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The Fisher–Shannon and LMC shape complexities and the Shannon–disequilibrium,

Fisher–Shannon and Fisher–disequilibrium information planes, which consist of two

localization–delocalization factors, are computed in both position and momentum spaces

for the one-particle densities of 90 selected molecules of various chemical types, at the

CISD/6-311++G(3df,2p) level of theory. We found that while the two measures of

complexity show general trends only, the localization–delocalization planes clearly exhibit

chemically significant patterns. Several molecular properties (energy, ionization potential,

total dipole moment, hardness, electrophilicity) are analyzed and used to interpret and

understand the chemical nature of the composite information–theoretic measures above

mentioned. Our results show that these measures detect not only randomness or localization

but also pattern and organization.

1. Introduction

There has been a great interest in the last few years in applying

complexity tools to study numerous chemical and biological

phenomena. Complexity measures are understood as general

indicators of pattern, structure, and correlation in systems or

processes. Several alternative mathematical notions have been

proposed for quantifying the concepts of complexity and

information, including the algorithmic information theory of

Kolmogorov and Chaitin,1 the classical information theory of

Shannon and Weaver,2 Fisher information,3 and the logical4

and the thermodynamical5 depths, among others. Some of

them share rigorous connections with others as well as with

Bayes and information theory.6 The term complexity possesses

many different meanings: algorithmic, geometrical, computa-

tional, stochastic, effective, statistical, and structural among

others and it has been utilized in many fields: dynamical

systems, disordered systems, spatial patterns, language, multi-

electronic systems, cellular automata, neuronal networks,

self-organization, DNA analyses, social sciences, among

others.7,8

Although there is no general agreement about the definition

of complexity, its quantitative characterization has been an

important subject of research and it has received considerable

attention.9,10 The characterization of complexity is not unique

and the utility of each definition depends on the type of

system or process, the level of the description, and the scale

of the interactions among elementary particles, atoms,

molecules, biological systems, etc. Fundamental concepts such

as uncertainty or randomness are frequently employed in the

definitions of complexity, although some other concepts such

as clustering, order, localization or organization might be also

important for characterizing the complexity of systems or

processes.

It is not clear how the aforementioned concepts, such as

disorder or randomness, might intervene in the definitions so

as to quantitatively assess the complexity of the system.

However, recent proposals have formulated this quantity as

a product of two factors, taking into account order/disequilibrium

and disorder/uncertainty, respectively. This is the case of the

definition of López–Ruiz–Mancini–Calbet (LMC) shape

complexity9–12 that, like others, satisfies the boundary condi-

tions by reaching its minimal value in the extreme ordered and

disordered limits. The LMC complexity measure has been

criticized,11 modified12 and generalized13 leading to a useful

estimator which satisfies several desirable properties of

invariance under scaling, translation, and replication.14,16

The utility of this improved complexity has been verified in

many fields8 and allows reliable detection of periodic, quasi-

periodic, linear stochastic, and chaotic dynamics.14–16 The

LMC measure is constructed as the product of two important

information-theoretic quantities (see below): the so-called

disequilibriumD (also known as self-similarity17 or information

energy18), which quantifies the departure of the probability

density from uniformity15 and the Shannon entropy S, which
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is a general measure of randomness or uncertainty of the

probability density.2 Both global quantities are closely related

to the measure of spread of a probability distribution.

On the other hand, the Fisher–Shannon product FS has

been employed as a measure of atomic correlation19 and

more recently it has been defined as a statistical complexity

measure,20 in terms of the Shannon and Fisher informa-

tion measures, so as to combine both, the global character

(depending on the distribution as a whole) and the local one

(in terms of the gradient of the distribution), respectively,

while preserving the aforementioned desirable properties. The

Fisher information I itself plays a fundamental role in different

physical problems, such as the derivation of the non-relativistic

quantum-mechanical equations by means of the minimum I

principle, as well as the time-independent Kohn–Sham equa-

tions and the time-dependent Euler equation.21 More recently,

the Fisher information has been employed also as an intrinsic

accuracy measure for specific atomic models and densities22 as

well as for general quantum-mechanical central potentials.23

Also, the concept of phase-space Fisher information has been

analyzed for hydrogen-like atoms and the isotropic harmonic

oscillator,24 where both position and momentum variables are

included.

