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Fisher entropy and uncertaintylike relationships in many-body systems
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General model-independent relationships among radial expectation values of the one-particle densities in
position and momentum spaces for any quantum-mechanical system are obtained. They are derived from the
Stam uncertainty principle and the recently reported lower bounds to the Fisher information entropy of both
densities. The results are usually expressed in terms of some uncertainty products of the system. The accuracy
of the bounds is numerically analyzed for neutral atoms within a Hartree-Fock framework.
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[. INTRODUCTION between conjugate spaces, with the aim of applying all the

The study of the main physical properties of many—'QLOJ;ng]E'ggtﬁ%n;:,‘nS?tigsm both spaces to the simultaneous

gigﬁg:ﬁﬁ?;}'?g;{ﬁ; Ziga;'g%/z::;brfss’sgiéniﬁgmdse Not many relationships involving'radial .expectation val-
(p), respectively, as shown in the density-functional theoryues of conjugate spaces are found in the literature; see, e.g.,
(1] 1"hroughout th,is work. the normalization Ref. [7] _for a recent summary. Proba_bly the most celebrated
' ' uncertainty expression is the one which correlates the mean-
square values of radius and momentum, naré|g],

f P(r)dr:f y(p)dp=N 1 <I’2><p2>2%N2, 3

which is essentially a three-dimensional generalization of the
Heisenberg uncertainty principle; notice that equality is
reached for the case of Gaussian wave functions.

More recently, a generalization of the above expression
involving the uncertainty products defined by

@)= ] o @)= [ e @ A(ab)=(r)/N) (PN P, @

. . . . for a,b+#0, with the limiting cases
are experimentally accessible and/or physically meaningful.

will be considered for aiN-particle system. For atoms, some
of the radial expectation values of the aforementioned den
sities, namely,

Let us remember here th&t) the Langevin-Pauli diamag- A(a,O)z((ra>/N)1’aexp((ln p)/N),

netic susceptiblityy is proportional to the mean-square ra- (5)
dius asy=— g a*(r?), wherea is the fine-structure constant A(0b)= exp((Inr)/N)({pP)/N)*™,

[2]; (ii) the electron-nucleus attraction energy is given by

Een=—2(r"1) (Z being the nuclear chargé2], which is A(0,0=exd ({Inr)+{Inp))/N], (6)

also related to the nuclear magnetic screening constant or ) o ] .
diamagnetic screening factd8]; (iii) the electron kinetic has been obtainef®] by using information-theoretic meth-
=(p2)/2; (iv) the Breit-Pauli relativistic correctiol,, to the ~ [10], giving rise to the inequality
kinetic energyT, due to the mass variation, is given at first 12

. ab 3
order by[4] T,= — &% p*)/8; and(v) the height of the peak A(ap)=>|— ——— | [2] [2

: L . : (a,b)
of the Compton profiled(0), within the impulse approxima- 16r'(3/a)l'(3b)| \a/ \b
tion, is(p~1)/2 [2]. More recently, the so-called logarithmic @)
H a a
gxpelctatlro? xalnuteisrrl th r>dandr<iptilnnp) fhavren befentsr;own ft?hiva" d only fora,b>0.
€ also releva € description of some teatures ot this Specially interesting is the case=b>0, for which

kind of system, not only in an information-theoretic frame-
work [5] but also in the description of physical processes A,=A(a,a)=[37Y%4I' (3/a)] (3/ae)@D~1  (8)
such as elastic electron scattering by nupd; in which the
quantity(Inry=4m[yr*Inrp(r)dr determines the behavior of for anya>0. Expressiorn(3) appears as a particular case of
the phase shifts at high energy and low angular momentunkg. (8) with the choicea=2, i.e.,A,=3/2.
Thus we see the interest of studying those quantities in order In the same work9], uncertaintylike relationships involv-
to better describe the corresponding one-particle densitiesg logarithmic expectation values and/or the logarithmic un-
p(r) and y(p), as well as to rigorously correlate properties certainties

la/ g\ 1b
) el (1/2)— (1)
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AN =[N((InT)2) = (In Y222 lll. RELATIONSHIPS AMONG RADIAL
(9) EXPECTATION VALUES
A(Inp)=[N((In p)?)—(In p)?]*2 Two kinds of lower bounds to the functionig) have been

