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a b s t r a c t

The Dirac-delta-like quantum-mechanical potentials are frequently used to describe and
interpret numerous phenomena in many scientific fields including atomic and molecular
physics, condensed matter and quantum computation. The entropy and complexity
properties of potentials with one and two Dirac-delta functions are here analytically
calculated and numerically discussed in both position and momentum spaces. We have
studied the information-theoretic lengths of Fisher, Rényi and Shannon types as well as the
Cramér–Rao, Fisher–Shannon and LMC shape complexities of the lowest-lying stationary
states of one-delta and twin-delta. They allow us to grasp and quantify different facets
of the spreading of the charge and momentum of the system far beyond the celebrated
standard deviation.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The elementary one-dimensional potentials V (x) are interesting per se and because they provide approximate models
for the physically correct three-dimensional quantum-mechanical potentials of physical systems. Moreover, they are very
useful for the interpretation of numerous microscopic and macroscopic properties of natural systems, mainly because their
associated quantum-mechanical equation of motion can be exactly solved, so that their physical solutions (wavefunctions)
are known to be expressed in terms of special functions of applied mathematics and mathematical physics [1,2]. This is
the case for the piecewise-constant potentials (finite and infinite wells), harmonic oscillator (V ∼ x2), Coulomb potential
(V ∼ 1/|x|) and delta-function potential (V = δ(x)), to mention just a few although they do not abound.

Recently the emerging information theory of quantum systems, which is at the basis of themodern quantum information
and quantum computation, provides the best methodology to quantify the various facets of the charge and momentum
spreading all over the confinement region of the system, far beyond the well-known standard deviation or Heisenberg
measure. This quantification is carried out by means of various information-theoretic functionals (such as the Fisher
information, the Rényi and Shannon entropies, and the associated information-theoretic lengths) and complexity measures
(such as the Cramér–Rao, Fisher–Shannon and LMC ones). Such a work has been partially done for the infinite well [3–6],
finitewell [7], the harmonic oscillator [8,9] and Coulomb potential [8,9], and other potentials [10,11] but the Dirac-delta-like
ones still remain to be explored within that framework, to the best of our knowledge. Here we want to contribute to fill this
lacuna.
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The one-dimensional Dirac-delta-function potential δ(x), where x is the Cartesian coordinate, −∞ < x < ∞, has been
shown to be very useful to describe a number of properties not only for the three-dimensional hydrogen atom andmolecule
ion [12–15] but also in D-dimensional physics [16,17]. Moreover, this function has been proved to describe short-range
potentials such as the interaction between the electrons and fixed ions in a lattice crystal. The use of potentials composed
by an array of N-delta functions is very frequent in atomic and molecular physics [18,19,12,15,14], condensed matter
[20–22] and quantum computation [23]. Let us just mention the useful Kronig–Penney model to study the physical and
chemical properties of solids (see e.g. [20]) and the numerous works done to describe the behavior of impurities in solid-
state systems, particularly quantumwires (see e.g. [24,21,25] and references therein) and to characterize the instantaneous
interaction between flying and static qubits (see e.g. [23] and references therein).

In this paper we will first calculate the position and momentum entropy and complexity measures of the bound-state
wavefunctions of the one-dimensional hydrogen atom with a delta-function interaction, which has been used to study
different phenomena of bosonic [26,27], fermionic [18,14,15,12] and anionic [17] systems. In addition, we will compute
these quantities for the wavefunctions of the single-particle systems with a twin delta-function potential, which has been
used to approximate the helium atom [19,12], the hydrogen molecule ion [14,12,15] and some scattering [28] and solid-
state [22] phenomena.

The structure of the paper is the following. First, in Section 2, we give the definitions and meaning of the information-
theoreticmeasures of a general probability densitywhichwill be used later in thiswork to characterize the spreading and the
complexity of the quantum-mechanical probability density of thewavefunctions for the one-delta and twin-delta potentials.
Then, in Section 3, we obtain the direct spreading measures and the complexity measures of the one-dimensional hydrogen
atomwith a single-delta potential; namely, the standard deviation and the Fisher, Rényi and Shannon information-theoretic
lengths in the two reciprocal spaces. In Section 4, we carry out a similar study for a single-particle systemwith a twin-delta
interaction. The previous analytical results are numerically analyzed in Section 5. Finallywe give some conclusions and open
problems.

2. Information-theoretic description of a probability density

The information theory for a one-dimensional continuous probability distribution ρ(x) corresponding to some random
variable X (e.g. position, momentum, phase, . . . ) provides a number of measures to quantify the spread (or uncertainty) of X
over an interval∆ ⊆ ℜ [29,30] far beyond the statistical root-mean-square or standard deviation

∆x ≡

⟨x2⟩ − ⟨x⟩2

 1
2 (1)

where ⟨f (x)⟩ denotes the expectation value given by

⟨f (x)⟩ =

∫
∆

f (x)ρ(x)dx. (2)

The choice f (x) = xq (i.e., ⟨xq⟩) provides the so-called moment of order q of the probability distribution ρ(x). The most
relevant information-theory-based spreading measures of ρ(x) seem to be up until now the Rényi and Shannon entropies
and the Fisher information. The Rényi entropy Rq[ρ] (for q > 0, and q ≠ 1) of the normalized-to-unity probability density
ρ(x) is defined [29] by

