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a b s t r a c t

A generalization of the original Jensen–Shannon divergence (JSD) is presented in this
work, which gives rise to a non-extensive one-parameter divergence providing a powerful
dissimilarity measure between electronic distributions. The analysis performed in this
study employs the JTD measure to compare one-particle densities of neutral and ionized
atomic systems, that generalizes and improves some previous results based on other
measures of divergence. Such an improvement mainly arises from the capability of JTD
to modify, by means of its order parameter, the relative contribution of specific relevant
regions of the atomic densities under comparison, in both position and momentum
spaces. Relevant information of the ionization processes attending to structural pattern
and periodicity is found, as well as the strong correlation between extremal values of
the neutral–cation JTD and those of the atomic ionization potential. Similar conclusions
are obtained from processes involving an anion. The analysis includes a study of the
dependence of JTD on its order for fixed atomic couples.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In probability theory and statistics, the Jensen–Shannon divergence (JSD) is a fundamental tool for measuring the
dissimilarity between two or more probability distributions [1–3]. This JSD divergence is a symmetrized and smoothed
version of the most important divergence measure in information theory, the Kullback–Leibler divergence [4], with the
notable difference that it is always finite valued. Furthermore, it has been shown that the square root of JSD defines a true
metric in the space of probability distributions [5]. This means that JSD1/2 verifies all the mathematical axioms required
to constitute a metric, namely (i) non-negativity, (ii) minimal zero value only for identical distributions, (iii) symmetry,
and (iv) triangular inequality, i.e. it is bounded from below and from above in terms of the norms of the distributions. The
functional JSD is not a metric despite that it obeys the first three axioms, except for the last one which is certainly satisfied
by its square root.

Some generalizations of this important measure of discrimination have been studied in the last years. For instance,
Taneja [6,7] introduced a two-scalar parametric generalization of JSD and, more recently, Lamberti and Majtey have
investigated the properties of JSD in the framework of non-extensive Tsallis statistics [8–10]. Briët and Harremoës have
also studied and generalized several properties of classical and quantum JSD [11].
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Attending to these reasons among others, the JSD has recently gained interest among physicists and statisticians and it
has been widely applied to the analysis of signal or symbolic sequences; in particular, successful applications to the study of
segmentation of DNA sequences [12–14] and to the detection and registration of digital images [15] have been carried out.

On the other hand, the concepts of ‘divergence’ and ‘similarity’ are closely related, the latter appears to be of fundamental
importance in several scientific fields. For instance, the recognition and analysis of molecular similarities serve as the basis
for understanding the link between the structural features of molecules and their physical and chemical properties [16,17],
graph theory has been widely used for assessing similarities in taxonomy or for detecting protein sequence homology [18].
Further, particular measures of similarity have been employed in fuzzy set theory, which have found application in areas
such as management, medicine and meteorology [19]. Recently, divergence measures have been used in the framework of
quantum information theory [9,10]. In particular, the JSD was applied as a measure of entanglement [20], and also together
with other similaritymeasures [21–27] in the study ofmultielectronic systems [28,29]. The focus of the presentwork resides
in studying the differences in the electron charge densities of neutral atoms and singly charged ions in their ionization
processes so as to link them with their physical and chemical properties in accordance with the Hohenberg and Kohn
theorem [30]. In addition, the electron density in the conjugated space, namely the momentum density, also constitutes
a very rich source of information on multielectronic systems, as it has been recently shown in the context of information
theory [29,31].

First, we will introduce a one-parameter generalized divergence, the Jensen–Tsallis divergence (JTD), which is
constructed by simply replacing the Shannon entropy [32] by the q-order Tsallis entropy T (q) [8] in the JSD definition, as
will be described in the next section. The Shannon entropy, a particular case of the Tsallis one as q → 1, shares with the
JSD the well-known additivity property from which the joint entropy of a pair of independent random variables is just the
sum of the individual entropies. In the present work, we omit this property as a constraint and, instead, the non-extensive
Tsallis entropy is considered in order to construct the JTD.

This generalizeddivergence is later applied to explore its advantages over the JSDmeasure to contrast the results obtained
on simple but extremely organized quantum-mechanical systems such as atoms and ions. In particular, we are interested in
quantifying the informational discrepancies between the one-particle electron densities of neutral atoms and singly charged
ions in order to ascertain if these entropic measures of divergence may detect successfully the pattern of the ionization
processes and to predict some correlation with important experimental magnitudes like the atomic ionization potential,
perhaps the most relevant one for the description of ionization processes.

Computations will be performed in both conjugated spaces, namely position (r) and momentum (p), by means of the
accurate near-Hartree–Fock wavefunctions of Koga et al. [33]. The reason underlying this interest is due to the Fourier
transform connection between the conjugated r and p spaces, the momentum density containing relevant information on
the valence region at small momentum p values, reaching its global maximum. In this manner we will explore in this case
the valence region in contrast with the position space, in which the comparative study is mainly based on the behavior of
the densities within the core region.