) ) reported[12,13, the first one derived variationaljjd2] and

are also found and numerically analyzed. An extension ofne second one making use of different classical inequalities,
these results to systems of arbitrary dimensionality wasych as Redheffer, Haer, and Sobolev inequaliti¢43,16—
given in Ref.[11]. o _ _ 18]. All them are expressed in terms of two or three radial

In this work, a set of uncertaintylike expressions is 0b-eypectation valuegr?). The main idea to carry out in this
tained by means of another information-theoretic techniqu@ection is to combine the lower bounds to the Fisher infor-
[12,13, based on the concept of Fisher information entropymation entropies with the upper bounds given by the Stam
(closgly related to the_ Weizsker energy functional in _the principle as shown by Eq$11) and (12). Then one obtains
atomic casgas shown in Sec Il. The main results concéin  igorous relationships among radial expectation values of
improved upper and lower bounds on radial expectation valyoip andp spaces.
ues using information of the complementary spesec. I, The well-known uncertainty expression given by E8).
(ii) uncertainty products of nonpositive ord@ec. IV), and s gptained as a particular case by simultaneously using one
(iii ) relationships |n\_/olvmg two or more uncertainty products ¢ the variational bounds tb, (or I,) and Eq.(11) [or Eq.
(also Sec. Iy. For illustration, a brief numerical study of (12)] The consideration of other variational results provides
some of those model-independent relationships is carried Ofitferent relationships among two or three radial expectation
for atomic systems within a near-Hartree-F@bkiF) frame-  \51yes of one space and one value of the conjugate space.

work. Finally, some concluding remarks are given. Because(i) the variational bounds also appear as particular
cases of the nonvariational ones, digithose obtained from
Il. BOUNDS ON THE FISHER INFORMATION ENTROPY Redheffer’s inequality(in terms of (r ~2) and/or (r(®2-1)

and (r®)) are much more accurate than those of Sobolev
origin (in terms of N and/or two radial expectation valyes
we will center our attention on the expressions derived from
the Redheffer type bounds to the Fisher information entropy.
Using Egs.(12) and(23) of Ref.[12], one obtains, respec-

|fEJ [|VF(r)|%f(r)]dr, (10 tively,

The so-called Fisher information entropy of a three-
dimensional density functiori(r)=f(x,y,z) is defined as
[14]

2 2 (b/2)=1\2// b
. _ o p)=[(b+4)</16] ((r 1{r"y) (13

and it measures the degree of spatial delocalization of such a (P < )y

distribution. The Stam uncertainty principl5] establishes  for anyb> -3, and

an upper bound to the entropy of the one-particle density

p(r) in position space in terms of the mean-square momen- (r2 [4+Db(b+4)](r®2-1)2
tum (p?) (related to the kinetic energy of the systeim the (p?)= + — — (14
form 16 (rP)(r=2)—(r®2=1)2

|pg4<p2>, (11  for any b>—2. Especially interesting are the particular

cases corresponding to the choides —2, 0, and 2 in Eq.

and similarly for the entropy,, associated with the momen- (13) andb=0 in Eq. (14). Concerning Eq(13), the uncer-
tum space distributiony(p), now in terms of the mean- tainty relationship given by Eq3) is obtained again fob

square value of the conjugate variable, i.e., =2, while for the values=—2 and 0 it provides, respec-
tively, the following known expressiorj49]:
|,<4(r?), (12
’ (p2)=(r 24, (15

which is proportional to the diamagnetic susceptibility.