The FS complexity is defined in terms of the product of the

Fisher information I, and the power entropy, J—explicitly

defined in terms of the Shannon entropy (see below)—which is

chosen to preserve the general complexity properties. As

compared to the LMC complexity, aside of the explicit

dependence on the Shannon entropy, the Fisher–Shannon

complexity replaces the disequilibrium global factor D by the

Fisher local one to quantify the level of organization of a given

system. Several applications have been carried out, parti-

cularly the ones concerning with atomic distributions in

position and momentum spaces, where the FS complexity

is shown to provide relevant information on atomic shell

structure and ionization processes.20,25

The goal of the present study is to perform an information–

theoretical analysis by use of complexity measures in order to

analyze and quantify the information content of a set of ninety

molecular systems of different chemical type, as a probe for

studying statistical complexity. Focus will be set on the

recognition of patterns of uncertainty, order and organization

by employing several molecular properties such as energy,

ionization potential, hardness and electrophilicity. The above

mentioned complexity measures and their associated informa-

tional planes will be analyzed in terms of the chemical properties,

number of electrons and geometrical features.

The organization of the paper is as follows: in section 2 we

defined the complexity measures along with their information-

theoretic components and the chemical properties employed

throughout the study. In section 3 we compute the informa-

tion components as well as the Fisher–Shannon and LMC

complexities. These information functionals of the one-particle

density are computed in position (r) and momentum (p)

spaces, as well as in a joint product space (rp) that contains

more complete information about the system. Besides, the

Fisher–Shannon (I–J) and the disequilibrium–Shannon (D–L)

planes are studied to identify both, pattern and organization.

In section 4, some conclusions are given.

2. Information-theoretic measures, complexities

and chemical properties

In the independent-particle approximation, the total density

distribution in a molecule is a sum of contribution from the

electrons in each of the occupied orbitals. This is the case in

both r-space and p-space, position and momentum respec-

tively. In momentum space, the total electron density, g(~p), is
obtained through the molecular momentals (momentum-space

orbitals) ji(~p), and similarly for the position-space density,

r(~r), through the molecular position-space orbitals fi(~r). The

momentals can be obtained by three-dimensional Fourier

transformation of the corresponding orbitals (and conversely)

preserving their normalization.

ji(p) = (2p)�3/2
R
dr exp(�ip�r)fi(r) (1)

Standard procedures for the Fourier transformation of posi-

tion space orbitals generated by ab initio methods have been

described.26 The orbitals employed in ab initio methods

are linear combinations of atomic basis functions and since

analytic expressions are known for the Fourier transforms

of such basis functions,27 the transformations of the total

molecular electronic wavefunction from position to momen-

tum space is computationally straightforward.28

As we mentioned in the introduction, the LMC complexity

is defined through the product of two relevant information–

theoretic measures. So that, for a given probability density in

position space, r(~r), the C(LMC) complexity is given by:

Cr(LMC) = Dr exp(Sr) = DrLr (2)

where Dr is the disequilibrium

Dr =
R
r2(r) dr (3)

and S is the Shannon entropy

Sr = �
R
r(r) ln r(r) d3r (4)

from which the exponential entropy Lr = exp(Sr) is defined.

Similar expressions for the LMC complexity measure in the

conjugated momentum space might be defined for a distri-

bution g(~p)

Cp(LMC) = Dpexp(Sr) = DpLp (5)

It is important to mention that the LMC complexity of a

system must comply with the following lower bound:29

C(LMC) Z 1 (6)

The FS complexity in position space, Cr(FS), is defined in

terms of the product of the Fisher information

Ir ¼
Z

rðrÞjr
!
lnrðrÞj2 d3r ð7Þ

and the power entropy in position space, Jr

Jr ¼
1

2pe
expð2

3
SrÞ; ð8Þ

which depends on the Shannon entropy defined above. So

that, the FS complexity in position space is given by

Cr(FS) = Ir�Jr (9)
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and similarly

Cp(FS) = Ip�Jp (10)

in momentum space.

