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Abstract. Tight model-independent approximations to the one-particle atomic densityρ(r),
derived from very few values of the form factorF(k), are obtained by means of the minimum-
cross-entropy technique. For completeness, the accuracy of the approximations is analysed within
a Hartree–Fock framework.

1. Introduction

The one-particle densityρ(r) of a many-fermion system is the fundamental variable in the
description of its physical and chemical properties, as shown up by the density functional
theory and its successive extensions (Parr and Yang 1989). However, a direct experimental
measurement of such density is a very difficult task, even for many-electron systems such as
atoms or molecules.

Usually, the determination of the densityρ(r) comes through the inverse Fourier transform
of the elastic scattering factor (or form factor)F(k) (Coppens 1982) as

ρ(r) = 1

(2π)3

∫
F(k) exp(−ik · r) dk. (1)

The atomic form factor, or its spherical averageF(k), can be experimentally obtained from x-
ray elastic scattering or high-energy electron scattering (Nishikawa and Iijima 1987, Barbieri
and Bonham 1991). However, these experimental data are only accessible for a finite and
discrete set of values of the momentum transferredk = |k|, as well as up to a maximum
value kmax which depends on the type of experiment involved. Consequently, non-trivial
interpolation and extrapolation schemes, including the small and largek behaviour ofF(k),
have to be devised (Goscinski and Linder 1970, Finket al 1976).

The important role played by the elastic and inelastic components of the total scattering
intensity in the analysis of chemical binding and correlation effects in those systems has
enforced the separate measurements of its components (Duguetet al 1983, McClelland and
Fink 1985) as well as the obtention of highly accurate computations of scattering factors (Wang
et al 1993, 1995). In this sense, the authors have obtained tight approximations toF(k) in
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atoms by means of few local values of the densityρ(r) and/or some radial expectation values
(Zarzoet al 1997)

〈rn〉 ≡
∫
rnρ(r) dr = 4π

∫ ∞
0
rn+2ρ(r)dr (n > −3). (2)

Several other properties of form factors have been considered in the opposite problem, i.e.
using information onF(k) (i.e. in momentum space) to estimate the densityρ(r) in position
space. Frissberg and Massa used x-ray structure-form factor data to obtain an idempotent
density matrix corresponding to a single-determinant wavefunction (Frisberg and Massa 1981).
Moreover, the topological properties of∇2F(k) are related to shell structure (Schmideret al
1991), and sum rules involving form factors, radial expectation values〈rn〉 and the derivatives
of the charge density at the nucleus have also been derived (Thakkar 1985).

2. Minimum cross-entropy

In this paper we deal with the problem of obtaining a model-independent approximation to the
charge densityρ(r) in terms of a very limited set of values{F(ki)} (i = 0, . . . , n) of the form
factorF(k). In doing so, we employ Kullback’s principle of minimum cross-entropy (MCE)
(Kullback 1959), related to the maximum-entropy (ME) principle (Jaynes 1978), that applies
when, apart from the constraints, additional information on the density is known.

The MCE principle is based on the concept ofcross-entropyor relative entropyS[D,D0]
between two distributionsD(r) andD0(r) with the same normalization overX, defined by
(Shore and Johnson 1980)

S[D,D0] ≡
∫
X

D(r) ln
D(r)

D0(r)
dr. (3)

Among the properties of the functionalS[D,D0] let us remark that it is always non-negative,
convex and equals zero only whenD(r) = D0(r). For a givenprior densityD0(r), the
distributionD(r) that satisfies some given constraints and minimizes the relative entropy is
the closest one toD0(r) among all those that fulfil the constraints. When the prior distribution
is a uniform one, the minimization of the cross-entropy is equivalent to the maximization of
the Shannon entropy functional