Recently, several lower bounds to the quantitigand| , N(p?)=(r 1), (16)
have been derived by using different techniqyé&g,13.
Some of these bounds are expressed in terms of radial ex¢hich can be rewritten in terms of uncertainty products as
pectation values, while others additionally involve logarith- A(—2,2)=3 andA(—1,2)=1, respectively. Taking=0 in
mic expectation values. In this work, the combination of theEq. (14), we find that
above-mentioned upper and lower boundslgrand |, is

carried out to provide rigorous relationships among expecta- (r-12
tion values on the conjugated spaces, i.e., between &mel 2(pAH|1-\/1-——
p spaces. N(p%)
Let us remark here that all the expressions shown in this 12
work are also valid after the exchange of the conjugate vari- <(r 2y=2(p?)|1+\/1- {r) ] (17)
ablesr andp. This fact will be taken into account in order to N(p?)

avoid the inclusion of many relationships which can be ob-
tained by only performing such an exchange on the expresFhis expression improves the well-known bour{d®,17]
sions written here. (r ' 12/IN<(r~?)<4(p?), as can be easily shown. Indeed,
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TABLE I. Comparison of the accuracies of the lower bounds to  TABLE II. Uncertainty productsA, (a=-2,—1,2), and the
the uncertainty produdt, given by Egs(3) and(21). Atomic units  accuracy of the lower and the upper boundAto, given by Egs.

are used. (24) and(25), respectively. Atomic units are used.
Bound Accuracy(in %) Accuracy(in %)

Z A2 Eq. (21) Eq. (3) Eq. (21) Z A, Ay A, Eq.(24)  Eq.(25

1 3.000 2.500 75.00 83.33 1 0.31623 0.58905 1.7321 52.6 87.9
2 3.390 2.634 66.37 77.71 2 0.28560 0.55372 1.8413 49.7 82.1
6 28.88 4.736 7.79 16.40 6 0.14854 0.42587 5.3738 33.5 29.3
20 1915 19.41 1.18 10.14 15 0.11002 0.41000 9.5734 26.2 16.6
30 138.2 11.41 1.63 8.25 29 0.093713 0.52219 11.217 17.5 18.2
48 257.7 14.34 0.87 5.56 45 0.081761 0.48903 15.612 16.4 12.3
65 483.0 26.64 0.47 5.52 72 0.057027 0.46255 21.079 12.1 8.7
92 750.9 33.18 0.30 4.42 92 0.044760 0.41726 27.402 10.5 6.1

by taking into account the first terms of the Taylor expansiornracy being only around 30% for hydrogeZ<1) and he-

for the functiony1—x aroundx=0, we have lium (Z=2), and much loweKusually below 5%) for the
rest of the atoms. However, the lower boumitained with
(r 2 (r'? 2\ pf 2 (r h? the technique employed hershows a better behavior. For
N 1+2N<p2> =({r9)=4(p") - N (18 Z=1-2, the accuracy is around 98%, and then slowly de-

creases from 60% Z=3) to 8% Z=92).
All the expressions shown in this section are also valid under Working with Eq.(17) in a way similar to that with Eq.
the commutation of the conjugate spaces, i.e., replacing thé.6), the following upper and lower bounds to the uncer-
variabler by p, and conversely. In this sense, the previoustainty productA _, in terms ofA, are obtained:
results involving (r ~2) transform into upper and lower

bounds on the momempfz). 2A, 2A,
Using the NHF atomic wave functions of Refg0,21], it ————sA ;s—————F——— (20
is observed that, for atomic systems, the factor of improve- X+6+ Vx(x+8) X+6—Vx(x+8)

ment of the upper and lower bounds @n 2), as well as on ) )

(p~2), is significantly higher than 1 only for light atoms. Where x=4A5—9=0. The upper bound improves the
Nevertheless, it is worth realizing that the expressions foundiiolder bound: A_,<A,. A numerical study within the

in this work also hold for any quantum-mechanical systemabove-mentioned NHF framework for atomic systems re-
i.e., they may be applied to the study of molecules, nucleiveals that such an improvement is still not enough to obtain

solids, etc. accurate upper bounds. However, the accuracy of the new
lower bound toA _, in terms ofA, is higher than 70% for
IV. RELATIONSHIPS AMONG UNCERTAINTY hydrogen and hellum, _and oscillates betwe_en_ZO% and 45%
PRODUCTS for most of the remaining atoms of the periodic table.