The paper is organized as follows. In Section 2 we define the Jensen–Tsallis divergence, along with the relevant electron
densities under study. In Section 3.1 the dependence of the divergence on the nuclear charge Z is analyzed, and correlations
with the atomic ionization potential are clearly revealed. In Section 3.2we show the ability and power of the JTD dependence
on its q parameter in order to explore different physical regions in r and p spaces. Conclusions are collected in Section 4.

2. Jensen–Tsallis divergence JTD for one-particle electronic densities

The one-particle densities of an N-electron system in position and momentum spaces, ρ(r⃗) and γ (p⃗), respectively, are
the basic ingredients for the study of many physical properties from a density functional theory perspective [30]. The
relevant role played by ρ(r⃗) in the description of many-electron systems invites us to think about the extent to which
the similarity/dissimilarity features between the densities corresponding to two different systems could be interpreted as
indicators of analogy/discrepancy also between their physical and chemical properties, as well as the best way to quantify
it. The same argument applies to divergence studies of the one-particle density γ (p⃗) in the conjugated space, namely the
momentum one because it is also a well-known source of information on the aforementioned properties [34]. In fact, the
simultaneous analysis of both, the position and themomentum space densities, has been shown to provide, within different
contexts, a much more complete description of the system [28,35].

It is important to mention the pioneering work of Carbó in the quantification of similarity between two molecular
structures, based on quantum chemistry and on the comparison of their charge densities [17,21,26]. Afterwards, the same
research group studied the theoretical framework of quantum similarity (QS). Since then, the design of novel procedures,
the implementation of new algorithms and measures as well as their practical applications have been also extensively
developed. In particular, the field of quantitative structure activity/property relationships (QSAR) has demonstrated that
the biological activity and the physical properties of a set of compounds can be mathematically related to some simple
molecular structure parameters [36].

Information entropy is a magnitude of paramount importance in the study of many-electron systems, which can be cal-
culated in both position and momentum spaces giving a measure of the global delocalization, spread or randomness of the
electronic distribution [32,37]. This fundamental functional has been extensively used as ameasure of distance between two
electrondistributions or processes andproposed as one of the basic ingredients of the so-called complexitymeasures [38,39].
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Some entropic measures have been proposed as indicators of information distance or dissimilarity between distributions,
assumed to be normalized to unity in what follows. Probably, the most relevant measure of divergence introduced within
the context of information theory is the Kullback–Leibler divergence [4]. It is defined as

KLD(f , g) ≡

∫
f (r⃗) ln

f (r⃗)
g(r⃗)

dr⃗, (1)

for any pair of non-negative functions f (r⃗) and g(r⃗) defined over a common domain (the whole three-dimensional space in
the presentwork) andwith identical normalization,whenever the integral defining KLD converges. This functional embodies
the Shannon entropy [32]

S(f ) ≡ −

∫
f (r⃗) ln f (r⃗)dr⃗. (2)

The Kullback–Leibler divergence can be also interpreted as a relative entropy or an entropy gain, which are fundamental
concepts of information theory and Bayesian inference.

The JSD constitutes a symmetrized version of the Kullback–Leibler measure of divergence and quantifies the entropy
excess between the Shannon entropy of a mixture of two (or more) distributions and the mixture of the entropies of the
distributions. It is given by [1–3,5]

JSD(f , g) ≡ S

f + g
2


−

1
2
[S(f ) + S(g)]. (3)

Some important properties and generalizations of this measure of dissimilarity are quoted in Ref. [11]. In particular, the
following features are to be noted: (i) it possesses the same mathematical properties and interpretability as that of KLD,
provides straightforward interpretations in the framework of statistical physics and information theory, (iii) it is the square
of a true metric, and (iv) it can be generalized to more than two distributions, allowing to take into account the different
sizes of the objects under comparison. Distances between quantum states play a central role in quantum information theory
and extensions in this direction have also been done [9,10,20].

The central role of Shannon entropy in information theory has stimulated the proposal of several generalizations and
extensions during the last decades. One of the best known of these generalizations is the family of Rényi entropies, which
includes the Shannon entropy as a limiting case, and it has been used in several applications [40]. The Shannon and Rényi
entropies share the well-known additivity property, which sets the joint entropy of a pair of independent random variables
as the sum of the individual entropies. In other generalizations the additivity property does not constitute a requirement,
yielding the non-extensive entropies. These generalized entropies retain much of the formal structure of the standard
thermodynamics theory and have been applied to many anomalous physical systems [41–43].

The Tsallis entropy [8] defined below is a generalization of the standard Shannon entropy.

T (q)(f ) ≡
1 − ωq(f )

q − 1
, (4)

where q is a positive real parameter and ωq(f ) ≡

f q(r⃗)dr⃗ is the so-called frequency moment of order q of the distribution.