Let us remark that the factors in the power Shannon

entropy J are chosen to preserve the invariance under scaling

transformations, as well as the rigorous lower bound.30

C(FS) Z n (11)

with n being the space dimensionality, thus providing a

universal lower bound to FS complexity. The definition in

eqn (8) corresponds to the particular case n = 3, the exponent

containing a factor 2/n for arbitrary dimensionality.

It is worthwhile noting that the aforementioned inequalities

remain valid for distributions normalized to unity, which is the

choice that it is employed throughout this work for the three-

dimensional molecular case.

Aside of the analysis of the position and momentum

information measures, we have considered it useful to study

these magnitudes in the product space, rp-space, characterized

by the probability density f(~r, ~p) = r(~r)g(~p), where the com-

plexity measures are defined as

Crp(LMC) = DrpLrp = Cr(LMC)Cp(LMC), (12)

and

Crp(FS) = IrpJrp = 2peCr(FS)Cp(FS), (13)

where last equality arises from the definition of Jrp as the

power entropy of Srp = Sr + Sp. From the above two

equations, it is clear that the features and patterns of both

LMC and FS complexity measures in the product space will be

determined by those of each conjugated space. However, the

numerical analyses carried out in the next section, reveal that

the momentum space contribution plays a more relevant role

as compared to the one in position space.

With the purpose of organizing and characterizing the com-

plexity features of the molecular systems under study, we have

computed several reactivity properties such as the ionization

potential (IP), the total dipole moment, the hardness (Z) and the

electrophilicity index (o). These properties were obtained at

the Hartree–Fock level of theory (HF) in order to employ

Koopmans’ theorem,31 for relating the first vertical ionization

energy and the electron affinity to the HOMO and LUMO

energies, which are necessary to calculate the conceptual DFT

properties. The hardness is obtained within this framework32

through

Z ¼ 1

2S
� eLUMO � eHOMO

2
ð14Þ

where e denotes the frontier molecular orbital energies and S

stands for the softness of the system. It is worth mentioning that

the factor 1/2 in eqn (14) was put originally to make the hardness

definition symmetrical with respect to the chemical potential33

m ¼ @E

@N

� �
nðrÞ
¼ eLUMO þ eHOMO

2
ð15Þ

although it has been recently disowned.34 In general terms, the

chemical hardness and softness are good descriptors of chemical

reactivity. The former has been employed34,35 as a measure of

the reactivity of a molecule in the sense of the resistance to

changes in the electron distribution of the system, i.e., molecules

with larger values of Z are interpreted as being the least reactive

ones. In contrast, the S index quantifies the polarizability of the

molecule36 and hence soft molecules are more polarizable and

possess predisposition to acquire additional electronic charge.37

The chemical hardness Z is a central quantity for use in the

study of reactivity through the hard and soft acids and bases

principle.38

The electrophilicity index,39 o, allows a quantitative classifi-
cation of the global electrophilic nature of a molecule within a

relative scale. Electrophilicity index of a system in terms of its

chemical potential and hardness is given by the expression

o ¼ m2

2Z
ð16Þ

The electrophilicity is also a good descriptor of chemical

reactivity, which quantifies the global electrophilic power

of the molecules32 (predisposition to acquire an additional

electronic charge).

3. LMC and FS complexity measures of molecular

systems

The molecular set chosen for the study includes different types of

chemical organic and inorganic systems (aliphatic and aromatic

hydrocarbons, alcohols, ethers, ketones). The set represents

a variety of closed shell systems, radicals, isomers as well

as molecules with heavy atoms such as sulphur, chlorine,

magnesium and phosphorous. The geometries needed for the

single point energy calculations above referred were obtained

from the Computational Chemistry Comparison and Benchmark

DataBase from NIST.40 The molecular set might be organized

by isoelectronic groups as follows:

N = 10: NH3 (ammonia)

N = 12: LiOH (lithium hydroxide)

N= 14: HBO (boron hydride oxide), Li2O (dilithium oxide)

N = 15: HCO (formyl radical), NO (nitric oxide)

N= 16: H2CO (formaldehyde), NHO (nitrosyl hydride), O2

(oxygen)

N = 17: CH3O (methoxy radical)

N= 18: CH3NH2 (methyl amine), CH3OH (methyl alcohol),

H2O2 (hydrogen peroxide), NH2OH (hydroxylamine)

N = 20: NaOH (sodium hydroxide)