Rq[ρ] ≡
1

1 − q
lnωq[ρ] =

1
1 − q

ln
∫
∆

[ρ(x)]q dx (3)

where ωq[ρ] denotes the qth order frequency or entropic moment of ρ(x). The limiting value q → 1, taking into account
the normalization condition ω1[ρ] = 1, yields the Shannon entropy [29]

S[ρ] ≡ lim
q→1

Rq[ρ] = −

∫
∆

ρ(x) ln ρ(x)dx. (4)

The Fisher information of ρ(x) is defined as [31,32]

F [ρ] ≡

∫
∆

 d
dxρ(x)

2
ρ(x)

dx. (5)

It should be noted that these information-theoretic measures (Shannon entropy and Fisher information) are translation-
ally invariant. Let us remark that the Fisher quantity has a property of locality because it is a functional of the derivative of
the density, so that it is very sensitive to the fluctuations of ρ(x). In contrast, the Rényi and Shannon entropies are global
measures of spreading, as well as the standard deviation, because they are power and logarithmic functionals of ρ, respec-
tively. Moreover, let us highlight that the Rényi, Shannon and Fisher quantities have an important advantage with respect
to ∆x: they do not depend on any specific point of the domain ∆, while the standard deviation quantifies the spread with
respect to a particular point of the distribution, namely themean value or centroid ⟨x⟩. They have, however, a disadvantage:
each one has its own units which differ among each other, what bears a difficulty for their mutual comparison. To overcome
this difficulty it is more convenient to use instead the Rényi and Shannon lengths [33,30] defined by
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LRq[ρ] ≡ exp

Rq[ρ]


=

ωq[ρ]

 1
1−q (6)

and

N[ρ] ≡ lim
q→1

LRq[ρ] = exp (S[ρ]) (7)

respectively, and the Fisher length [34,35] given by

δx ≡
1

√
F [ρ]

. (8)

The standard deviation and these three information-theoretic lengths are direct spreading measures of ρ(x) in the sense
that they have the same units as X . Moreover, all four quantities share the following relevant properties: translation and
reflection invariance, linear scaling with X (e.g.,∆Y = λ∆X for Y = λX in the case of standard deviation) and vanishing in
the limit for which the random variable has some definite value, that is when ρ(x) approaches a Dirac-delta function. It is
worth noting that while the standard deviation quantifies the separation of the region(s) of the probability concentration
with respect to the mean value, the Rényi and Shannon entropies are (global) measures of the extent to which the density is
in fact concentrated. On the other hand, the Fisher length measures the pointwise concentration of the probability density
over its support interval.

Let us alsomention that these four directmeasures of spreading are complementary in the sense that they grasp different
facets of the distribution of the probability density ρ(x) all over its support interval. Moreover, all of them enjoy an uncer-
tainty property: see e.g. Refs. [33,36] for the global quantities (standard deviation, Rényi and Shannon entropies) and [5,37]
for the (local) Fisher measure.

Finally let us collect here three two-component composite information-theoretic measures which have been recently
shown to be very useful to quantify the complexity of ρ(x). The term ‘complexity’ refers to the difficulty of modeling
a distribution, according to the number and intricacy of functions needed to do it. This will be clearly illustrated in the
discussion of the numerical results in Section 5. The main two-component measures of complexity are given by

CCR[ρ] ≡ F [ρ] · (∆x)2 (9)

for the Cramér–Rao complexity [29,38],

CFS[ρ] ≡ F [ρ] ·
1

2πe
e2S[ρ] (10)

for the Fisher–Shannon complexity [39,40], and

CLMC ≡ ω2[ρ] · N[ρ] (11)

for the López–Ruíz, Mancini and Calbet (LMC) shape complexity [41].
Each complexity encompasses two different facets of the probability distribution. The LMC complexity measures the

combined balance of the average height of the probability density ρ(x) (as given by the second-order moment ω2, also
called disequilibrium) and its total bulk extent (as given by the Shannon entropy power). The Cramér–Rao complexity
quantifies the gradient content of ρ(x) together with the probability distribution with respect to its mean value (centroid).
The Fisher–Shannon complexity measures the gradient content or oscillatory degree of ρ(x) combined with its total extent.
Moreover, according to the units in which each individual component is measured, it is straightforwardly observed that the
above complexities are dimensionless quantities. It is also worthy to mention that the three complexities are known to be
bounded from below by unity for one-dimensional distributions [42,43].