The convergence of the involved integral depends on the short- and long-range behaviors of the distribution we are dealing
with, and the limiting case q → 1 provides the Shannon entropy, i.e. T (1)(f ) = S(f ). As we have pointed out, T (q) with
q ≠ 1 is not extensive, in the sense that given two independent variables A and B for which the joint probability satisfies
p(A, B) = p(A)p(B), then

T (q)(A, B) = T (q)(A) + T (q)(B) + (1 − q)T (q)(A)T (q)(B). (5)

From this result, it is evident that the parameter q measures the departure from extensivity. In some complex processes or
systems the additivity property is often violated and some of these phenomena seem to be susceptible of being described
by using approaches drawn from non-extensive entropies, such as the Tsallis one [8].

Numerous applications of this entropy in non-extensive thermodynamics or statistical mechanics, among many other
scientific fields have been carried out. This entropy has also been used for modeling certain complex physical phenomena
(such as those exhibiting, for instance, long-range interactions, microscopic memory, power-law behavior or multifractal
behavior) reflecting a hierarchical pattern or fractal structure [44].

Then, replacing the Shannon entropy by the Tsallis one in the JSD definition provides us with a new functional of two
densities, the Jensen–Tsallis divergence of order q,

JTD(q)(f , g) ≡ T (q)

f + g
2


−

1
2
[T (q)(f ) + T (q)(g)]. (6)

For a given couple of densities (f , g), the Jensen–Tsallis divergence constitutes a measure of the degree of extensiveness,
within the local density approximation (LDA), of the Tsallis entropy density functional defined in Eq. (4). This newdivergence
generalizes the previously introduced JSD as JTD(1)

= JSD preserving its main properties. Non-negativity of JTD(q) is
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guaranteed for arbitrary q > 0 due to the convex (concave) character of the frequency moments for q above (below) unity.
For lower q values the integrands become smooth, hence enhancing the relative contribution of the outermost region of
the atomic or molecular domain. This capability of enhancing/diminishing the relative contribution of different regions
within the domain of the distributions under comparison is the main feature of this divergence measure. Some other non-
extensive or non-logarithmic divergences [45], closely related to the JSD one, have been also defined and applied in the fields
of symbolic sequence segmentation [9], image registration [46–49], machine learning [50] and atomic shell structure [51].

It is also worthy to remark another relevant particular case, namely the second order divergence JTD(2)(f , g) =
1
4QD

2(f , g), where QD stands for the usual ‘quadratic distance’ given by QD(f , g) ≡ (

[f (r⃗) − g(r⃗)]2dr⃗)1/2. The functional

QD corresponds to a true metric, as also the square root of JSD does.
Other types of divergencemeasures exhibit a deep local character,which is the case of the Fisher divergence, built up from

the so-called ‘Fisher information’ [52]. The local sensitivity arises from its definition as a functional enclosing the gradient
of the distribution. This divergence has been recently proposed with the aim of analyzing the similarity and discrepancy
among neutral atoms throughout the whole periodic table. In spite of its local character as compared to the global one of
JSD or JTD, the Fisher divergence is almost insensitive, as also happens with the QD measure, to the atomic shell structure
when dealing with position space distributions. In that case, the Fisher divergence constitutes only, in fact, a measure of
how close the compared systems are located at the periodic table, independently of the groups they belong to. The analysis
in momentum space is required in order to get information on the shell-filling patterns [29].

To the best of our knowledge, the only relative measures, which have been employed for atoms and ions, aside of the
JTD ones analyzed in the present study, were defined in terms of the Rényi entropy [40]. They are defined as functionals of a
pair of distributions which contain, in some sense, relevant information of the corresponding physical or chemical systems.
The aforementioned applications on atomic systems are the following.

(i) The ‘relative Rényi entropy’ RRE(q) is employed in Ref. [53] by comparing the electron density of a neutral atom to those
of hydrogen-like systems which are considered, in fact, as extremely simplified ‘reference models’. The relative Rényi
entropy of order q embodies the KLDdivergence as a particular case. The finiteness of the relative Rényimeasure requires
the fulfilment of constraints on its characteristic parameter, arising from the long-range behavior of the densities
considered. For the aforementioned reference densities in position space, the constraint is as strong as 0 < q < 1.

(ii) The ‘Jensen–Rényi Divergence’ JRD(q), which has been applied recently [54] in its generalized version to the study of
shell-filling patterns in neutral atoms, their decomposition as a set of subshells as well as the computed densities within
different models. This divergence also requires the aforementioned constraint on its order to perform an appropriate
description of the systems and/or processes considered, in order to guarantee non-negative divergence values.

Note that the Jensen–Rényi divergence JRD(q) constitutes a non-negative similaritymeasure under a very strict constraint
on its order. This is not the case for the Jensen–Tsallis divergence JTD(q), whose non-negativity for arbitrary q arises from
the convex (concave) character of the frequency moments ωq for values of q above (below) unity. So the only constraints on
the value of q arise from the convergence of the involved integrals according to the long- and short-range behaviors of the
distributions under comparison, as also happens with the Rényi-like measures RRE(q) and JRD(q), even for values of q lesser
than one. For the JTD of atomic systems, any q > 0 is allowed for position space densities, while q > 3/8 is required in the
momentum one, as will be discussed in the next section. It is worthy to remark that there are no restrictions from above on
the values of q neither in position nor in momentum spaces.