N = 21: BO2 (boron dioxide), C3H3 (radical propargyl),

MgOH (magnesium hydroxide), HCCO (ketenyl radical)

N = 22: C3H4 (cyclopropene), CH2CCH2 (allene),

CH3CCH (propyne), CH2NN (diazomethane), CH2CO (ketene),

CH3CN (acetonitrile), CH3NC (methyl isocyanide), CO2

(carbon dioxide), FCN (cyanogen fluoride), HBS (hydrogen

boron sulfide), HCCOH (ethynol), HCNO (fulminic acid),

HN3 (hydrogen azide), HNCO (isocyanic acid), HOCN

(cyanic acid), N2O (nitrous oxide), NH2CN (cyanamide)

N = 23: NO2 (nitrogen dioxide), NS (mononitrogen mono-

sulfide), PO (phosphorus monoxide), C3H5 (allyl radical),

CH3CO (acetyl radical)
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N = 24: C2H4O (ethylene oxide), C2H5N (aziridine), C3H6

(cyclopropane), CF2 (difluoromethylene), CH2O2 (dioxirane),

CH3CHO (acetaldehyde), CHONH2 (formamide), FNO

(nitrosyl fluoride), H2CS (thioformaldehyde), HCOOH

(formic acid), HNO2 (nitrous acid) NHCHNH2 (amino-

methanimine), O3 (ozone), SO (sulfur monoxide)

N = 25: CH2CH2CH3 (n-propyl radical), CH3CHCH3

(isopropyl radical), CH3OO (methylperoxy radical), FO2

(dioxygen monofluoride), NF2 (difluoroamine radical),

CH3CHOH (ethoxy radical), CH3S (thiomethoxy)

N = 26: C3H8 (propane), CH3CH2NH2 (ethylamine),

CH3CH2OH (ethanol), CH3NHCH3 (dimethylamine),

CH3OCH3 (dimethyl ether), CH3OOH (methyl peroxide),

F2O (difluorine monoxide)

N = 30: ClCN (chlorocyanogen), OCS (carbonyl sulfide),

SiO2 (silicon dioxide)

N= 31: PO2 (phosphorus dioxide), PS (phosphorus sulfide)

N = 32: ClNO (nitrosyl chloride), S2 (sulfur diatomic), SO2

(sulfur dioxide)

N = 33: OClO (chlorine dioxide), ClO2 (chlorine dioxide)

N = 34: CH3CH2SH (ethanethiol), CH3SCH3 (dimethyl

sulfide), H2S2 (hydrogen sulfide), SF2 (sulfur difluoride)

N = 38: CS2 (carbon disulfide)

N=40: CCl2 (dichloromethylene), S2O (disulfur monoxide)

N = 46: MgCl2 (magnesium dichloride)

N = 48: S3 (sulfur trimer), SiCl2 (dichlorosilylene)

N = 49: ClS2 (sulfur chloride)

The electronic structure calculations performed in the

present study for the whole set of molecules were obtained

with the Gaussian 03 suite of programs41 at the CISD/

6-311++G(3df,2p) level of theory. For this set of molecules

we have calculated all information and complexity measures

defined in the previous section, i.e., S,D, I, J, C(LMC), C(FS),

in both position and momentum spaces as well as in the

product space by employing software developed in our labo-

ratory along with 3D numerical integration routines42 and the

DGRID suite of programs.28 As mentioned above, the

values of the conceptual DFT properties have been obtained

at the HF/6-311++G(3df,2p) level of theory. All calculated

quantities in this study are given in atomic units, and their

values can be consulted in the ESIw.

3.1 Complexity measures

In contrast with the atomic case, where the complexities

possess a high level of natural organization provided by

periodicity properties,20 the molecular case requires some sort

of organization/classification which could be affected by many

factors (structural, energetic, entropic, etc.). Thus we have

analyzed the molecular complexities, C(LMC) and C(FS), as

functions of the main chemical properties of interest, i.e., the

total energy, the dipole moment, the ionization potential, the

hardness and the electrophilicity, establishing a link between

the different complexity measures and the chemical properties

so as to provide an insight into their organization, order and

uncertainty features.