3. Information theory of a single-delta potential

The time-dependent Schrödinger equation of a particle with mass m moving under the action of a single attractive
singular potential of Dirac-delta type, V (x) = −gδ(x)with g > 0 a real constant, is given by[

−
h̄2

2m
d2

dx2
− gδ(x)

]
Ψ (x, t) = ih̄

∂

∂t
Ψ (x, t). (12)

Note that when the particle is an electron and g = Ze2/4πϵ0, this system may be considered as the one-dimensional
hydrogenic atom (in particular Z = 1 for neutral hydrogen) with δ-function interaction. It is well-known that this system
has a unique bound state for E = −|E| < 0 and a continuum of unbound states for E > 0. Moreover, the wavefunction of
the bound state is given [14,13,44] by

Ψ (x, t) = ψ(x)e−
i
h̄ Et (13)

with the expressions
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E = −
mg2

2 h̄2 and ψ(x) =
√
ke−k|x|

; k ≡
mg
h̄2 (14)

for its energy and normalized-to-unity eigenfunction, respectively. Notice that k = a−1
0 in the hydrogen case, where

a0 = h̄2 /me2 is the Bohr radius.
Moreover, the momentum space wavefunctionΦ(p, t) = φ(p)e−

i
h̄ Et , where the momentum eigenfunction φ(p) is given

[14] by the Fourier transform of the position eigenfunction ψ(x) so that

φ(p) =
1

√
2π h̄

∫
−∞

−∞

ψ(x)e−
i
h̄ pxdx =


2p0
π

p0
p2 + p20

, (15)

with p0 ≡ h̄k, has a Lorentzian form.
In this section we will compute the information-theoretic measures of the position and momentum spreading of this

system, which are characterized by the position and momentum probability densities

ρ(x) = ke−2k|x| (16)
and

Π(p) =
2p30/π
p2 + p20

2 , (17)

respectively. Emphasiswill bemade on the direct spreadingmeasures in both position andmomentum spaceswhich include
the standard deviation and the Fisher, Rényi and Shannon lengths.
(a) In position space we first obtain from Eqs. (1), (2) and (16) the value

∆x =

√
2

2k
(18)

for the standard deviation in a straightforwardmanner, because ⟨x⟩ = 0 and ⟨x2⟩ = 1/(2k2). Moreover from Eqs. (3)–(5)
and (16) we obtain the values

ωq[ρ] =
1
q
kq−1

; Rq[ρ] = −


ln k +

ln q
1 − q


(19)

S[ρ] = 1 − ln k and F [ρ] = 4k2 (20)

for the entropic moments, the Rényi and Shannon entropies and the Fisher information, respectively. Then, from
Eqs. (6)–(8), (19) and (20) we obtain the values

LRq[ρ] =
1
kq
, N[ρ] =

e
k

and δx =
1
2k

(21)

for the Rényi, Shannon and Fisher information-theoretic lengths. The mutual comparison of Eqs. (18) and (21) indicates
that δx = ∆x/

√
2 ∼= 0.7071∆x and N[ρ] = 2eδx, so that

δx < ∆x < N[ρ] (22)

In addition, it is useful to calculate, in order to quantify the complexity of the distribution, the two-component composite
measures of Cramér–Rao, Fisher–Shannon and LMC types defined by Eqs. (9)–(11) respectively. From those expressions
and Eq. (21), we have the values

CCR[ρ] = 2, CFS[ρ] =
2e
π

and CLMC [ρ] =
e
2

(23)

for the corresponding complexities. It is worthy to remark that, in spite of the dependence of the individual components
on the potential strength g , the above complexity values do not depend on such a parameter. It is worth noting that
the same phenomenon holds for homogeneous potentials [11]. Additionally, all of them are above unity as should be
expected [42,43].

(b) In momentum space we first observe that the moments ⟨pn⟩ of the momentum density in Eq. (17) diverge for n ≥ 3
due to the long-range behavior of the densityΠ(p). The only finite moments of integer order are ⟨p0⟩ = 1, ⟨p⟩ = 0 and
⟨p2⟩ = p20.

The entropic moments have the values

ωq[Π] =

∫
∞

−∞

[Π(p)]qdp =


2
πp0

q

p0
Γ

2q −

1
2

√
π

Γ (2q)
(24)

with q > 1
4 as imposed by the convergence of the integral defining ωq[Π]. Additionally, the momentum standard

deviation is given by
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∆p =

⟨p2⟩ − ⟨p⟩2

 1
2 = p0 (25)

and the Rényi entropies have the values

Rq[Π] =
1

1 − q
lnωq[Π] =

1
1 − q

ln


p0

√
π


2
πp0

q Γ

2q −

1
2


Γ (2q)


, q >

1
4
. (26)

Moreover, taking into account Eqs. (17) and (24) one has that the momentum Shannon entropy is

S[Π] = −
d
dq

lnωq[Π]


q=1

= ln
8πp0
e2

(27)

and the momentum Fisher information is

F [Π] =

∫
∞

−∞

[Π ′(p)]2

Π(p)
dp =

2
p20
. (28)

Then, the Rényi, Shannon and Fisher information-theoretic lengths (6)–(8) are

LRq[Π] =


p0

√
π


2
πp0

q Γ

2q −

1
2


Γ (2q)

 1
1−q

, q >
1
4

(29)

N[Π] =
8πp0
e2

(30)

and

δp =

√
2
2

p0 (31)

respectively. The mutual comparison of Eqs. (25), (30) and (31) shows that δp = ∆p/
√
2 ∼= 0.7071∆p and N[Π] =

8π
e2
∆p, so that

δp < ∆p < N[Π]. (32)

In addition, we obtain the values

CCR[Π] = 2, CFS[Π] =
64π
e5

and CLMC [Π] =
10
e2

(33)

for the Cramér–Rao, Fisher–Shannon and LMC complexities of the system in momentum space, where we have taken
into account Eqs. (9)–(11) together with Eq. (24) for q = 2, and Eqs. (25), (28) and (30). It is important to note that:
(i) the Cramér–Rao complexity in both position andmomentum spaces are equal; this is becausewhen thewavefunction
is real and its moment of order 1 vanishes, the relationships Fρ =

4
h̄2
VΠ and FΠ =

4
h̄2
Vρ between Fisher information and

variance are fulfilled; and (ii) these three complexity measures are independent of the parameter k, highlighting that
the difficulty of modeling the distributions ρ(x) andΠ(p) is determined by the presence of a unique parameter, but not
by its specific value.