For our present purposes, i.e. the analysis and comparison of neutral atoms and ionized species throughout the periodic
table in terms of their one-particle densities in both conjugated position and momentum spaces, the domain of definition
is the whole three-dimensional space. In this sense, it should be pointed out that (i) all analytical expressions given in
the present work for a specific space (position or momentum) will also be valid in the conjugated one by replacing the
corresponding variables and distributions, and (ii) for atomic systems in the absence of external fields, it is sufficient to deal
with the spherically averaged densities ρ(r) and γ (p) defined over the non-negative real line [0, ∞).

3. Applications of JTD to atomic ionization processes

As discussed in the previous section, the main feature of the Jensen–Tsallis divergence JTD(q) as compared to other ones
and, particularly, to the Jensen–Shannon divergence JSD, is its capability of enhancing/diminishing the relative contribution
of different regions within the domain of the distributions under comparison. This usefulness is clearly emphasized in the
present study for the divergence analysis of neutral and ionized atomic systems by means of their one-particle densities.
Different values and ranges of q are shown to allow the interpretation of their divergence JTD(q), from a physical point of
view, by crossing a critical q value which enables to get a relevant valence subshell contribution within the domain of the
densities. Such a region provides, in fact, themain information regarding the characteristic shell-filling patterns of the atomic
systems.

In what follows, we will focus on the analysis of atomic ionization processes by means of the Jensen–Tsallis divergence
JTD(q)(XY ) between the one-particle density of the system X , and that of the system Y which results from the ionization
of X . That is, we compare the corresponding densities of the initial and final systems involved in the ionization, either by
removing or by adding one or two electrons, keeping the nuclear charge fixed. Some comments are in order: (i) the systems
considered in the present study are neutral atoms (N) as well as singly charged cations (C) and anions (A), all of them at
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their ground state, (ii) their nuclear charge belongs to the range Z = 1–55, dealing with a global of 150 systems (54 neutral
atoms, 43 anions and 53 cations), (iii) the ionization processes will be labeled according to the initial and final systems, such
as ‘NC’ when removing an electron from a neutral atom giving rise to a singly charged cation, and similarly when the initial
system is an anionwith notation ‘AC’ and ‘AN’; these three ionization processes (NC, AC, AN) are associated to the electron(s)
ejection, but with identical interpretation in terms of electron addition according to the JTD values. And (iv) the whole study
will be done in both position and momentum spaces.

Thenext subsections involve twodifferent types of analyses in termsof JTD. First, the JTD for a fixed value of the parameter
q is considered for the ionization processes through the range of nuclear charges Z = 1–55. This will be done for different
selected values of q, each one corresponding to a curve displayed in order to analyze the dependence of JTD, for fixed q,
on the nuclear charge Z , as well as its correlation with physically relevant quantities such as the first atomic ionization
potential. And second, the magnitude JTD(q)(XY ) is analyzed as a function of q, say f (q), for fixed systems X and Y . This will
be done for several couples (X, Y ) in order to study the main structural properties of the corresponding function f (q), such
as monotonicity, convexity, asymptotic behavior, ordering or fittings, among others.

3.1. Dependence of JTD on the nuclear charge Z

The ionization of a given atom with nuclear charge Z , independently of its global charge, constitutes a process with
consequences apart from themere addition or subtraction of electrons. According to the goal of this work, wewonder about
the charge density of the electronic cloud and the extent to which the ionization modifies its spatial distribution as well
as the momentum distribution of electrons. In this sense it appears very relevant to find a connection, if exists, between
the changes experienced by the one-particle densities and the relevant physical properties within the analysis of ionization
processes. Among them, it is worthy tomention the value of the nuclear charge, the ionization potential and the shell-filling
pattern.

3.1.1. JTD order: physical usefulness and constraints
In order to carry out a quantitative study in the sense described above, it is first necessary to quantify properly the notion

of similarity or divergence between the atomic densities of the system before and after the ionization took place. In doing
so, the Jensen–Tsallis divergence JTD(q) will be considered as a measure of dissimilarity between both distributions. The
availability of the order parameter q allows to establish the comparative quantification according to the relative contribution
of different specific regions within the domain where the distributions are defined, namely the whole three-dimensional
position or momentum space. In this sense, it is worthy to remember that the Tsallis entropy T (q)(ρ) is defined in terms of
the frequency moment ωq(ρ) given by the integral of the function ρq(r), and similarly in momentum space by considering
the function γ q(p). The normalization constraint reads as ω1 = 1 in both cases. Additionally, it is worthy to remark that the
convergence conditions for the finiteness of the frequency moments are verified in position space for arbitrary q > 0, due
to the exponentially decreasing long-range behavior of the charge density. However, the asymptotic behavior γ (p) ∼ p−8

for large p in momentum space [55] restricts the order as q > 3/8 for both ωq and JTD(q) of atomic momentum densities. In
what follows, the subscripts ‘r ’ and ‘p’ will be used according to the space where JTD is considered.