In Fig. 1, we have plotted the C(FS) and C(LMC) as

functions of the total energy of the molecules in the product

space (rp). Firstly, it may be observed from this figure

that both complexity measures possess a similar behavior.

Secondly, a general trend is observed in that molecules with

higher energy correspond to higher complexity values, for

both C(LMC) and C(FS), as compared to those which

possess lower energies. Note that, according to the set of

molecules studied in this work, they are grouped together

according to four energy intervals: E>�400, EA [�700,�400],
E A [�1000, �700), and E o �1000. In this figure we have

indicated those molecules which correspond to the maximum

and minimum values of Crp(FS) within each group, noting that

these molecules possess also maximum Crp(LMC) values. It is

worth noting that the maximum values correspond with

molecules that contain one heavy atom at least and that the

minimum complexities correspond with molecules having

similar chemical geometry. In view of the results shown in

this figure, it seems that the molecular complexity is also affected

by several other chemical factors, such as the molecular

structure (e.g., lower complexity values in each group, energy-

wise, corresponds with molecules of similar geometry),

composition (e.g., higher complexity corresponds with

molecules containing heavy atoms), chemical functionality,

reactivity, etc. Note that each complexity consists of two

factors, one of them always defined in terms of the Shannon

entropy S, whereas the other characterizes more specifically

the corresponding complexity measure in terms of a global

quantity (disequilibrium D) for Crp(LMC) and a local one

(Fisher information I) for Crp(FS). Nevertheless, there are no

relevant structural differences between both complexities,

either based on D or I.

In Fig. 2 we have plotted the complexity values for the

Crp(LMC) and Crp(FS) measures as a function of the number

of electrons in the product space (note that both complexity

measures are in a double-X axis graph). We may observe

from Fig. 2 that both complexity measures behave in a similar

fashion, i.e., molecules with low number of electrons (N o 26)

possess low complexities whereas molecules with larger number

of electrons (N > 26) possess larger complexity values. A few

exceptions may be noted from Fig. 2, i.e., molecules with low

number of electrons and higher complexities correspond to

Fig. 1 C(LMC) (red circles) and C(FS) (blue triangles) complexities

as a function of the total energy (a.u.) for the set of ninety molecules in

the product space (rp).
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those containing heavier atoms: CH3S, MgOH, NS and HBS

for the Crp(LMC), and MgOH and CH3S for the Crp(FS), as

we have observed before in terms of the analysis based on the

total energy. It is worth mentioning, similarly to the case of

the results in Fig. 1, that several other factors may affect the

molecular complexities as it was discussed above.

In order to analyze the influence of the chemical reactivity

on the complexities of the set of studied molecules, we have

plotted in Fig. 3 the hardness values vs. the LMC and FS

complexities in the product space (rp) for the studied set of

molecules. The general observations are that the LMC and FS

complexities behave in the same way, both indicating a clear

relationship with the hardness and hence with the chemical

reactivity of the molecules. Besides, it might be observed that

as the hardness increases, the complexity values decreases.

This fact illustrates that molecules that are more stable

chemically (resistance to changes in the electron distribution)

possess low complexity values. Thus, the chemical reactivity

seems to be directly related to complexity in that higher

C(LMC) and C(FS) correspond with more reactive molecules,

with very few exceptions which again correspond to systems

with heavier atoms as we mentioned before (CH3S, PS, MgOH

for C(LMC) and ClS2, MgOH, S3 for C(FS)). It is worth

mentioning that a similar analysis for the total dipole moment

(in Table TS1, ESIw) might be performed and so we noted that

molecules with higher complexity possess lower values for the

dipole moment, i.e. those that are more polarizable and hence

the most reactive (which in this case, correspond to the

molecules containing heavier atoms).

The ionization potential (IP) is now employed as an indicator

of the chemical stability of the molecules in relation with their

complexities. In Fig. 4 it may be observed that molecules with

higher IP values (more stable ones) are located at the right side

of the figure, noting that stability is related with the molecular

complexities in that higher LMC and FS complexities corres-

pond with more reactive molecules (which are less stable). The

electrophilicity index is a useful indicator of chemical reactivity

quantifying the global electrophilic power of the molecules,

as mentioned above. Thus, we have found useful to study the

complexities, C(LMC) and C(FS), as a function of the electro-

philicity in the product space (see Table TS1, ESIw). In

contrast with the other analyzed properties, the electrophilicity

(affected by both, the hardness and the chemical potential,

eqn (16)), displays a more complicated behavior in that

molecules with lower values of complexity are associated with

molecules possessing lower electrophilicity, except for the

NaOH molecule which is highly electrophilic.