(c) Finally, the expressions given by Eqs. (18), (21), (25), (30) and (31) yield the following uncertainty products:

∆x ·∆p =
h̄

√
2

= 0.7071h̄ (34)

δx · δp =

√
2
4

h̄ = 0.3536h̄ (35)

N[ρ] · N[Π] =
8π
e

h̄ = 9.2458h̄ (36)

respectively. The above products do not depend on the g parameter value and they certainly fulfill the Heisenberg [45],
Fisher-information-based [5,37] and Shannon-entropy-based or entropic [46,36,47] uncertainty relations given by

∆x ·∆p ≥
h̄
2

(37)

δx · δp ≤
h̄
2

(38)

N[ρ] · N[Π] ≥ eπ h̄ (39)

respectively.
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4. Information theory of a twin-delta potential

Let us here consider the non-relativistic motion of a particle withmassm in a potential having not one (as in the previous
section) but two attractive centers separated by a distance 2a, i.e. in the twin-δ-function potential defined as

V (x) = −g[δ(x + a)+ δ(x − a)].

This potentialwith g = e2/4πϵ0 describes not only the one-dimensional hydrogenmoleculewith δ-function interactions
(see [14,12,15] and references therein) and approximates the heliumatom [19,12], but also it has beenused to interpret some
scattering [28] and solid-state [22] phenomena. Because of its symmetry, this potential has two types of solutions which
correspond to even and odd eigenfunctions [14,13].

The even bound-state (E = −|E|) solution has the eigenfunction

ψ+(x) =

Aekx, x < −a
B cosh(kx), −a < x < a
Ae−kx, x > a

(40)

and the energy E is given by the eigenvalue condition

γ (1 + tanh γ ) = 2
a
a0

(41)

with γ = ka, k =

√
2m|E|

h̄ and a0 =
h̄2
mg . The parameters A and B are given by

A = Beγ cosh γ and B =


2γ
a

1/2 
e2γ + 2γ + 1

−1/2
, (42)

as imposed by the continuity and the normalization conditions.
The odd solution has the eigenfunction

ψ−(x) =

Cekx, x < −a
D sinh(kx), −a < x < a
−Ce−kx, x > a

(43)

where

C = −Deγ sinh γ and D =


2γ
a

1/2 
e2γ − 2γ − 1

−1/2
, (44)

and the corresponding eigenvalue equation being

γ (1 + cotanhγ ) = 2
a
a0
. (45)

A detailed analysis of the energy eigenvalue conditions (41) and (45) shows [13] that (i) for a ≫ a0/2 (i.e., in the limit of
large separation) there are twodegenerated eigenfunctions, one even and the other odd, at the energy given by Eq. (14) of the
single-delta case, (ii) for a < a0/2 there are no odd solutions and, most important, (iii) the odd solution, whenever exists,
lies energetically above the corresponding even solution; i.e. it is less bounded. So, we will restrict ourselves to the even
bound-state eigenstate given by Eqs. (40) and (42) in position space. The corresponding Fourier transformation provides the
expression

φ+(p) =
1

√
2π h̄

∫
∞

−∞

ψ+(x)e
−

i
h̄ px = B


2h̄
π

p0e
p0a
h̄ cos pa

h̄

p2 + p20
, (46)

where p0 ≡ h̄k. In this Section we will quantify the position and momentum spreading of this system in its ground state as
described by the eigenfunctions (40) and (46), respectively. This will be done not only by means of the standard deviation
(already done by Lapidus [14]) but also by the following information-theoretic measures: Rényi and Shannon entropies and
Fisher information and, most appropriately, their corresponding lengths. To do that, and according to the procedure used in
Section 3, we start with the expressions ρ+(x) = |ψ+(x)|2 and Π+(p) = |Φ+(p)|2 for the position and momentum space
quantum-mechanical probability densities of this state, respectively.

(a) In position space, we first check that ⟨x0⟩+ = 1 so that the density ρ+(x) is normalized to unity. Then, since ⟨x⟩+ = 0
because of symmetry, one obtains that the standard deviation (∆x)+ is given by

(∆x)2
+

= ⟨x2⟩+ =
a2

2γ 2
+ a2

e2γ +
2
3γ + 1

e2γ + 2γ + 1
(47)
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which provides the Heisenberg uncertainty measure of the system. Moreover, one can also obtain the even-order mo-
ments of ρ+(x) as

⟨x2n⟩+ = 2
∫

∞

0
x2nρ+(x)dx

=
a2n

(2γ )2n(e2γ + 2γ + 1)