The values and structure of ρq(r) and similarly for γ q(p) are determined, of course, from those of the density itself.
Structural characteristics such as the presence of local extrema or the global spreading are modified, in what concerns their
relevance, when powering the density as done for evaluating ωq. In this sense, opposite modifications occur according to
the cases of the order q being above or below 1. So, a value q > 1 makes the local extrema (maxima and minima) of the
density ρ(r) to be enhanced in ρq(r), while their attenuation is the consequence for order q < 1 giving rise to a more
sparse function. The same argument applies in what concerns the momentum space density. Consequently, the relative
contribution of specific regions to the whole frequency moment varies according to the diverse values of the order.

3.1.2. Structure of neutral–cation JTD curves: physical interpretation
Let us gain insight into the physical conclusions obtained from the Jensen–Tsallis divergence values for the single

ionization of a neutral atom giving rise to a singly charged cation. This quantity, to be denoted by JTD(q)(NC) according to the
notation described above, is displayed in Fig. 1 for both conjugated spaces, namely position (Fig. 1a) andmomentum (Fig. 1b),
for not very large values of the parameter q, bounded as q ≤ 1.4. The particular case q = 1 is included, corresponding to the
Jensen–Shannon divergence in accordance with the equality JTD(1)

= JSD.
The analysis of Fig. 1a (JTD(q)

r between position space densities of the neutral system and its cation) reveals some
remarkable characteristics. First, it is observed that the curves displayed for JTD(q)

r (NC) are perfectly ordered, from above
to below, as q increases. Their shapes appear similar, at least roughly, for low q values. However, their structure strongly
depends on the specific value of q in what concerns number, location and enhancement of local extrema. A similar comment
can be also done regarding the order of magnitude of JTD(q)

r (note the log-scale in the figure). As one should expect, lowering
q makes the relative contribution of the outermost region in both systems for the computation of their JTD(q)

r to increase.
Such a region of the electron density is the most sensitive to the effects of the ionization, as clearly revealed by the highly
structured JTD(q)

r curves for low q. Consequently, this quantity appears to depend strongly on the surrounding of the nuclei
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Fig. 1. Jensen–Tsallis divergence JTD(q) (interval q = 0.2–1.4) among neutral atoms (N) and singly charged cations (C), and atomic ionization potential
AIP for systems with nuclear charge Z = 3–55, in (a) position and (b) momentum spaces, and (c) curve of momentum space JTD(q) with q = 0.4 including
labels for its local maxima. Atomic units are used.

as q increases. That region is governed mostly by the electron–nucleus attractive potential. Consequently, the curves of
divergence for the neutral–cation pair becomes softer as q increases, due to the lower dependence of JTD on the valence
region as compared to that on the nuclear charge.

According to the above discussion in what concerns the valence region, it appears interesting to analyze the extent to
which the JTD(q)

r between the initial and the final system is related to the energy needed to perform the ionization, quantified
by means of the atomic ionization potential (AIP) of the neutral atom. Such a correlation is clearly observed in Fig. 1a which
includes the AIP, where the inverse of its square is displayed. In a global sense, it is shown a good structural agreement
among this curve and those of JTD(q)

r for low q, being not so accurate for transition metals.
The Fig. 1b allows an identical study of the neutral–cation divergence JTD(q)

p (NC) in momentum space, as previously
done in the position one. The results displayed are interpreted again according to the structural characteristics of the atomic
momentum density. Now, the enhancement of the valence region contribution to the value of JTD is achieved for large q,
while that of the nuclear surrounding occurs for low q. In order to justify this opposite trend concerning the dependence
on q, as compared to that in position space, it is worthy to note that the valence subshell is populated by low-momentum
electrons, corresponding to the momentum distribution around its origin at p = 0. The momentum density reaches its
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maximum value at the origin (for most atoms) or very close to it (for the rest of them). The enhancement of this absolute
maximum by means of a large q provokes an increase of the contribution from the valence subshell to JTD(q)

p , as clearly
displayed attending to the structure of the different curves. On the contrary, the curves successively soften as q decreases,
due to the increase of the contribution of inner subshells to the JTD. Additionally, there exists again a strong correlation
between JTD and the ionization potential AIP, with the same functional dependence as in the position space (a shifting
constant has been included in order to avoid overlaps among AIP and JTD curves).

3.1.3. Sensitivity of JTD to the valence subshell features
Let us now discuss in detail the location of extrema for the neutral–cation Jensen–Tsallis divergence JTD(q)(NC) in both

position and momentum spaces, attending to the physical characteristics of the systems involved in the ionization process,
namely a neutral atom and its singly charged cation. Additionally, the correlation between the aforementioned extrema and
those of the atomic ionization potential AIP is also analyzed.

Disregard of the space (r or p) or the value of qwe note that all local maxima of JTD(q)(NC) belong to one of the following
three categories of ionization processes.

1. An ‘s’ subshell becomes empty (Z = 3, 11, 19, 23–24, 27–29, 37, 41–42, 44–45, 47, 55).
2. A ‘p’ subshell becomes empty (Z = 5, 13, 31, 49).
3. A ‘p’ subshell becomes half-filled (Z = 8, 16, 34, 52).

