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Abstract. Tight model-independent approximations to the reciprocal form factorB(r) are
obtained in terms of a few quantities related to the one-particle momentum densityγ (p) with no
use of any position quantity. In doing so, two different and complementary methods (maximum
entropy and two-point Padé approximants) are used. The accuracy of the approximations is
analysed in a Hartree–Fock framework.

The Fourier transformB(r) of the electron momentum densityγ (p)

B(r) =
∫

exp{−ip · r}γ (p) dp (1)

is known to be the autocorrelation function of the wavefunction in position space and is used
to facilitate the study and interpretation of experimental Compton profiles and fundamental
chemical concepts such as hybridization and bonding (Weyrichet al 1979, Thakkaret al
1981).

This important function, also called reciprocal form factor, characteristic function or
internal folded density, was considered as a convenient bridge between the coordinate and
momentum spaces and, consequently, a number of theoretical results and properties satisfied
by this quantity have been studied (Weyrichet al 1979, Thakkaret al 1981).

There is an equivalence between the ‘position space form factor’B(r) and the
momentum density on the one hand, and between the momentum space form factorF(p)

and the charge density on the other. Expansions and sum rules involvingB(r) (Koga
and Morita 1982, Koga 1983) andF(p) (Thakkar and Smith 1978, Thakkar and Koga
1985) reflect this equivalence and have been used to check the accuracy of experimental
and theoretical results on the reliability of Compton profile fits to several functional forms
(Thakkaret al 1980, Gadre and Chakravorty 1986).

In this work we obtain tight and simple approximations to the spherically averaged
characteristic function

B(r) = 1

4π

∫
B(r) d� = 4π

∫ ∞

0
p2γ (p)j0(pr) dp (2)
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which is related to the spherically averaged momentum densityγ (p) = (1/4π)
∫

γ (p) d�

by means of a Hankel or Fourier–Bessel transform.
The approximations are constructed without referring to any coordinate-space

magnitudes and in terms of very limited information in the momentum space. More
precisely, we use the asymptotic expansion of the electron momentum density (Thakkar
1987, Thakkaret al 1987) and two kinds of important quantities, namely the expectation
values of the momentum density (Thakkaret al 1981, Kryachko and Koga 1987)

〈pn〉 = 4π

∫ ∞

0
pn+2γ (p) dp, n = −2, −1, . . . , 4, (3)

and values of derivatives ofγ (p) at the origin (i.e.γ (n)(0)).
Some of these expectation values have an intrinsic physical meaning. For instance,

the kinetic energy of anN -electron system and its relativistic correction due to the mass
variation, are proportional to〈p2〉 and 〈p4〉 respectively. These quantities appear in the
small-r behaviour ofB(r)

B(r) = N − 〈p2〉
3!

r2 + 〈p4〉
5!

r4 + O(r5) (r → 0). (4)

The central value ofγ (p) is related to the number of slow electrons and is also related to
important physical observables (see e.g. Gálvez and Dehesa 1988, Anguloet al 1991).

Thakkar (1987) and Thakkaret al (1987) have computed the asymptotic expansion
of the atomic momentum densities from hydrogen(N = 1) to lawrencium(N = 103)
atoms. This asymptotic behaviour is of special interest because it plays a crucial role in the
computation of moments from experimental isotropic Compton profiles.

This kind of information is sufficient to apply two complementary methods, the Padé
and the maximum entropy methods, to build up tight estimations ofB(r) for the entire
range ofr.

1. Maximum entropy (ME) reconstruction of B(r)

First, maximum entropy approximations toγ (p) are constructed in terms of its moments

µn =
∫ ∞

0
pnγ (p) dp = 〈pn−2〉

4π
, n = 0, 1, . . . , 6 (5)

and then we insert these approximations in (2), obtaining (Leaseburg and Mead 1993)
convergent approximations toB(r).

The ME momentum densities are computed by maximizing the entropy functional
constrained by the moments considered and so one has to solve the variational problem

δ

[
−

∫ ∞

0
γ (p) ln γ (p) dp +

M∑
n=0

λn

(
µn −

∫ ∞

0
pnγ (p) dp

)]
= 0. (6)

Foundations, properties and applications of this powerful method can be found elsewhere
(see e.g. Leaseburg and Mead 1993, Mead and Papanicolau 1983, Antolı́n et al 1994).