[
e4γ

2
+ e2γ


Γ (2n + 1, 2γ )+

Γ (2n + 1,−2γ )
2

+
(2γ )2n+1

2n + 1

]
(48)

for n = 0, 1, 2, . . . , where the symbol Γ (α, β) denotes the incomplete gamma function. In addition, the Fisher infor-
mation (5) of the system is computed as

F [ρ+] =

∫
∞

−∞

 d
dxρ+(x)

2
ρ+(x)

dx = 2
∫ a

0


ρ ′

+
(x)
2

ρ+(x)
dx + 2

∫
∞

a


ρ ′

+
(x)
2

ρ+(x)
dx

=
4B2

a
γ [eγ cosh γ − γ ] =

4γ 2

a2
·
e2γ − 2γ + 1
e2γ + 2γ + 1

(49)

so that the Fisher measure (δx)+ of the system, as defined by Eq. (8), is given by the Fisher length

(δx)+ =
1

√
F [ρ+]

=
a
2γ


e2γ + 2γ + 1
e2γ − 2γ + 1

1/2

. (50)

Working similarly, one can calculate the frequency or entropic moments

ωq[ρ+] = 2
∫

∞

0
[ρ+(x)]qdx = 2


B2q

∫ a

0
[cosh(kx)]2qdx + A2q

∫
∞

a
e−2kqxdx


. (51)

According to the integral expressions∫
∞

a
e−2kqxdx =

ae−2qγ

2qγ

and ∫ a

0
[cosh(kx)]2ndx =

a
22nγ


2n
n


γ +

n−
m=1


2n

n − m


sinh(2mγ )

m


for any integer n, one has that the entropic moments ωq[ρ+] with integer order q = n have the values

ωn[ρ+] =
2γ n−1

(2a)n−1(e2γ + 2γ + 1)n



2n
n


2γ +

1
n


+

n−
m=−n
m≠0


2n

n − m


1
n

+
1
m


e2mγ

 . (52)

For the lowest n’s we have that ω1[ρ+] = 1 and

ω2[ρ+] =
γ

4a
·
e4γ + 6e2γ − 2e−2γ

+ 12γ + 3
(e2γ + 2γ + 1)2

, (53)

which gives the so-called ‘‘disequilibrium’’ [48] of the system. It is also worth noting that in the limit a → 0 we ob-
tain the single-delta-potential value kn−1/n as given by Eq. (19). From the expressions (6) and (52) we obtain the Rényi
uncertainty measure as given by the Rényi lengths

LRn[ρ+] = (ωn[ρ+])
1

1−n .

For n = 2 we have the Onicescu–Heller measure [48]

LR2[ρ+] =
4a
γ

·
(e2γ + 2γ + 1)2

e4γ + 6e2γ − 2e−2γ + 12γ + 3
.

Let us now compute the position Shannon entropy of the ground state density ρ+(x). According to its definition (4), one
has

S[ρ+] = −

∫
∞

−∞

ρ+(x) ln ρ+(x)dx

= −2
∫ a

0
ρ+(x) ln ρ+(x)dx +

∫
∞

a
ρ+(x) ln ρ+(x)dx


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=
e2γ − 2γ + 1
e2γ + 2γ + 1

+ 2


γ 2

−
π2

12 + 2γ ln(1 + e2γ )
e2γ + 2γ + 1

−
Li2(−e−2γ )

e2γ + 2γ + 1
− ln cosh γ



− ln


2γ /a
e2γ + 2γ + 1


(54)

where Lis(x) =
∑

∞

k=1
xk
ks is the polylogarithm function.

(b) In momentum space we first observe that the densityΠ+(p) = |φ+(p)|2 has all the odd moments ⟨p2n+1
⟩+ = 0 for n =

0, 1, 2, . . . because of symmetry. Moreover, all the evenmoments ⟨p2n⟩+ diverge except for n = 0 and 1: ⟨p0⟩+ = 1 and

⟨p2⟩+ =
h̄2 γ 2

a2
·
e2γ − 2γ + 1
e2γ + 2γ + 1

. (55)

So, the Heisenberg uncertainty measure of the system in momentum space is given by the standard deviation

(∆p)+ = ⟨p2⟩1/2+ =
h̄γ
a


e2γ − 2γ + 1
e2γ + 2γ + 1

1/2

. (56)

The Fisher information (5) of the momentum ground state densityΠ+(p) has the value

F [Π+] =

∫
∞

−∞


Π ′

+
(p)
2

Π+(p)
dp = 4

∫
∞

−∞

[φ′

+
(p)]2dp = −4

∫
∞

−∞

φ+(p)φ′′

+
(p)dp =

4
h̄2 ⟨x2⟩+ (57)

which was calculated in Eq. (47). Then, the Fisher uncertainty measure (δp)+ has, according to Eq. (8), the value

(δp)+ =
1

√
F [γ+]

=
h̄
2
⟨x2⟩−1/2

+ . (58)

Working similarly, the frequency or entropic moments ωn[Π+] with integer n of the momentum density Π+(p) are
given by

ωn[Π+] =

∫
∞

−∞

[Π+(p)]ndp =
n

(4πp0)n−1

e2nγ

(e2γ + 2γ + 1)n

×


(4n − 3)!!
(n!)2

+ 22−2n
n−

l=1

e−2lγ

(n − l)!(n + l)!
·

2n−1−
j=0

(4n − j − 2)!(4lγ )j

j!(2n − j − 1)!