Several observations are in place: (i) whenever the ionization involves alkali metals (Z = 3, 11, 19, 37, 55) an ‘s’ subshell
becomes empty (first set of systems above) whereas for other atoms the valence subshell 3d or 4d is involved, (ii) most
systems with half-filled ‘s’ subshells promote electrons to other types of subshells with the exceptions Z = 23, 27, 28 for
which a completely filled ‘s’ type subshell disappears, and (iii) whenever a ‘p’ type subshell is involved in the ionization it
corresponds to the valence region.

The lists of systems given above enclose all those corresponding to the aforementioned three types of ionization
processes, with very few of them not being associated to a local extremum neither in the AIP nor in the position or
momentum JTD curves, at least for the range of q here considered. In this sense, it should be emphasized the role played by
the ‘s’ electrons as compared to the ‘p’ ones, according to the systems conforming the first set: all of them appear as maxima
of the position space JTD(q)

r for the whole range q = 0.2–1.4, with the only exception of Z = 29 which corresponds to the
period filling up the valence subshell 3d. For that specific case, a value as low as q = 0.2 in JTD(q)

r is required in order to
distinguish a maximum so close to the Z = 27 one.

Concerning the ‘p’ ionization processes, most of them (with the only exception Z = 5) are also revealed as maxima in
some JTD(q)

r curves, that is, for specific q ranges depending on the value of Z considered. So, a givenmaximum at Z disappears
for q’s out from its aforementioned range. For systems losing a ‘p’ subshell, amaximum in JTD(q)

r is displayed for all q up to 1.2
(Z = 49), 1.0 (Z = 31) and 0.8 (Z = 13), while for the half-filled ones (i.e. p4 → p3) the ranges are 0.5 ≤ q ≤ 0.8 (Z = 8),
q ≤ 0.8 (Z = 52), 0.4 ≤ q ≤ 0.6 (Z = 34) and q ≤ 0.5 (Z = 16). The only system losing a ‘d’ subshell as a consequence
of the ionization, namely Z = 39, does not display an extremal JTD value neither in position nor in momentum space,
independently of the order q considered. From this data we conclude that, in spite of the ability of JTD(q)

r to detect almost
all relevant ionization effects, there exists a much higher sensitivity for processes involving ‘s’ electrons as compared to the
‘p’ or ‘d’ ones. Nevertheless, let us emphasize that the previous studies based on the Jensen–Shannon divergence JSD [31]
did not reveal most of the ‘p’ processes here discussed, such as those corresponding to systems Z = 8, 13, 16, 34, 52 which
appear as extrema of the position space Jensen–Tsallis divergence for low enough q below unity. The same comment applies
to the particular case Z = 29, among those suffering ionization in an ‘s’ subshell, as explained above.

3.1.4. Relationship between JTD and the ionization potential
Apart from the physical interpretation of these results in terms of shell structure features, it is also interesting to perform

a study on the correlation between the neutral–cation JTD and the first atomic ionization potential AIP. Attending again
to the extrema of both quantities, it is worthy to remark not only that all minima of the AIP belong to one of the three
‘ionization sets’ enumerated above (independently of being characterized by ‘s’ or ‘p’ type ionization processes), but also
the resemblance with the JTD(q)

r (NC) maxima previously discussed, as shown in Fig. 1a. Additionally, it is found that the
correspondence among AIP and JTD extrema occurs for the whole range q ≤ 1.4 when the ionization involves ‘s’ electrons,
while for narrower ranges for the ‘p’ ones.

A similar comparative analysis performed by means of the momentum space divergence JTD(q)
p (NC) provides again a

notable correlation between its maxima and the AIP minima, but only for the ‘s’ ionization processes (see Fig. 1b). In this
sense, it should be pointed out that (i) for these processes, the systematic (i.e. for all q) appearance of JTDmaxima in position
space is also observed in the momentum one (the observation of maxima, in spite of their existence, becomes increasingly
difficult as q decreases below 0.6; see Fig. 1c for a magnified display of the curve q = 0.4), with very few exceptions for
which a minimum value q ≥ 0.6 is required, and (ii) there is no detection of ‘p’ ionization by means of the momentum JTD,
apart from the only system Z = 8 for the range 1.0 ≤ q ≤ 1.4, as shown in Fig. 1b. A deeper analysis shows that the lower
limit of the detection range for this system extends up to q = 0.8.
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a

b

Fig. 2. Jensen–Tsallis divergence JTD(q) (interval q = 0.5–5.0) among neutral atoms (N) and singly charged cations (C) with nuclear charge Z = 3–55, in
(a) position and (b) momentum spaces. Atomic units are used.