It is noteworthy that all conclusions obtained from the

analysis performed in the product space (rp) remain valid also

when considering the momentum space (p) alone. Nevertheless,

most of the structural features observed in the figures

are better displayed in the product than in the momentum

space, as a consequence of the joint effect arising when dealing

simultaneously with the position variable, essentially by shifting

away consecutive curves.

3.2 Information planes

In the search of pattern and organization we have found useful

to analyze the set of studied molecules, through features such

as their energy and the number of electrons, by plotting the

Fig. 2 C(LMC) (red circles) and C(FS) (blue triangles) complexities

as a function of the number of electrons (N) for the set of ninety

molecules in the product space (rp).

Fig. 3 C(LMC) (red circles) and C(FS) (blue triangles) complexities

as a function of the hardness (a.u.) for the set of ninety molecules in

the product space (rp).

Fig. 4 C(LMC) (red circles) and C(FS) (blue triangles) complexities

as a function of the ionization potential (a.u.) for the set of ninety

molecules in the product space (rp).
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contribution of each one of the information measures D (order)

and L (uncertainty) to the total LMC complexity, and similarly

with I (organization) and J (uncertainty) to the FS complexity.

Thus, in Figs. 5 and 6 we have analyzed the behavior of the

energy in the D–Lp and Ip–Jp planes, and in Fig. 7 and 8 the

effect of the number of electrons in the Dr–Lr and Ip–Jp planes

is displayed. For the energetic analysis of the information

planes, we have found more useful to depict the corresponding

ones to the momentum space, since the momentum density is

directly related to the energy. In Fig. 5, we have plotted

(in a double-logarithmic scale) the Dp–Lp plane for the set of

molecules which are grouped together and labeled according

to the energy intervals observed in Fig. 1, i.e., E400 for

molecules with E > �400 a.u., E700 for E A [�700, �400]
a.u., E1000 for E A [�1000, �700) a.u., and E1400 for molecules

with E o �1000 a.u. From Fig. 5 it is observed that the D–L

plane is clearly separated into two regions, according to the

D�L Z 1 inequality29 (valid for position, momentum as well

as product spaces), and the region below the line (equality)

corresponds with the forbidden region. Parallel lines to this

bound represent isocomplexity lines, showing that an increase

(decrease) in uncertainty, Lp, along them is compensated by a

proportional decrease (increase) of order (disequilibrium Dp),

and higher deviations from this frontier are associated to

greater LMC complexities. The general observation from

this set of molecules is that groups with different energies

are somewhat separated into different regions, i.e., molecules

with higher energies possess the highest values of Jp
(more uncertainty), whereas for the disequilibrium values these

are distributed over a wider range of values for all the groups,

energy-wise. So it seems that the energy is related to the

uncertainty of the systems either for Lp in Fig. 5 and Jp in

Fig. 6 (discussed below). An interesting feature that is

noteworthy from this figure is that low energy molecules

behave more linearly and locate closer to the bound than

higher energy molecules, i.e., more energetic molecules seem to

deviate from the isocomplexity lines. This observation

deserves a deeper study with a larger number of molecules

and with a wider range of energies.

In Fig. 6 we have plotted (in a double-logarithmic scale) the

Ip–Jp plane for the same set of groups, energy-wise. At this

point it is worth mentioning that there is a rigorous lower

bound to the associated FS complexity, given in eqn (11),

which is C(FS) = I�J Z constant (the constant being 3 for the

conjugated spaces and 18pe for the product space as it was

explained above in relation with eqn (13)). Fig. 6 indicates a

division of the Ip–Jp plane into two regions where the straight

line I�J = constant (drawn in the plane) divides it into an

‘‘allowed’’ (upper) and a ‘‘forbidden’’ (lower) part. Similar

observations as those discussed in Fig. 5 apply also in this case,

Fig. 5 Disequilibrium–Shannon plane (D–L) in momentum space for

energetically differents groups: E400 for molecules with E > �400
(red circles), E700 for E A [�700, �400] (blue triangles), E1000 for

E A [�1000, �700) (green stars), and E1400 for molecules with

E o �1000 (magenta box). Double-logarithmic scale. Lower bound

(Dp�LP = 1) is depicted by the black line.