(59)

with p0 = h̄k =
h̄γ
a . It is interesting to check the normalization conditionω1[Π+] = 1, and to compute the second-order

entropic moment or disequilibrium:

ω2[Π+] =
a

8π h̄γ (e2γ + 2γ + 1)


15e4γ + 4e2γ


8
3
γ 3

+ 8γ 2
+ 10γ + 5


+

64
3
γ 3

+ 32γ 2
+ 20γ + 5


. (60)

From Eqs. (3), (6), (59) and (60) the Rényi entropies and lengths of the system are obtained as

Rn[Π+] =
1

1 − n
lnωn[Π+] and LRn[Π+] = (ωn[Π+])

1
1−n (61)

in a straightforwardmanner. Moreover, from Eq. (4) and the expression ofΠ+(p) one obtains that themomentum Shan-
non entropy of the twin-delta potential can be expressed as

S[Π+] = −

∫
∞

−∞

Π+(p) lnΠ+(p)dp

= −2M

π lnM/p40

8p30
[1 + e−2γ (1 + 2γ )] + J1(a, p0)− 2J2(a, p0)


(62)

with

M =
4p30
π

e2γ

e2γ + 2γ + 1

and the integrals

J1(a, p0) =

∫
∞

0

cos2


pa
h̄


ln cos2


pa
h̄


(p2 + p20)2

dp
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Table 1
Standard deviation, Shannon length and Fisher length for different values of the parameter k (position space) and p0 (momentum space) for the single-delta
position and momentum space densities, ρ(x) andΠ(p) respectively. Atomic units (a0 = 1) are used.

Position space

k (∆x)× 10−2 N[ρ] × 10−2 (δx)× 10−2

1 70.711 271.828 49.991
20 3.536 13.591 2.491
50 1.414 5.437 0.991
90 0.786 3.020 0.556

Momentum space

p0 (∆p)× 10−2 N[Π] × 10−2 (δp)× 10−2

1 0.730 2.482 0.516
20 14.595 49.642 10.320
50 36.487 124.104 25.800
90 65.676 223.387 46.440

J2(a, p0) =

∫
∞

0

cos2


pa
h̄


ln(p2 + p20)

(p2 + p20)2
dp

which cannot be solved analytically up until now. The corresponding Shannon length (7) is given by

N[Π+] = exp {S[Π+]} . (63)

We can go forward by calculating the momentum two-component complexities of Cramér–Rao, Fisher–Shannon and
LMC types by use of Eqs. (9)–(11) together with Eqs. (56), (60), (62) and (63). From the information-theoretic quantities
previously considered in this section, plenty of results can be derived. Let us here only point out the Heisenberg–Fisher
uncertainty products

(∆x)+(δp)+ = (δx)+(∆p)+ =
h̄
2

(64)

and the connection between the Cramér–Rao complexity and the Heisenberg product given by

CCR[ρ+] = CCR[Π+] =
4
h̄2 [(∆x)+(∆p)+]2

= 4γ 2 e
2γ

− 2γ + 1
e2γ + 2γ + 1


1

2γ 2
+

e2γ +
2
3γ + 1

e2γ + 2γ + 1


. (65)

The reason for these two complexity measures to be equal in both conjugated spaces is the same as described in the pre-
vious section. Note that in this case, however, the three complexity measures depend on the parameters k or a through
γ = ka. It is worthy remarking that the complexity measures obtained for the even solution tend to the complexity
values of the single-delta when a approaches zero. We continue with a more detailed description of this phenomenon
in the next section.

5. Numerical results

In this Section the information-theoretic measures (lengths and complexities) of the stationary states of the single- and
twin-delta potentials, previously obtained in an analytical way, are numerically analyzed and discussed in terms of their
characteristic parameter in both position and momentum space.

5.1. Single-delta potential: lengths and complexities

Each of the densities given in Eqs. (16) and (17), corresponding to position and momentum spaces respectively, is char-
acterized by a parameter which is determined, in fact, by the energy of the bounded state. The characteristic parameter is k
in position space and p0 in the momentum one.

Let us analyze the Shannon- and Fisher-type information measures, as well as the standard deviation, by means of their
corresponding lengths. In doing so, different values of k and p0 will be considered. Those values are given in Table 1, for the
aforementioned parameters and lengths.

Some comments are in order. It is firstly observed the decreasing trend of all spreading measures, in position space,
as the parameter k increases. In fact, and according to Eqs. (21) and (29) with q = 2, (30) and (31), the three measures
are essentially the inverse of k in position space and proportional to p0 in momentum space. Let us remind the functional
expression of ρ(x), an exponential on each of the half-axes with a decreasing rate determined by k. Consequently, increasing
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the value of k provokes a higher concentration of the density around the origin, where its value becomes higher as far as k
increases. On the other hand, diminishing the k value makes the density to progressively spread over the whole real line.
This means that, as k decreases, (i) the variance, a measure of the mean deviation from the centroid at the origin, increases
because the density enhances its contribution in regions far from the origin, (ii) the Shannon length, a measure of spread
over the whole real line, also increases because of its progressive approach to a uniform distribution, and (iii) the Fisher
information, a measure of the ‘content of gradient’, decreases notably with a consequent increase of its inverse, the square
of the Fisher length; the reason is that the density approaches a Dirac delta for extremely large k, with a very high value of
the derivative (its absolute value) around the origin.