3.1.5. Trends of JTD for large order
Once established the connection among the position and momentum neutral–cation JTD, the value of the atomic

ionization potential and the shell-filling process, we wonder about the preservation of the above discussed patterns when
considering higher values of the parameter q, going beyond the previous upper limit q = 1.4. In order to study the JTD trends
for large q, let us analyze the curves in Fig. 2, corresponding again to JTD(q)(NC) in position (Fig. 2a) andmomentum (Fig. 2b)
spaces, but with a much wider range of values for the parameter, namely 0.5 ≤ q ≤ 5.0. As previously observed, increasing
even more the value of q makes the JTD curves in position space to soften progressively, reaching a monotonic behavior
after crossing a critical q value in between 1.5 and 2.0, and also inverting there (roughly) their ordering as increasing q.
Such a behavior of JTD as a function of the parameter qwill be analyzed in the next subsection. Concerning the momentum
space JTD curves, both the enhancement of their structure as well as their ordering are preserved for higher values of q.
It is consequently concluded that the previous interpretation of the results in Fig. 1 for position and momentum spaces
are corroborated from the analysis of Fig. 2, where the structural features of JTD for large q follow similar trends as those
displayed in Fig. 1 when approaching the value q = 1.4 from below.

3.1.6. Ionization of singly charged anions
Now let us consider other ionization processes, involving a singly charged anion, namely anion–neutral (AN) and

anion–cation (AC) processes by removing one or two electrons, respectively, from the initial anionic system. Similar
conclusions to those obtained from the study of the ionization of neutral atoms (NC) are obtained, inwhat concerns structural
patterns, ordering, fitting and correlation with the ionization potential. For illustration, these JTD values are displayed in
Fig. 3 for the range q ≤ 1.4, in position space for the AC case (Fig. 3a) and in momentum space for AN processes (Fig. 3b).
The opposite trends displayed by JTD in both conjugate spaces as q varies are observed again, as also happens with the other
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a

b

Fig. 3. Jensen–Tsallis divergence JTD(q) among (a) singly charged anions (A) and cations (C) in position space, and (b) singly charged anions (A) and neutral
atoms (N) in momentum space, with nuclear charge Z = 3–55. Atomic units are used.

cases not shown here (position AN andmomentum AC). The whole discussion, as well as the arguments to justify the results
obtained for the NC process, also applies for the AC and AN ones in both spaces, though.

3.2. Dependence of JTD on the Tsallis-parameter q

As previously discussed in detail for the ionization of neutral atoms giving rise to a singly charged cation (NC), the shape,
magnitude and structural characteristics of the different curves in both position andmomentum spaces strongly depend on
the value considered for the q parameter. Consequently it appears relevant to analyze, for a given pair NC, the functional
dependence of the Jensen–Tsallis divergence JTD(q)(NC) on its order q.

Here such a study is carried out for all systemswith nuclear charge Z = 3–55, classified in Fig. 4a and b according to their
valence subshell or, equivalently, the row (period) they belong to in the periodic table. The classification is made as follows:
(i) valence subshell ‘s’ or ‘p’ with principal quantum number n = 2, 3, 4, 5, (ii) transition metals (‘d’ valence subshell), and
(iii) the alkaline Cs (Z = 55) with valence subshell 6s1. The range 0.4 ≤ q ≤ 3.8 is considered for both spaces.

A first look at Fig. 4a allows one to realize that the 53 curves drawn, corresponding to the different NC couples under
study, display extremely similar structural characteristics, attending to the following properties.

(a) The JTD in position space appears systematically as a unimodal and convex function of q. In fact, it is a log-convex
function, by taking into account the logarithmic scale employed in the figure. It is very apparent how the ‘degree of
curvature/convexity’ of the different curves increases, within a given group of the periodic table, as the nuclear charge
increases.
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a

b

Fig. 4. Jensen–Tsallis divergence JTD(q) , as a function of its order q, among neutral atoms (N) and singly charged cations (C) with nuclear charge Z = 3–55,
in (a) position and (b) momentum spaces. Atomic units are used.

(b) All curves possess a unique minimum for a value q = qmin, as provided in Table 1. It is observed that (i) all qmin belong
to the narrow range 1.32–1.51 with the only exception qmin = 1.60 for lithium (Z = 3), (ii) highest values of qmin
are associated to ionization of ‘s’ subshells (e.g. all alkalines and the alkaline-earth Z = 38, as well as the transition
metals Z = 23, 27, 28 for which the ionization involves two ‘s’ electrons, one ejected and the other one moving to
the 3d subshell), and (iii) with the exception of lithium, light atoms (filling up the subshells 2s and 2p with principal
quantum number n = 2) display lower qmin values as compared to those for medium or heavy atoms, i.e. with n ≥ 3
valence subshells. At times, the range of qmin values is extremely narrow within a given group or period, as also shown
in Table 1. Let us also note that the ‘double-s ionization’ cases are associated to qmin = 1.51, the highest value observed
in the table apart from that of lithium.