SD ≡ −
∫
X

D(r) lnD(r) dr (4)

which provides the least-biased charge density compatible with the given constraints, as
predicted by the Jaynes entropy concentration theorem (Jaynes 1978). Different rigorous
results concerning convergence of the approximations to the exact density when increasing
the number of considered constraints are known (Borwein and Lewis 1993), not only for the
relative entropyS[D,D0] but also for other entropy functionals. In this sense, weak-star
convergence (or entropy convergence) holds almost unconditionally (Mead and Papanicolau
1984), and weak convergence is guaranteed if the level sets of the objective function are
weakly compact (Borwein and Lewis 1991a). In order to obtain norm convergence, additional
assumptions are required, such as strict convexity (Borwein and Lewis 1991b), and uniform
convergence theorems concerning the entropy functional considered in the present work were
also proved (Borwein and Lewis 1991b). Different properties (Buck and Macaulay 1991,
Kapur and Kesavan 1992, Ihara 1993) and applications (Skilling and Bryan 1984, Nakahigasi
et al 1993, Antoĺın et al 1994, Tanataet al 1994, Zarzoet al 1996) of these methods can be
found elsewhere.



Minimum-cross-entropy estimation of atomic charge densities 579

For the case of atomic systems, it is sufficient to deal with the spherically averaged density
ρ(r) or, equivalently, with the radial charge densityD(r) ≡ 4πr2ρ(r), related to the form
factorF(k) by means of a Hankel (or Fourier–Bessel) transform as

F(k) =
∫ ∞

0
D(r)j0(kr) dr (5)

wherej0(kr) = sin(kr)/(kr) is the spherical Bessel function of order zero.
Let us calculate the radial charge densityDn(r) that, constrained by the knowledge of the

form factor atn + 1 values of the momentum transferred, namely

µi ≡ F(ki) =
∫ ∞

0
D(r)j0(kir) dr i = 0, 1, . . . , n, (6)

minimizes therelative entropyfunctional

S[D,D0] ≡
∫ ∞

0
D(r) ln

[
D(r)

D0(r)

]
dr (7)

whereD0(r) = 4πr2ρ0(r) is ana priori radial distribution, with the same normalization as
D(r), which indicates the previous degree of knowledge on the density we are estimating, and
where the normalization of the density to the total number of electronsN of the system is taken
into account by choosingk0 = 0, so that

µ0 = F(0) =
∫ ∞

0
D(r) dr = N. (8)

The null functional variation ofS[D,D0] constrained by equation (6) leads to the MCE
solution

Dn(r) = D0(r) exp

(
− 1−

n∑
i=0

λij0(kir)

)
(9)

where the multiplierλ0 can be expressed in terms of the normalization given by equation (8)
as

e−1−λ0 = F(0)

Z
= N

Z
(10)

whereZ is the partition function

Z =
∫ ∞

0
D0(r) exp

(
−

n∑
i=1

λij0(kir)

)
dr. (11)

Then, the MCE solution is given by

Dn(r) = D0(r)
N

Z
exp

(
−

n∑
i=1

λij0(kir)

)
(12)

containingnLagrange multipliersλ1, λ2, . . . , λn which values must be numerically determined
from the nonlinear set of equations∫ ∞

0
Dn(r)j0(kir) dr = F(ki) i = 1, . . . , n (13)

The necessary and sufficient existence conditions that the set of constraints must fulfil in
order to have an MCE solution are not known. However, the numerical results of the present
work show that such a minimum is always reached, independently of the number of constraints
as well as of thea priori density used.
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In this paper, four differenta priori functionsD(i)
0 (r) (i = 1, 2, 3, 4) are considered in

order to estimateρ(r) from F(k). These choices are based on justified properties of the one-
particle densityρ(r). For everyρ(i)0 (r), one constructs the function 4πr2ρ

(i)
0 (r)and normalizes

it to the number of particlesN (i.e. the same normalization asD(r)), giving rise toD(i)
0 (r).

First, the distribution

ρ
(1)
0 (r) = ρ(0)e−2Nr (14)

is a known rigorous lower bound for the one-particle density for any value of the positionr

(Hoffmann-Ostenhofet al 1978).
Second, the function

ρ
(2)
0 (r) = N〈r−2〉

2π
e−
√

8εr (15)

behaves asymptotically as the exact density (through the ionization potentialε) and takes at
r = 0 the value of a well known (Thirringet al 1981) lower bound onρ(0).

