On the contrary the divergences measures defined and
computed in this work, one of local character �FD� and other
of global one �JSD� explore deeply, in both conjugated
spaces, the changes suffered by the atoms on their shell
structure after the ionization by changing either the number
of electrons or the nuclear charge.

In this work we report the variation in such dissimilarity
measures for a comprehensive set of neutral atoms, singly
charged ions, and isoelectronic series using the numerical
data generated on 319 atomic systems in position and mo-
mentum spaces.
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FIG. 5. Fisher divergence FD between N-electron neutral atoms
and cations for the isoelectronic series with N=2–10 and nuclear
charge Z within the range N�Z�N+20 for each series, in �a�
position and �b� momentum spaces. Atomic units are used.
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These dissimilarity measures clearly show the complex
organization and the shell-filling patterns at the periodic
table. Specially remarkable is the correlation found between
extrema of the atomic ionization potential and those of the
divergences. Besides a thorough analysis of changes suffered
on the subshells from which an electron is removed is done
and they are also related to the values of the divergence
measures. Characteristic features in the divergences accom-
panying the ionization process are identified, and the physi-
cal reasons for the observed patterns are described. In par-
ticular, it has been shown the relevant role played, among
other characteristics, by the angular momentum quantum
number of the removed electrons in the ionization process,
the significance in many cases of the anomalous shell filling,
as well as the value of the atomic ionization potential as
related to the Fisher and Jensen-Shannon divergences and the
QST measures.

Concerning the similar study of the dependence on the
nuclear charge Z when keeping the number of electrons N

fixed along different isoelectronic series, the divergence
among neutral atoms and cations increases as the difference
between the nuclear charges of both systems becomes larger.
In this case, no shell-filling properties are displayed since
both atomic systems under comparison have identical occu-
pation numbers.
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