Fig. 6 Fisher–Shannon plane (I–J) in momentum space for energe-

tically differents groups: E400 for molecules with E > �400
(red circles), E700 for E A [�700, �400] (blue triangles), E1000 for

E A [�1000, �700) (green stars), and E1400 for molecules with

E o �1000 (magenta box). Double-logarithmic scale. Lower bound

(Ip�Jp = 3) is depicted by the black line.

Fig. 7 Disequilibrium–Shannon plane (D–L) in position space of the

isoelectronic series of 22 (red circles), 24 (blue triangles), 25 (green

stars), and 26 (magenta box) electrons. Double-logarithmic scale.

Lower bound (Dr�Lr = 1) is depicted by the black line. Molecules with

larger energy values are shown at the upper left corner of the Figure.
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i.e. those groups with larger energy values possess larger

uncertainty as measured by the Jp values, whereas for

organization, as measured through Ip, a wide spread is

observed over the studied range of values. A similar conjecture

as the one discussed above for the Dp–Lp plane might apply in

this case in that lower energy molecules seems to obey a linear

behavior (isocomplexity lines).

Our analysis continues with the study of the information

planes for the isoelectronic series. In Fig. 7 the components of

the LMC complexity in position space are depicted (in a

double-logarithmic scale), for the series with N = 22, 24, 25

and 26 electrons, denoted by N22, N24, N25 and N26 in the

figure, respectively, in the Dr–Lr plane. In this case each

isoelectronic series follows a trajectory which shows a linear

behaviour (similar trends are observed in momentum space

Dp–Lp) with correlation coefficients close to one: N22 (0.989),

N24 (0.991), N25 (0.989), N26 (0.981). Systems that are not in

the isocomplexity lines belong to molecules with higher

complexity values (in Table TS2, ESIw) which possess heavier

atoms. This behavior means that in position space, higher

complexity is due to higher disequilibrium (higher order) and

lower uncertainty Lr. It is interesting to mention that the

opposite behavior is observed in momentum space (not

depicted), i.e., higher complexity values correspond with lower

disequilibrium and higher uncertainty. It is also worthy to note

that all isocomplexity lines, representing the isoelectronic

molecular series with N = 22, 24, 25 and 26 electrons, show

large deviations (higher LMC complexities) from the rigorous

lower bound as it may be observed from Fig. 7 in position space.

Proceeding with the analysis of pattern and organization for

the isoelectronic series, we have analyzed the contribution of

each one of the information measures I and J to the total FS

complexity. This is done in Fig. 8 for some of the isoelectronic

molecular series with N = 22, 24, 25 and 26 electrons in

the momentum space through the information Ip–Jp plane.

Parallel lines to the constant represent isocomplexity lines,

and higher deviations from this frontier are associated

with greater FS complexities. Over these lines, an increase

(decrease) in uncertainty (J) gets balanced by a proportional

decrease (increase) of accuracy (I). Such a parallel shape is

displayed by all isoelectronic series in momentum space, as

shown in Fig. 8, and we have verified their linear behaviour by

a linear regression analysis with the following correlation

coefficients: N22 (0.989), N24 (0.994), N25 (0.993), N26

(0.998). Notice that systems that are not in the isocomplexity

lines belong to higher complexity molecules as we have

previously discussed. They possess heavier atoms, as observed

from Fig. 8, possessing higher values of Jp (more uncertainty)

which provokes their higher complexity. It is also worth noting

that all isocomplexity lines representing the same isoelectronic

molecular series show large deviations (higher FS complexities)

from the rigorous lower bound I�J Z 3 as it may be observed

from the figure. On the other hand, in the conjugated position

space Ir–Jr (not depicted), we may observe a similar trend, i.e.,

each isoelectronic series possess a linear behaviour except for

the molecules with highest complexity values which are not on

the isocomplexity lines, with lower values of Jr and higher

values of Ir in contrast with Fig. 8.