Third, an upper bound onρ(r) which also depends on the ionization potentialε (Thirring
et al 1981) suggests the use of the density

ρ
(3)
0 (r) = N〈r−2〉

2π
(1 + r)βe−

√
8εr β = 1√

2ε
− 1. (16)

Four, the analytical ME approximation to the densityρ(r) constrained by the radial
expectation values〈r−2〉 and〈r−1〉 (closely related to relevant quantities) is given by (Zarzo
et al 1996)

ρ
(4)
0 (r) = 〈r

−2〉2
〈r−1〉 exp

(
−〈r

−2〉
〈r−1〉 r

)
. (17)

3. Numerical results

To study the accuracy of this estimation method, we compare the approximations, obtained
from the above set ofa priori densities, to HF one-particle densities calculated with
the Clementi and Roetti wavefunctions (Clementi and Roetti 1974). In computing the
approximations, tabulated values of the form factors from correlated wavefunctions (Wang
et al 1993, 1995) and from NHF wavefunctions (Clementi and Roetti 1974) have been used.

In figure 1, the power of the method is shown in a simple case, which is the estimation
of the charge density of the helium atom (N = 2). Thea priori functionρ(1)0 (r) is quite far
from the HF density we are trying to estimate. However, the inclusion of just a pair of values
of the form factor (Wanget al 1995) corresponding tok = 1 and 2 au leads to a significant
improvement of the accuracy for low and mediumr, such improvement being much smaller
for higherr due to the asymptotic behaviour of thea priori function.

To avoid the previous effect we use thea priori functionρ(2)0 (r)which, being also far from
the exact HF density, behaves asymptotically as the exact density. Imposing the same pair of
constraints, the result is a much more accurate approximation to the density.

Additional constraints on the values of the form factorF(k) consequently improve the
approximations. In order to illustrate the effect of the inclusion of such constraints, we have
restricted ourselves to a small number of them. In figure 2, different approximations for the
charge density of the helium atom are shown, corresponding to the four differenta priori
functions, by using a fixed set of five constraints on the form factor (Wanget al1995), namely
k = 1, 2, 3, 4 and 5.3 au. It is observed that the inclusion of the asymptotic behaviour of the
density plays a relevant role in the goodness of the approximations:ρ

(2)
0 (r) andρ(3)0 (r) are



Minimum-cross-entropy estimation of atomic charge densities 581

1e-10

1e-5

1

0 1 2 3 4 5 6

(a.u.)

(r)

r (a.u.)

 
 
 
 
 

Figure 1. HF densityρ(r) and MCE approximationsρ(1)2 andρ(2)2 to ρ(r) for helium (N = 2),

in terms of two values of the form factorF(k) and using asa priori densitiesρ(1)0 (r) andρ(2)0 (r),
respectively. Atomic units are used.

Table 1. Radial expectation values〈rk〉 (k = −1, . . . ,3) of the ME approximationsD(i)
5 (r)

(i = 1, 2, 3, 4) constrained by five values of the form factorF(k) and using asa priori density
D
(i)
0 , respectively, compared with the Hartree–Fock (HF) ones for the helium atom (N = 2).

Atomic units are used.

k i = 1 i = 2 i = 3 i = 4 HF

−1 3.3724 3.3446 3.3552 3.3627 3.3747
0 2.0000 2.0000 2.0000 2.0000 2.0000
1 1.8581 1.8594 1.8591 1.8585 1.8545
2 2.3818 2.3878 2.3872 2.3833 2.3693
3 3.9010 3.9390 3.9356 3.9097 3.8796

clearly more accurate thanρ(1)0 (r) andρ(4)0 (r). This is the reason why we will useρ(2)0 (r) as
ana priori function for cobalt (table 2 and figure 3).

In tables 1 and 2, it is also shown how the above approximations allow us to accurately
estimate the values of relevant quantities, such as the radial expectation values〈rm〉. In table 1
is observed, for the helium atom (N = 2), the weak dependence of the predicted values on thea
priori radial density for a fixed number of constraints, because the high value of the ionization
potential for that system makes its density decrease very quickly and, consequently, the main
contribution to the expectation values comes from the low-r region, being less conditioned by
the asymptotic behaviour.