(c) The existence of a ‘crossing interval’, which could be roughly associated to a ‘critical q’ where all position space JTD
curves display an almost identical value is clearly observed. A detailed analysis of the JTD intervals for a given q allows
to assert that the JTD of order q = 2.50 belongs to the interval

JTD(2.50)
r (NC) = 0.029 ± 0.005 (7)

for all atomic pairs Z = 3–55. In order to have an idea of the narrowness of such an interval, let us note that the ratio
between the maximum and minimum JTD values at that q is as low as 1.2, while the corresponding ratio for the whole
JTD-axis is 106. The reason (if exists) for this behavior at that particular value still remains to be understood.

Let us analyze the results provided in Fig. 4b, corresponding to the momentum space functional JTD(q)
p (NC). It is first

observed that most curves display a convex and monotonically decreasing trend, with few exceptions corresponding to
(i) very light atoms (solid lines on the top) for which a unique minimum appears again, consequently with the unimodal
shape, and (ii) some heavy atoms forwhich convexity is lost within a small-sized region. It is also remarkable that the almost
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Table 1
Value qmin of the Jensen–Tsallis order q for which the neutral–cation divergence in position space JTD(q)

r (NC) reaches its minimum value, along groups
IA–VIIIA (principal quantum number from n = 2 to n = 5, 6) and valence subshells 3d–4d. Atomic units are used.

Group n = 2 n = 3 n = 4 n = 5 n = 6

IA 1.60 1.49 1.45 1.51 1.43
IIA 1.39 1.42 1.40 1.51
IIIA 1.32 1.41 1.42 1.35
IVA 1.32 1.39 1.40 1.40
VA 1.32 1.37 1.38 1.43
VIA 1.35 1.37 1.38 1.43
VIIA 1.34 1.35 1.37 1.41
VIIIA 1.33 1.34 1.36 1.43

Subshell 4s23d1 4s23d2 4s23d3 4s13d5 4s23d5 4s23d6 4s23d7 4s23d8 4s13d10 4s23d10

3d 1.41 1.41 1.51 1.45 1.42 1.42 1.51 1.51 1.45 1.42

Subshell 5s24d1 5s24d2 5s14d4 5s14d5 5s24d5 5s14d7 5s14d8 5s04d10 5s14d10 5s24d10

4d 1.35 1.40 1.44 1.43 1.41 1.43 1.43 1.37 1.43 1.41

linear behavior of all curves for large q, translates into a long-range functional dependence as

JTD(q)
p (NC) ∼ exp(−αq) (8)

by taking into account the logarithmic scale employed. The constant α in the exponential is determined according to the
slope of the curve in the large q limit, with different values for each NC couple as clearly observed in the figure, displaying
an increasing tendency as the systems considered become heavier.

Such a decay is obtained from the analysis of the numerical results, not necessarily arising (to the best of our knowledge)
as a consequence of any physical property, and consequently the expression provided in Eq. (8) does not constitute a
theoretical rigorous result. Additional research regarding a physical reason for such a behavior still remains to be carried out.

4. Conclusions

We have proposed the non-extensive Jensen–Tsallis divergencemeasure JTD, based on informational theoretic methods,
to study the discrepancies among atomic species involved in ionization processes. Such a non-extensivity is measured by
an order parameter q, whose usefulness mainly arises from its capability to modify the relative contributions of relevant
specific regions of the electronic densities under comparison.

An exhaustive analysis of different ionization processes, by taking into account the atomic subshell structure and the
dependence of JTD on the nuclear charge, has been carried out. It is shown that JTD captures relevant differences in any of the
conjugated spaces,which is not the case of other divergences employed in the previous studieswithmultielectronic systems.

In particular, the extrema of the Jensen–Tsallis divergence have been deeply correlated to those of the most important
experimental quantity related to this type of processes, the atomic ionization potential. Additionally, the dependence of JTD
on its characteristic parameter q has been analyzed in detail.

We have shown the extent to which some information-theoretic tools, such as the Jensen–Tsallis divergence, have an
important versatility and predictive power when being compared to experimentally accessible quantities. This work on
atomic ionization processes constitutes a benchmark, in order to deal with more complex and strongly organized systems.

The employment of the JTD functional as a measure of divergence can be applied not only to compare a couple of
probability distributions, but also an arbitrary number of them, even assigning different weights to each distribution,
apart from the weighting effect of the JTD characteristic parameter. Further, applications of this generalized divergence
are actually being carried out, including comparisons among distributions computed within different models for a given
system, or among parts or components of the global system.

On the other hand, the universality and generality of the techniques here employed allow the extension of this study
to many relevant physical and chemical systems or processes such as, for instance, molecules of special interest in
nanotechnology or pharmacology, as well as the initial and final products in chemical reactions. For all those systems,
it appears interesting to consider also additional distribution functions as well as physically relevant quantities defined
in terms of the one-particle densities. Such is the case, for instance, of their gradients and Laplacians, as well as the
Fourier transforms of the position and momentum space densities, namely the form factor and the reciprocal form factor,
respectively, which in fact constitute two of the main sources of experimental information on the atomic one-particle
densities. A similar study can be done with the Compton profile, an experimentally accessible quantity whose derivative
is determined by the momentum density occurs with the Compton profile. The results of those studies are being currently
investigated in our laboratories and they will be provided elsewhere.
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