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Fisher entropy and uncertaintylike relationships in many-body systems
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General model-independent relationships among radial expectation values of the one-particle densities in
position and momentum spaces for any quantum-mechanical system are obtained. They are derived from the
Stam uncertainty principle and the recently reported lower bounds to the Fisher information entropy of both
densities. The results are usually expressed in terms of some uncertainty products of the system. The accuracy
of the bounds is numerically analyzed for neutral atoms within a Hartree-Fock framework.
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I. INTRODUCTION

The study of the main physical properties of man
fermion systems involves, as basic variables, the one-par
densities in both position and momentum spacesr(r ) and
g(p), respectively, as shown in the density-functional the
@1#. Throughout this work, the normalization

E r~r !dr5E g~p!dp5N ~1!

will be considered for anN-particle system. For atoms, som
of the radial expectation values of the aforementioned d
sities, namely,

^r a&[E r ar~r !dr , ^pa&[E pag~p!dp, ~2!

are experimentally accessible and/or physically meaning
Let us remember here that~i! the Langevin-Pauli diamag
netic susceptiblityx is proportional to the mean-square r
dius asx52 1

6 a2^r 2&, wherea is the fine-structure constan
@2#; ~ii ! the electron-nucleus attraction energy is given
EeN52Z^r 21& (Z being the nuclear charge! @2#, which is
also related to the nuclear magnetic screening constan
diamagnetic screening factor@3#; ~iii ! the electron kinetic
energy is half the mean-square momentum@2#, i.e., T
5^p2&/2; ~iv! the Breit-Pauli relativistic correctionTrel to the
kinetic energyT, due to the mass variation, is given at fir
order by@4# Trel52a2^p4&/8; and~v! the height of the peak
of the Compton profileJ(0), within the impulse approxima
tion, is ^p21&/2 @2#. More recently, the so-called logarithm
expectation valueŝr a ln r& and^pa ln p& have been shown to
be also relevant in the description of some features of
kind of system, not only in an information-theoretic fram
work @5# but also in the description of physical process
such as elastic electron scattering by nuclei@6#, in which the
quantity^ ln r&54p*0

`r2 ln rr(r)dr determines the behavior o
the phase shifts at high energy and low angular moment
Thus we see the interest of studying those quantities in o
to better describe the corresponding one-particle dens
r(r ) andg(p), as well as to rigorously correlate properti
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between conjugate spaces, with the aim of applying all
information coming from both spaces to the simultaneo
study of both densities.

Not many relationships involving radial expectation va
ues of conjugate spaces are found in the literature; see,
Ref. @7# for a recent summary. Probably the most celebra
uncertainty expression is the one which correlates the me
square values of radius and momentum, namely@7,8#,

^r 2&^p2&> 9
4 N2, ~3!

which is essentially a three-dimensional generalization of
Heisenberg uncertainty principle; notice that equality
reached for the case of Gaussian wave functions.

More recently, a generalization of the above express
involving the uncertainty products defined by

D~a,b![~^r a&/N!1/a~^pb&/N!1/b, ~4!

for a,bÞ0, with the limiting cases

D~a,0![~^r a&/N!1/a exp~^ ln p&/N!,
~5!

D~0,b![ exp~^ ln r &/N&~^pb&/N!1/b,

D~0,0![ exp@~^ ln r &1^ ln p&!/N#, ~6!

has been obtained@9# by using information-theoretic meth
ods related to the so-called Boltzmann-Shannon entr
@10#, giving rise to the inequality

D~a,b!>F pab

16G~3/a!G~3/b!G
1/2S 3

aD 1/aS 3

bD 1/b

e12(1/a)2(1/b),

~7!

valid only for a,b.0.
Specially interesting is the casea5b.0, for which

Da[D~a,a!> @3p1/2/4G~3/a!# ~3/ae!(2/a)21 ~8!

for any a.0. Expression~3! appears as a particular case
Eq. ~8! with the choicea52, i.e.,D2>3/2.

In the same work@9#, uncertaintylike relationships involv
ing logarithmic expectation values and/or the logarithmic u
certainties
4064 ©1999 The American Physical Society
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D~ ln r ![@N^~ ln r !2&2^ ln r &2#1/2,
~9!