The solution of (6), to be called ME momentum density, has the form

γ ME
M (p) = A exp

{
−

M∑
j=1

λjp
j

}
, (7)



Reciprocal form factors 5631

Figure 1. Hartree–Fock momentum density(γHF (p)) and ME approximationsγ ME
2 (p),

γ ME
4 (p) andγ ME

6 (p) for the helium atom(N = 2). Atomic units (au) are used.

where A = exp{−1 − λ0} and the Lagrange multipliersλj , j = 1, . . . , M, have to be
computed numerically from the extremely nonlinear system of constraints∫ ∞

0
pnγ ME

M (p) dp = 〈pn−2〉
4π

, n = 0, 1, . . . , M. (8)

The power of this technique is apparent in figure 1, where some approximations to
γ (p) for the helium(N = 2) atom are shown (in logarithmic scale), together with the
Hartree–Fock momentum densityγHF (p), for comparison. Clementi and Roetti (1974)
wavefunctions have been used to construct these functions. It is worth remarking how the
successive values ofγ (0) and of the entropySγ corresponding to these approximations,
γ2(0) = 0.53, γ4(0) = 0.46, γ6(0) = 0.45 andS2 = 0.4851, S4 = 0.4753, S6 = 0.4751,
converge to the exact values of these quantities,γHF (0) = 0.44, SHF = 0.4750.

The ME approximationsγ ME
M (p) to γ (p) can be now inserted in (2) to obtain convergent

(Leaseburg and Mead 1993) approximationsBME
M (p) to B(r). These approximations are

shown in figure 2, where the ME reciprocal form factorsBME
2 (r), BME

4 (r) and BME
6 (r)

are drawn (also in logarithmic scale) together with the exact Hartree–Fock characteristic
functionBHF (r) of helium (N = 2) computed from the Clementi and Roetti (1974) atomic
data.

Such approximations can also be computed for any other atom since the technique
employed here is completely general.

It is also possible to obtain ‘direct’ ME approximations toB(r) by using the only
existing moments of this magnitude, which are known to be (Thakkaret al 1980, Kryachko
and Koga 1987)

ν0 =
∫ ∞

0
B(r) dr = π〈p−1〉

2
(9)

ν1 =
∫ ∞

0
rB(r) dr = 〈p−2〉 (10)
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Figure 2. Hartree–Fock reciprocal form factor(BHF (r)) and ME approximationsBME
2 (r),

BME
4 (r) andBME

6 (r) for the helium atom(N = 2). Atomic units (au) are used.

ν2 =
∫ ∞

0
r2B(r) dr = 2π2γ (0). (11)

The approximants built up from{ν0, ν1} and from{ν0, ν2} are analytic (Anguloet al 1995),
and have the form

BDME
k (r) = ν0k

0(1/k)

(
ν0

kνk

)1/k

exp

{
− ν0

kνk

rk

}
, k = 1, 2. (12)

The approximationBDME
12 (r) which takes into account all the existing moments ofB(r)

(i.e. ν0, ν1 and ν2) is of the form given by (7) and must be numerically computed. In
spite of the small amount of information used, the latter is a good approximation toB(r).
This is shown in figure 3, where the aforementioned ‘direct’ approximations are plotted
together with the corresponding Hartree–Fock one,BHF (r), for the helium atom (Clementi
and Roetti 1974).

2. Two point Pad́e (TPP) reconstruction ofB(r)

In this method we construct Padé approximants toγ (p) taking into account the information
provided by the first coefficients in its small-p behaviour, i.e.

γ (p) =
∞∑

n=0

γ (n)(0)

n!
pn (13)

and considering simultaneously the corresponding large-p behaviour (Thakkar 1987).
General expressions for the large- and small-p behaviour of electronic momentum densities,
corresponding to atomic orbitals with arbitrary angular momentum quantum numberl, have
been derived (Thakkar 1987). These expansions were used to calculate the first three
coefficients in each of the small-p Maclaurin and large-p asymptotic expansions of the total
electronic momentum densities of all neutral atoms from hydrogen(N = 1) to lawrencium
(N = 103) (Thakkaret al 1987).
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Figure 3. Hartree–Fock reciprocal form factor(BHF (r)) and ‘direct’ ME approximations
BDME

1 (r), BDME
2 (r) andBME

12 (r) for the helium atom(N = 2). Atomic units (au) are used.

This information is sufficient to construct TPP approximantsγLM(p) to γ (p) in the
whole range ofp. These approximants are special cases of the so-called multipoint
Pad́e approximants (Baker and Graves-Morris 1981) for which many results on algebraic
properties, recurrence relations, bounds and convergence are known (see e.g. González-Vera
and Casaśus 1985, Draux 1987, González-Vera and Nj̊astad 1990).