From table 2, corresponding to cobalt (N = 27), one can see the relevant role played by
the number of constraintsn involved in computing the ME approximation. Let us consider
the constraints given by the form factorF(k) at k = 1, 2, . . . , n au. The predicted values of
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Figure 2. HF densityρ(r) and MCE approximationsρ(i)5 (i = 1, 2, 3, 4) to ρ(r) for helium
(N = 2), in terms of five values (k = 1, 2, 3, 4, 5.3) of the form factorF(k) and using asa priori
densitiesρ(i)0 (r) (i = 1, 2, 3, 4), respectively. Atomic units are used.

Table 2. Radial expectation values〈rk〉 (k = −1, . . . ,3) of the ME approximationsD(2)
n (r)

(n = 5, 10, 15, 20, 25) constrained byn values of the form factorF(k) and using asa priori
densityD(2)

0 , compared with the Hartree–Fock (HF) ones for the cobalt atom (N = 27). Atomic
units are used.

k n = 5 n = 10 n = 15 n = 20 n = 25 HF

−1 70.578 91.031 96.569 100.481 105.157 122.047
0 27.000 27.000 27.000 27.000 27.000 27.000
1 22.013 21.710 21.681 21.669 21.660 21.910
2 36.709 36.817 36.836 36.833 36.833 39.409
3 101.076 101.926 102.068 102.046 102.047 121.497

〈rm〉 converge to the exact ones when increasingn. However, such a convergence is more
apparent for radial expectation values of low order. The reason is that, for lowm, the quantity
〈rm〉 strongly depends on the densityρ(r) aroundr = 0, which is connected via the Fourier
transform (1) with the form factorF(k) at high values of the momentum transferredk. In
order to better estimate quantities like〈r2〉 or 〈r3〉, one should considered constraintsF(ki)
corresponding to lower values ofki .

In figure 3, the successive approximations to the radial charge densityD(r) of cobalt
(N = 27) when the number of constraints is increased are shown. We have chosen equidistant
values ofk, in such a way that the approximationρ(2)n (r) is constrained by then form factors
(Clementi and Roetti 1974) corresponding to 1, 2, . . . , n au.

In spite of the initial distance between thea priori function and the exact one, a significant
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Figure 3. HF radial densityD(r) and MCE approximationsD(2)
n (n = 2, 5, 10, 15) toD(r) for

cobalt (N = 27), in terms ofn values of the form factorF(k) and using asa priori densityρ(2)0 (r).
Atomic units are used.

improvement in the approximations is observed when increasing the number of constraints.
This fact is especially relevant to the study of the atomic shell structure. The approximation
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Figure 3. (Continued)

calculated from only two constraints displays a singlepeakat a medium position among the
ones displayed by the exact density. When increasing the number of constraints (n = 5, 10, 15),
such a peak progressively approaches an intermediate position between the first and the second
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maxima. Additionally, forn > 5 a new maximum appears, which becomes closer to the third
peak of the exactD(r) with increasingn.

The accuracy of the approximations can be evaluated by comparing the values of
their relative entropies with respect toD(2)

0 (r) in the cobalt atom:S(n = 2) = 27.930,
S(n = 5) = 32.548,S(n = 10) = 36.471,S(n = 15) = 36.793,S(n = 20) = 36.979,
S(n = 25) = 37.257. The relative entropy of the HF density andD(2)

0 (r) for this atom
is SHF = 37.819. It is observed that (i) the entropiesS(n) increase with increasingn, but
(ii) the difference betweenS(n) andSHF decreases with increasingn. This is because the
corresponding approximations become closer to theexactone, while the distance to thea
priori distribution (not very close to the HF one) increases.

Results for other atoms are similar to those shown in this paper. We have also studied the
dependence of the results with different choices of the values of the momentum transferred
k, showing (as previously observed in the cobalt atom) that high values ofk lead to tight
approximations forr low and vice versa.

In summary, we have shown how the MCE technique, together with a small number of
values of the form factor, are enough to tightly approximate the electronic densities in atomic
systems. The universality of the method allows one also to deal with densities of different
multifermionic systems, such as nuclei or molecules, when discrete values of the corresponding
form factors are known.

Acknowledgments

JA and JCA wish to acknowledge partial financial support from DGICYT (Ministerio de
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