D~ ln p![@N^~ ln p!2&2^ ln p&2#1/2

are also found and numerically analyzed. An extension
these results to systems of arbitrary dimensionality w
given in Ref.@11#.

In this work, a set of uncertaintylike expressions is o
tained by means of another information-theoretic techni
@12,13#, based on the concept of Fisher information entro
~closely related to the Weizsa¨cker energy functional in the
atomic case! as shown in Sec II. The main results concern~i!
improved upper and lower bounds on radial expectation
ues using information of the complementary space~Sec. III!,
~ii ! uncertainty products of nonpositive order~Sec. IV!, and
~iii ! relationships involving two or more uncertainty produc
~also Sec. IV!. For illustration, a brief numerical study o
some of those model-independent relationships is carried
for atomic systems within a near-Hartree-Fock~NHF! frame-
work. Finally, some concluding remarks are given.

II. BOUNDS ON THE FISHER INFORMATION ENTROPY

The so-called Fisher information entropyI f of a three-
dimensional density functionf (r )5 f (x,y,z) is defined as
@14#

I f[E @ u¹ f ~r !u2/ f ~r !# dr , ~10!

and it measures the degree of spatial delocalization of su
distribution. The Stam uncertainty principle@15# establishes
an upper bound to the entropyI r of the one-particle density
r(r ) in position space in terms of the mean-square mom
tum ^p2& ~related to the kinetic energy of the system! in the
form

I r<4^p2&, ~11!

and similarly for the entropyI g associated with the momen
tum space distributiong(p), now in terms of the mean
square value of the conjugate variable, i.e.,

I g<4^r 2&, ~12!

which is proportional to the diamagnetic susceptibility.
Recently, several lower bounds to the quantitiesI r andI g

have been derived by using different techniques@12,13#.
Some of these bounds are expressed in terms of radia
pectation values, while others additionally involve logarit
mic expectation values. In this work, the combination of t
above-mentioned upper and lower bounds onI r and I g is
carried out to provide rigorous relationships among expe
tion values on the conjugated spaces, i.e., between ther and
p spaces.

Let us remark here that all the expressions shown in
work are also valid after the exchange of the conjugate v
ablesr andp. This fact will be taken into account in order t
avoid the inclusion of many relationships which can be o
tained by only performing such an exchange on the exp
sions written here.
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III. RELATIONSHIPS AMONG RADIAL
EXPECTATION VALUES

Two kinds of lower bounds to the functionalI r have been
reported@12,13#, the first one derived variationally@12# and
the second one making use of different classical inequalit
such as Redheffer, Ho¨lder, and Sobolev inequalities@13,16–
18#. All them are expressed in terms of two or three rad
expectation valueŝr a&. The main idea to carry out in this
section is to combine the lower bounds to the Fisher inf
mation entropies with the upper bounds given by the St
principle as shown by Eqs.~11! and ~12!. Then one obtains
rigorous relationships among radial expectation values
both r andp spaces.

The well-known uncertainty expression given by Eq.~3!
is obtained as a particular case by simultaneously using
of the variational bounds toI r ~or I g) and Eq.~11! @or Eq.
~12!#. The consideration of other variational results provid
different relationships among two or three radial expectat
values of one space and one value of the conjugate sp
Because~i! the variational bounds also appear as particu
cases of the nonvariational ones, and~ii ! those obtained from
Redheffer’s inequality~in terms of ^r 22& and/or ^r (b/2)21&
and ^r b&) are much more accurate than those of Sobo
origin ~in terms ofN and/or two radial expectation values!,
we will center our attention on the expressions derived fr
the Redheffer type bounds to the Fisher information entro
Using Eqs.~12! and ~23! of Ref. @12#, one obtains, respec
tively,

^p2&> @~b14!2/16# ~^r (b/2)21&2/^r b&! ~13!

for any b.23, and

^p2&>
^r 22&

16 F41
@41b~b14!#^r (b/2)21&2

^r b&^r 22&2^r (b/2)21&2 G ~14!

for any b.22. Especially interesting are the particul
cases corresponding to the choicesb522, 0, and 2 in Eq.
~13! and b50 in Eq. ~14!. Concerning Eq.~13!, the uncer-
tainty relationship given by Eq.~3! is obtained again forb
52, while for the valuesb522 and 0 it provides, respec
tively, the following known expressions@19#:

^p2&> ^r 22&/4 , ~15!