We consider here subdiagonal TPP approximants of type

γ T PP
LM (p) = PM−1(p)

QM(p)
, 0 6 L 6 2M (14)

whereL and 2M − L are the number of pieces of information atp = 0 and at infinity,
respectively, andPM−1 and QM are polynomials at most of degreeM − 1 andM in the
variablep. These approximations are constructed in such a way that they fulfil the following
conditions:

γ T PP
LM (p) − γ (p) = O(pL) (p → 0) (15)

γ T PP
LM (p) − γ (p) = O(p(−2M−1+L)) (p → ∞). (16)

Then, the coefficients ofPM−1 andQM are computed by expanding (14) in power series
of p andp−1 and imposing the constraints given by (15) and (16). In doing so, one has to
consider the aforementioned small- and large-p behaviour ofγ (p).

It is clear that (14) gives approximations toγ (p) in the whole range ofp. Then, they
can be inserted into (2) to obtain the corresponding TPP approximations to the reciprocal
form factorB(r) (to be denoted byBT PP

LM (r)).
As an illustration (see figure 4), we show here TPP approximations of the formγ T PP

34 (p),
γ T PP

44 (p) andγ T PP
54 (p), i.e. those that make use of eight (2M = 8 in (14)) constraints: three,

four and five atp = 0 and five, four and three at infinity, respectively. Previous two-point
Pad́e approximants of lower order (e.g.γ T PP

33 (p) or γ T PP
22 (p)) provide bad approximations

in the neighbourhood of its poles because they lie in the positive real axis, while (as it might
be expected) TPP approximants of higher order (likeγ T PP

55 (p)) lead to approximations to
γ (p) as good as the ones plotted in figure 4. Finally, table 1 includes a comparison between
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Figure 4. Differencesγ T PP
34 − γHF , γ T PP

44 − γHF andγ T PP
54 − γHF between the Hartree–Fock

momentum density(γHF (p)) and the TPP approximationsγ T PP
34 (p), γ T PP

44 (p) and γ T PP
54 (p)

for the helium atom(N = 2). Atomic units (au) are used.

Table 1. Comparison among the reciprocal form factorB(r) and different two-point Pad́e
approximations in a Hartree–Fock framework for the helium atom. Atomic units are used.

r BT PP
34 BT PP

44 BT PP
54 Hartree–Fock

0.0 2.000 00 2.000 00 2.000 00 2.000 00
0.2 1.994 93 1.960 35 1.957 34 1.963 00
0.4 1.890 91 1.859 97 1.857 59 1.862 02
0.6 1.741 82 1.715 93 1.714 27 1.717 31
0.8 1.568 06 1.547 75 1.546 71 1.548 54
1.0 1.385 88 1.370 94 1.370 38 1.371 30
1.2 1.206 78 1.196 55 1.196 32 1.196 64
1.4 1.038 11 1.031 74 1.031 70 1.031 67
1.6 0.884 10 0.880 65 0.880 73 0.880 52
1.8 0.746 58 0.745 28 0.745 40 0.745 13
2.0 0.625 98 0.626 11 0.626 24 0.625 95
3.0 0.240 09 0.241 57 0.241 60 0.241 56
4.0 0.084 64 0.085 10 0.085 09 0.085 11
5.0 0.028 29 0.028 28 0.028 27 0.028 28
6.0 0.009 09 0.009 01 0.009 01 0.009 01
7.0 0.002 83 0.002 78 0.002 78 0.002 78
8.0 0.000 85 0.000 84 0.000 84 0.000 84

the corresponding Padé approximants toB(r), i.e. BT PP
34 (r), BT PP

44 (r), BT PP
54 (r), and the

Hartree–Fock quantityBHF (r) (Clementi and Roetti 1974).
Summarizing, in this work we have presented two different tight approximations to an

important quantity in the coordinate space such as the reciprocal form factorB(r), in terms of
a very limited amount of information related to the momentum space. These approximations
are constructed by using two complementary methods (maximum entropy and two-point
Pad́e approximants) having two relevant characteristics in common: the approximations
provided by both of them are model independent, and also they are completely general, i.e.
they can be applied to other atomic magnitudes (e.g. form factors (Zarzoet al 1996)) and
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also to other kinds of systems, such as molecules, solids or nuclei (see e.g. Antolı́n et al
1996).
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