Inwhat concerns themomentumdensity, similar interpretations can be done, according to the value of p0, the parameter
which determines the structural characteristics of the momentum density Π(p). An increasing trend of each measure as
functions of p0 (notice that p0 = h̄k) is now displayed. The functional dependence of Π(p) on p0, as shown in Eq. (17),
makes the density to spread over its domain and to reduce its content of gradient as far as p0 increases. This behavior
appears opposite to that of the position space density, and consequently the same occurs with the information measures
considered, namely standard deviation and Shannon and Fisher lengths, as clearly observed in Table 1.

Considering the LMC, Fisher–Shannon and Cramér–Rao complexities values, let us remember their values, provided in
Eqs. (23) and (33). The numerical values are:

CCR[ρ] = 2.0000, CFS[ρ] = 1.7305 and CLMC [ρ] = 1.3591 (66)

in position space, and

CCR[γ ] = 2.0000, CFS[γ ] = 1.3547 and CLMC [γ ] = 1.3534 (67)

in momentum space, all of them above unity as emphasized in Section 3.

5.2. Twin-delta potential: lengths

The interpretation of the different information lengths in the twin-delta problem is based on identical arguments for
both the symmetric and antisymmetric solutions. For the sake of simplicity and brevity, we will restrict the discussion to
the symmetric solution, keeping in mind that similar conclusions in opposite spaces are obtained from the analysis of the
antisymmetric wavefunction. The densities ρ+(x) andΠ+(p)will be denoted by ρ(x) andΠ(p) in what follows.

In position space, we observe that the density ρ(x) has two different components: (i) an hyperbolic function within
the interval (−a, a) determined by the location of the two attractive centers, and (ii) a decreasing exponential out of the
aforementioned interval.

The parameter k, which determines the decreasing rate of the exponential component as well as the curvature of the
hyperbolic one, is determined by the half-width a of the interval through the eigenvalue equation (41). The analysis of their
mutual relationship allows to assert that the parameter k is a decreasing function of a. Consequently, considering wider
intervals (−a, a) implies to deal with lower values of k.

In Fig. 1(a), the standard deviation and the Shannon, Fisher and second-order Rényi lengths (denoted by N[ρ], δx and
R2[ρ], respectively) are displayed for different values of the interval half-width a. It is remarkable that the three curves
display an unimodal shape: they increase until reaching their absolute maximum, and then slowly decreasing towards an
asymptotic value for large a. Opposite behavior is observed in momentum space (Fig. 1(b)): the curves first decrease and
then tend to a constant long-range limit.

Let us interpret the above comments according to the structural properties of the densities ρ(x) andΠ(p), as displayed
in Fig. 2 for different values of their characteristic parameters. In what concerns the position space density (Fig. 2(a)) and
starting with a very narrow interval, amplifying the small-sized hyperbolic interval increases the global spreading, not only
due to the lower curvature and exponential decreasing rate as determined by k, but also because the contribution of the
exponential component diminishes as compared to the hyperbolic one. On the other hand, the extremely high gradient at
the points x = ±a decreases as far as a increases, what justifies the enhancement of the Fisher length.

However, after reaching the interval a large enough width, the aforementioned lengths display a decreasing trend. The
reason is that the hyperbolic component mainly governs the length values as compared to the exponential contribution. In
this sense, the global spread asmeasured by the variance and the Shannon, Rényi and Fisher lengths remains almost constant,
because the density approaches a unique-component distribution, namely the hyperbolic one with very low curvature.

Concerning the momentum space density, we firstly observe that its analytical expression in Eq. (46) consists of an
(oscillatory) cosine-like numerator and a decreasing factor as given by the denominator. The behavior of both factors
is determined by the parameter p0: the numerator becomes increasingly oscillatory as far as p0 increases, while the
complementary factor (denominator) governs the rate of global decrease. In this sense, higher values of p0 give rise to
highly oscillatory momentum densities but also with a higher global spreading. Again we observe a counterbalance of both
contributions for large enough p0, as displayed in Fig. 2(b) for themomentum density and Fig. 1(b) for themomentum space
lengths.

It is also interesting to analyze the dependence of the Rényi lengths on the order parameter q. This will be done attending
to the curves displayed in Fig. 3 for a fixed interval extremum a. The decreasing behavior observed for the symmetric solution
as also occurs with the antisymmetric one, independently of dealing with position or momentum space densities, can be
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a

b

Fig. 1. Standard deviation and Shannon, Fisher and second-order Rényi lengths for the symmetric solution of the twin-potential problem, in (a) position
and (b) momentum spaces. Atomic units (a0 = 1) are used.

justified as follows. The effect of increasing q translates into a ‘more concentrated’ integrand within the expression (3)
defining the frequency moments and their corresponding Rényi lengths. So, increasing q makes the relative contribution
from the exponential component in position space to become almost negligible as compared to the hyperbolic one, as
corresponds to a density highly concentrated around the origin and, consequently, less sparse. Concerning the momentum
space density, an enhancement of both the strength of oscillations as well as a global concentration around the origin arises
as q increases. The consequence is the same as in position space, that is, lower values of the Rényi length, indicating a higher
level of concentration, especially around the origin but also at the extrema of the oscillatory curve.