N^p2&>^r 21&2, ~16!

which can be rewritten in terms of uncertainty products
D(22,2)> 1

2 andD(21,2)>1, respectively. Takingb50 in
Eq. ~14!, we find that

2^p2&F12A12
^r 21&2

N^p2&
G

<^r 22&<2^p2&F11A12
^r 21&2

N^p2&
G . ~17!

This expression improves the well-known bounds@19,17#
^r 21&2/N<^r 22&<4^p2&, as can be easily shown. Indee
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by taking into account the first terms of the Taylor expans
for the functionA12x aroundx50, we have

^r 21&2

N F11
^r 21&2

2N^p2&
G<^r 22&<4^p2&2

^r 21&2

N
. ~18!

All the expressions shown in this section are also valid un
the commutation of the conjugate spaces, i.e., replacing
variabler by p, and conversely. In this sense, the previo
results involving ^r 22& transform into upper and lowe
bounds on the moment^p22&.

Using the NHF atomic wave functions of Refs.@20,21#, it
is observed that, for atomic systems, the factor of impro
ment of the upper and lower bounds on^r 22&, as well as on
^p22&, is significantly higher than 1 only for light atoms
Nevertheless, it is worth realizing that the expressions fo
in this work also hold for any quantum-mechanical syste
i.e., they may be applied to the study of molecules, nuc
solids, etc.

IV. RELATIONSHIPS AMONG UNCERTAINTY
PRODUCTS

The uncertainty productsD(a,b) defined in Sec. I can
also be analyzed, even for negative values ofa and/orb, by
making use of the aforementioned relationships. Two ba
properties of the quantityD(a,b) are that it is an increasing
and convex function of botha andb ~as can be easily show
by using Hölder’s inequality @17#! and, consequently, th
productDa is also an increasing and convex function ofa.

In this sense, let us notice thatD21<D2. Now, taking into
account that all the expressions in Sec. III are also va
under a commutation of the variables$r ,p%, let us multiply
Eq. ~16! by the same equation after the exchanger↔p, giv-
ing rise to the inequality

1/D2 <D21<D2 , ~19!

which holds for any quantum system. To get an idea of
accuracy~we define the accuracy of the expressionA<B as
the ratio A/B in percentage! of the above inequality, the
atomic wave functions of Refs.@20,21# have been used to
calculate the uncertainty products involved for all atoms w
nuclear chargeZ51 –92. We observe the poor quality of th
upper bound~obtained from Ho¨lder’s inequality!, its accu-

TABLE I. Comparison of the accuracies of the lower bounds
the uncertainty productD2 given by Eqs.~3! and~21!. Atomic units
are used.

Bound Accuracy~in %)
Z D2

2 Eq. ~21! Eq. ~3! Eq. ~21!

1 3.000 2.500 75.00 83.33
2 3.390 2.634 66.37 77.71
6 28.88 4.736 7.79 16.40
20 191.5 19.41 1.18 10.14
30 138.2 11.41 1.63 8.25
48 257.7 14.34 0.87 5.56
65 483.0 26.64 0.47 5.52
92 750.9 33.18 0.30 4.42
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racy being only around 30% for hydrogen (Z51) and he-
lium (Z52), and much lower~usually below 5%) for the
rest of the atoms. However, the lower bound~obtained with
the technique employed here! shows a better behavior. Fo
Z51 –2, the accuracy is around 98%, and then slowly
creases from 60% (Z53) to 8% (Z592).

Working with Eq. ~17! in a way similar to that with Eq.
~16!, the following upper and lower bounds to the unce
tainty productD22 in terms ofD2 are obtained:

2D2

x161Ax~x18!
<D22<

2D2

x162Ax~x18!
~20!

where x[4D2
229>0. The upper bound improves th

Hölder bound: D22<D2. A numerical study within the
above-mentioned NHF framework for atomic systems
veals that such an improvement is still not enough to obt
accurate upper bounds. However, the accuracy of the
lower bound toD22 in terms ofD2 is higher than 70% for
hydrogen and helium, and oscillates between 20% and 4
for most of the remaining atoms of the periodic table.