Notwithstanding that not all information products are good

candidates to form complexity measures, i.e., preserving the

desirable properties of invariance under scaling, transla-

tion and replication, we have found interesting to study the

plane I–D, with the purpose of analyzing patterns of order–

organization. Note that this product fails to be invariant under

scale transformation.14 Thus, in Fig. 9 and 10 we have plotted

the I–D planes for the set of groups, energy-wise, studied

above, and for some of the isoelectronic series with N = 22,

24, 25 and 26 electrons, respectively.

It can be observed from Fig. 9 that there exists a relation-

ship between order (disequilibrium) and organization (Fisher

information) for the set of studied molecules in momentum

space within the Ip–Dp plane, i.e., that molecules with higher

values of Dp possess higher Ip values. It is apparent from the

figure that a linear relationship between I and D is obeyed for

Fig. 8 Fisher–Shannon plane (I–J) in momentum space of the

isoelectronic series of 22 (red circles), 24 (blue triangles), 25 (green

stars), and 26 (magenta box) electrons. Double-logarithmic scale.

Lower bound (Ip�Jp = 3) is depicted by the black line. Molecules with

larger energy values are shown at the upper left corner of the Figure.

Fig. 9 Fisher–Disequilibrium plane (I–J) in momentum space

for energetically different groups: E400 for molecules with E > �400
(red circles), E700 for E A [�700, �400] (blue triangles), E1000 for

E A [�1000, �700) (green stars), and E1400 for molecules with

E o �1000 (magenta box). Double-logarithmic scale.
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these groups of energetically similar molecules. This linear

behavior is observed for all molecules of the lower energetic

group except for MgOH which is one of the higher complexity

ones in terms of C(LMC) and C(FS). To the best of our

knowledge, this apparent linear behavior between D and I has

not been studied before.

A similar linear behavior might be observed from Fig. 10 in

the corresponding Ir–Dr plane, showing a positive slope for all

the isoelectronic molecular series, which means that as the

molecular order increases (higher D) their organization also

increases (higher I). Interestingly, Fig. 10 shows that the I–D

plane is useful to detect molecular patterns of order–organization

except for molecules of higher complexity (SO, HBS, H2CS,

CH3S) which do not fit with such a linear description.

Finally, it is illustrative to analyze the particular case of

three isoelectronic isomers: HCNO (fulminic acid), HNCO

(isocyanic acid) and HOCN (cyanic acid) in order to analyze

their chemical properties with respect to their complexity

values. From an experimental side it is known that cyanic

and isocyanic acids are isomers of fulminic acid (H–CQN–O)

which is an unstable compound.43 From the Table 1 we may

corroborate that this is indeed the case in that fulminic acid

possesses the lowest ionization potential (less stability) but

larger values for the complexity measures. According to our

discussion above for the chemical properties, this is indeed a

more reactive molecule (lowest hardness value).

Conclusions

We have investigated the internal disorder of 90 molecules by

means of five composite information–theoretic measures: the

Fisher–Shannon and LMC shape complexities and three

planes of information. The study of these measures in both

position and momentum spaces is required in order to obtain a

more complete description of the information–theoretical

interpretation of the molecular systems.

According to the analysis of the LMC and FS complexities a

few general trends are to be noted in that molecules that show

higher complexity values correspond with molecules

possessing higher energies, larger number of electrons, smaller

hardness values (more chemically reactive) and smaller values

for the ionization potential (less stable). However, our study

reveals that there is no clear correlation between molecular

complexity and chemical reactivity suggesting that the former

is affected altogether by several chemical factors, such as the

molecular structure (e.g., molecules with lower complexity

possess similar geometry), composition (e.g., higher complexity

correspond with molecules containing heavier atoms), chemical

functionality, reactivity, etc.

The analysis of the information planes reveals that the

molecular energies are related to the uncertainty of the systems

as measured by Lp or Jp. Besides, we have observed that low

energy molecules behave more linearly and closer to the lower

bounds than higher energy molecules, i.e., more energetic

molecules seem to deviate from the isocomplexity lines. The

results of this study indicate that further investigations along

the lines of analyzing a larger number of molecules with a

wider range of energies are necessary in order to improve our

understanding of molecular complexity.

Acknowledgements
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