Conversely, it is interesting to bourdy), in terms ofA _,,
The uncertainty producta (a,b) defined in Sec. | can as can be done by solving EO) in x, giving rise to
also be analyzed, even for negative values aind/orb, by

making use of the aforementioned relationships. Two basic ,_ YT10+(y+4)(y+16)
— =
8

9

properties of the quantity (a,b) are that it is an increasing A5 =1 (21)
and convex function of both andb (as can be easily shown
by using Hader's inequality[17]) and, consequently, the _ 112 . o
productA, is also an increasing and convex functionaof where y_=[2A,_2+(2A,2) I°-4, which again improves

In this sense, let us notice that ;<A,. Now, taking into the _baS'C relatmmng,z derived frpm the_mc.reasmg be-
account that all the expressions in Sec. IIl are also validiavior of the functionA,. The last inequality in Eq(21)
under a commutation of the variablésp}, let us multiply ~ [ollows from the fact thay=0, improving the lower bound
Eq. (16) by the same equation after the exchangep, giv- given in Eq.(3). A comparative study of the accuracies of

ing rise to the inequality Egs. (3) and (21) i; given in Table | for some randomly
chosen atoms. It is observed that, although the accuracy
1A, <A_;<A,, (19)  tends to decrease in both cases when increasing the nuclear

charge, the new lower bound to, given by Eq.(21) pro-
which holds for any quantum system. To get an idea of thevides a much better bound than the well-known one given by
accuracy(we define the accuracy of the expressioe B as  Eq. (3), the improvement being especially importafatt
the ratio A/B in percentage of the above inequality, the times a factor higher than 1@or heavy atoms. It is worthy
atomic wave functions of Ref$20,21] have been used to to note here that the inequalities appearing in E6) and
calculate the uncertainty products involved for all atoms with(21) transform into equalities foxk=0 andy=0, respec-
nuclear charg&€ =1-92. We observe the poor quality of the tively, which occurs only for Gaussian wave functions, as
upper boundobtained from Hider's inequality, its accu-  pointed out in Sec. |, in which caske_,=3 andA,=3.
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Finally, let us remark that it is possible to correlate morewhen increasing the nuclear charge, especially when a new
than two uncertainty products in a fashion similar to thatshell begins to be occupied. Concerning the lower bound, its

described above. For illustration, consider Eky) and sepa-

rate the quantityr ~*) as

(rH2IN(p?) <1-[(r~?3)/2(p?) —1]*. (22)

Now, multiplying this expression by the same one after th
commutation of conjugate variables, an inequality involving

the uncertainty productd _,, A_,, andA, is obtained:

4A_,A,

=
Ay 1/2°

1 4
(4A2)2+AT— E((r_z)(r2>+<p_2><p2))

-2

(23

which, taking into account that(r 2)(r?)=N? and
(p~2){p?=N? (as can be easily obtained from Ker’s in-
equality[17]), gives rise to

4A_,A,

A_= 175- (29

1
(44,)%+——-8
A,

Additionally, the property of convexity of the quantity,

e

accuracy is around 50% for hydrogen and helium, 20-35 %
for Z=3-18, and 10-20% for heavier atoms. On the other
hand, the accuracy of the upper bound ranges from around
85% forz=1-2, 15-40% forZ=3-18, and 6-15% for
Z>18 (with very few exceptions The values for some spe-
cific atoms are given in Table II.

V. CONCLUSIONS

The combination of the Stam uncertainty principle, ex-
pressed in terms of Fisher information entropies, and the
recently obtained lower bounds to such entropies in terms of
radial expectation values, has provided a set of general un-
certaintylike relationships, valid for any quantum-
mechanical system. These results considerably extend previ-
ous ones of similar character in various senses: improving
the accuracy in many case@s has been theoretically
proved, allowing one to involve radial expectation values of
nonpositive order, giving not only lower but also upper
bounds to uncertainty products and different radial expecta-
tion values, and involving not only one but two or even three
uncertainty products.

The numerical analysis of the accuracy of these bounds
reveals a large improvement, at times, of the expressions
obtained with this technique with respect to the previously

allows one to correlate the values involved in the previousown ones. One notices, however, that still there is consid-
equation easily, providing in this case an upper bound terable room for improvement.

A_;interms ofA_, andA,, as

A <1[3A_,+A,] (25)
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