Conversely, it is interesting to boundD2 in terms ofD22,
as can be done by solving Eq.~20! in x, giving rise to

D2
2>

y1101A~y14!~y116!

8
>

9

4
, ~21!

where y[@2D221(2D22)21#224, which again improves
the basic relationD2>D22 derived from the increasing be
havior of the functionDa . The last inequality in Eq.~21!
follows from the fact thaty>0, improving the lower bound
given in Eq.~3!. A comparative study of the accuracies
Eqs. ~3! and ~21! is given in Table I for some randomly
chosen atoms. It is observed that, although the accu
tends to decrease in both cases when increasing the nu
charge, the new lower bound toD2 given by Eq.~21! pro-
vides a much better bound than the well-known one given
Eq. ~3!, the improvement being especially important~at
times a factor higher than 10! for heavy atoms. It is worthy
to note here that the inequalities appearing in Eqs.~20! and
~21! transform into equalities forx50 and y50, respec-
tively, which occurs only for Gaussian wave functions,
pointed out in Sec. I, in which caseD225 1

2 andD25 3
2 .

TABLE II. Uncertainty productsDa (a522,21,2), and the
accuracy of the lower and the upper bound toD21 given by Eqs.
~24! and ~25!, respectively. Atomic units are used.

Accuracy~in %)
Z D22 D21 D2 Eq. ~24! Eq. ~25!

1 0.31623 0.58905 1.7321 52.6 87.9
2 0.28560 0.55372 1.8413 49.7 82.1
6 0.14854 0.42587 5.3738 33.5 29.3
15 0.11002 0.41000 9.5734 26.2 16.6
29 0.093713 0.52219 11.217 17.5 18.2
45 0.081761 0.48903 15.612 16.4 12.3
72 0.057027 0.46255 21.079 12.1 8.7
92 0.044760 0.41726 27.402 10.5 6.1
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Finally, let us remark that it is possible to correlate mo
than two uncertainty products in a fashion similar to th
described above. For illustration, consider Eq.~17! and sepa-
rate the quantitŷ r 21& as

^r 21&2/N^p2& <12@^r 22&/2^p2& 21#2. ~22!

Now, multiplying this expression by the same one after
commutation of conjugate variables, an inequality involvi
the uncertainty productsD22 , D21, andD2 is obtained:

D21>
4D22D2

F ~4D2!21
1

D22
2

2
4

N2
~^r 22&^r 2&1^p22&^p2&!G 1/2,

~23!

which, taking into account that^r 22&^r 2&>N2 and
^p22&^p2&>N2 ~as can be easily obtained from Ho¨lder’s in-
equality @17#!, gives rise to

D21>
4D22D2

F ~4D2!21
1

D22
2

28G 1/2. ~24!

Additionally, the property of convexity of the quantityDa
allows one to correlate the values involved in the previo
equation easily, providing in this case an upper bound
D21 in terms ofD22 andD2, as

D21< 1
4 @3D221D2#. ~25!

A numerical study of the above upper and lower bounds
D21 within the NHF framework considered in this work fo
atomic systems shows that their accuracy tends to decr
s
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when increasing the nuclear charge, especially when a
shell begins to be occupied. Concerning the lower bound
accuracy is around 50% for hydrogen and helium, 20–35
for Z53 –18, and 10–20 % for heavier atoms. On the ot
hand, the accuracy of the upper bound ranges from aro
85% for Z51 –2, 15240 % for Z53 –18, and 6 –15% for
Z.18 ~with very few exceptions!. The values for some spe
cific atoms are given in Table II.

V. CONCLUSIONS

The combination of the Stam uncertainty principle, e
pressed in terms of Fisher information entropies, and
recently obtained lower bounds to such entropies in term
radial expectation values, has provided a set of general
certaintylike relationships, valid for any quantum
mechanical system. These results considerably extend p
ous ones of similar character in various senses: improv
the accuracy in many cases~as has been theoreticall
proved!, allowing one to involve radial expectation values
nonpositive order, giving not only lower but also upp
bounds to uncertainty products and different radial expe
tion values, and involving not only one but two or even thr
uncertainty products.

The numerical analysis of the accuracy of these bou
reveals a large improvement, at times, of the express
obtained with this technique with respect to the previou
known ones. One notices, however, that still there is con
erable room for improvement.
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