5.3. Twin-delta potential: complexities

According to the general interpretation of the ‘complexity’ concept, as a measure of the difficulty of modeling the
distribution, it is clear that the distance between the locations of the delta functions or, equivalently, thewidth of the interval
(−a, a), will be essential in determining the level of complexity. This is shown in Fig. 4, where the LMC, Fisher–Shannon
and Cramér–Rao complexities are displayed as functions of the half-distance a between delta attractors. Let us analyze the
results in position (Fig. 4(a)) and momentum (Fig. 4(b)) spaces.

In doing so, let us firstly think on the process of ‘separation of deltas’ (increase of a). For large enough separation, the
quantum-mechanical problem can be approximated by an ‘overlap’ of two independent single-delta equations, dealt in
detail in Section 3. For the single-delta case we obtained constant values of all complexities; in our case we observe that the
LMC and Fisher–Shannon complexities displayed in Fig. 4(a) are constant unless dealing with very small values of a. This is
a consequence of the behavior of the factors composing those complexities, as observed in Fig. 2(a). Increasing amakes the
Shannon, Fisher and second-order Rényi lengths to become almost constant, because each of the single-delta components
corresponding to potentials centered at x = ±a gives rise to a density approaching uniformity as far as a increases. The
situation is very different, however, regarding the variance or the standard deviation, which monotonically increases as the
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Fig. 2. Density function for the symmetric solution of the twin-potential problem, in (a) position and (b) momentum spaces. Atomic units (a0 = 1) are
used.

Fig. 3. Rényi length, as a function of its order q, for the symmetric solution of the twin-potential problem with a fixed value a = 1.4 in position and
momentum spaces. Atomic units (a0 = 1) are used.

centers separate among themselves. The key point here is the definition of variance as a measure of spreading with respect
to the centroid, the origin in the present problem. So, the highest values of the density, which occur around the attractive
centers, are progressively more distant from the centroid at the origin. This makes the variance to increase because of its
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a

b

Fig. 4. Complexities LMC, Fisher–Shannon (FS) and Cramér–Rao (CR) for the symmetric solution of the twin-potential problem, in (a) position and (b)
momentum spaces. Atomic units (a0 = 1) are used.

referencewith respect to the origin, contrary to the other informationmeasures and lengthswhich have no reference points,
being determined instead according to the behavior of the density over its whole domain.

Concerning the momentum space complexities (Fig. 4(b)), the essential difference among themselves is the presence or
not of the Fisher information factor, which appears in the Fisher–Shannon and Cramér–Rao cases but not in the LMC one. It is
observed that (i) the LMC complexity inmomentum space displays a very similar shape to the corresponding one in position
space, and (ii) the Fisher–Shannon and Cramér–Rao momentum complexities are increasing functions, in a similar fashion
as the Crámer–Rao one in position space. It is worthy remembering the presence of an oscillatory factor in the momentum
density, the frequency of the oscillations being determined by the half-distance a. Such an oscillatory behaviormainly affects
the Fisher information factor, whose increase with a translates into that of the associated complexities. Such is not the case
of the LMC complexity, for which a ‘counterbalance effect’ of each factor restricts the LMC complexity value for arbitrary a
to a much narrower interval.

6. Conclusions and open problems

In this paper we have studied both analytically and numerically the single information-theoretic (Fisher, Shannon and
Rényi) lengths and complexity (Cramér–Rao, Fisher–Shannon and LMC) measures of the lowest-lying stationary state of
the single-delta and twin-delta potentials in terms of their energies and characteristic parameters. These quantities are
discussed in both position and momentum spaces. They grasp various individual and combined spreading facets of the
charge and momentum of the particle far beyond that described by the celebrated standard deviation.

Finally, let us point out some open problems. First, to study the information and complexity properties of (i) the excited
states resulting from the single- and multiple-delta functions in one dimension, and (ii) the bound states of the one-
dimensional hydrogen atom as well as the helium and hydrogen molecule ion with a single- and twin-delta potential,
respectively, confined in a box [49,50] or under the action of external electric and/or magnetic fields. Second, to extend
the results of this work to N-delta one-dimensional arrays because of their use to approximate and describe numerous
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scientific and technological properties of quantumwires and other semiconductor nanostructures. Third, to study the related
information-theoretic and complexity measures of higher dimensionality delta potentials, which do not have the same
properties as those in one dimension. It is known that delta potentials inmore than one dimension do not allow bound states
and scattering but, nevertheless, once regularized they are very instructive for illustrating basic concepts of quantum field
theory [51]. Fourth, to investigate the relativistic effects in the aforementioned information-theoretic properties of delta-like
potentials. It is planned the inclusion, in all of the above points, of information lengths based on a so relevant information
quantifier as the Tsallis entropy [52], a non-extensivemeasurewhich characteristic parametermeasures the departure from
extensivity. Numerous applications of this entropy in non-extensive thermodynamics or statistical mechanics and many
other scientific fields have been carried out [53].
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