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Abstract. Tight model-independent approximations to the reciprocal form fadtar) are
obtained in terms of a few quantities related to the one-particle momentum deg(gijtyvith no

use of any position quantity. In doing so, two different and complementary methods (maximum
entropy and two-point P&approximants) are used. The accuracy of the approximations is
analysed in a Hartree—Fock framework.

The Fourier transfornB(r) of the electron momentum densify(p)

B(r) = feXp{—ip -7}y (p)dp (1)

is known to be the autocorrelation function of the wavefunction in position space and is used
to facilitate the study and interpretation of experimental Compton profiles and fundamental
chemical concepts such as hybridization and bonding (Weick 1979, Thakkaret al
1981).

This important function, also called reciprocal form factor, characteristic function or
internal folded density, was considered as a convenient bridge between the coordinate and
momentum spaces and, consequently, a number of theoretical results and properties satisfied
by this quantity have been studied (Weyriehal 1979, Thakkaet al 1981).

There is an equivalence between the ‘position space form fadgr) and the
momentum density on the one hand, and between the momentum space formffigstor
and the charge density on the other. Expansions and sum rules invahing (Koga
and Morita 1982, Koga 1983) an#(p) (Thakkar and Smith 1978, Thakkar and Koga
1985) reflect this equivalence and have been used to check the accuracy of experimental
and theoretical results on the reliability of Compton profile fits to several functional forms
(Thakkaret al 1980, Gadre and Chakravorty 1986).

In this work we obtain tight and simple approximations to the spherically averaged
characteristic function

1 o0
B(r) = EfB(r) dQ =4n/0 P*y(p)jo(pr)dp (2
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which is related to the spherically averaged momentum density = (1/4x) [ y (p) d2
by means of a Hankel or Fourier—Bessel transform.

The approximations are constructed without referring to any coordinate-space
magnitudes and in terms of very limited information in the momentum space. More
precisely, we use the asymptotic expansion of the electron momentum density (Thakkar
1987, Thakkaret al 1987) and two kinds of important quantities, namely the expectation
values of the momentum density (Thakletral 1981, Kryachko and Koga 1987)

(pn>=47[/(; anrZV(p)dpv n=_2’_17'-'547 (3)

and values of derivatives of(p) at the origin (i.e.y " (0)).

Some of these expectation values have an intrinsic physical meaning. For instance,
the kinetic energy of amv-electron system and its relativistic correction due to the mass
variation, are proportional t¢p?) and (p?) respectively. These quantities appear in the
small+ behaviour ofB(r)

2 4
B(r)=N — %rz + %r“ +0(r®) (r — 0). 4)
The central value of (p) is related to the number of slow electrons and is also related to
important physical observables (see e.@lv&z and Dehesa 1988, Angudb al 1991).

Thakkar (1987) and Thakkeaet al (1987) have computed the asymptotic expansion
of the atomic momentum densities from hydrogevi = 1) to lawrencium(N = 103)
atoms. This asymptotic behaviour is of special interest because it plays a crucial role in the
computation of moments from experimental isotropic Compton profiles.

This kind of information is sufficient to apply two complementary methods, the Pad
and the maximum entropy methods, to build up tight estimation8@) for the entire
range ofr.

1. Maximum entropy (ME) reconstruction of B(r)

First, maximum entropy approximations i p) are constructed in terms of its moments

n—2)
n=01,...,6 (5)

o0
In =/ p'y(p)dp = <p4 ,
0 T
and then we insert these approximations in (2), obtaining (Leaseburg and Mead 1993)
convergent approximations tB(r).
The ME momentum densities are computed by maximizing the entropy functional
constrained by the moments considered and so one has to solve the variational problem

00 M 00
5[—/0 y(p)lny(p)dp+zkn<un—/o p”y(p)dp)} =0. (6)

n=0

Foundations, properties and applications of this powerful method can be found elsewhere
(see e.g. Leaseburg and Mead 1993, Mead and Papanicolau 1983n/nttal 1994).
The solution of (6), to be called ME momentum density, has the form

M
vt (p) = Aexp{—Zk,-p-"}, @
j=1
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Figure 1. Hartree—Fock momentum densityyr(p)) and ME approximations/ZME(p),
y1E (p) and yd1E (p) for the helium atom(N = 2). Atomic units (au) are used.

where A = exp{—1 — Ao} and the Lagrange multipliers;, j = 1,..., M, have to be
computed numerically from the extremely nonlinear system of constraints

n—2

- (P2
/ Py E(p)dp = p4 , n=0,1,..., M. ®)
0 JT

The power of this technique is apparent in figure 1, where some approximations to
y(p) for the helium(N = 2) atom are shown (in logarithmic scale), together with the
Hartree—Fock momentum densipy r(p), for comparison. Clementi and Roetti (1974)
wavefunctions have been used to construct these functions. It is worth remarking how the
successive values gf(0) and of the entropys, corresponding to these approximations,
y2(0) = 0.53, y4(0) = 0.46, y6(0) = 0.45 andS, = 0.4851, S, = 0.4753, Ss = 0.4751,
converge to the exact values of these quantitigs;(0) = 0.44, Sy = 0.4750.

The ME approximationg;/£ (p) to y (p) can be now inserted in (2) to obtain convergent
(Leaseburg and Mead 1993) approximatiah$” (p) to B(r). These approximations are
shown in figure 2, where the ME reciprocal form fact@#§'“(r), BY£(r) and B (r)
are drawn (also in logarithmic scale) together with the exact Hartree—Fock characteristic
function By (r) of helium (N = 2) computed from the Clementi and Roetti (1974) atomic
data.

Such approximations can also be computed for any other atom since the technique
employed here is completely general.

It is also possible to obtain ‘direct’ ME approximations B{r) by using the only
existing moments of this magnitude, which are known to be (Tha&kal 1980, Kryachko
and Koga 1987)

00 -1
UOZ./(; B(r)dr:jT([; ) 9

vy = f T B dr = (p?) (10)
0
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Figure 2. Hartree—Fock reciprocal form fact@Byr(r)) and ME approximations?é“(r),
BY'E(r) and BY'E (r) for the helium atom(N = 2). Atomic units (au) are used.

Vo = / r?B(r)dr = 2712)/(0). (11)
0

The approximants built up frorfvg, v1} and from{vg, v} are analytic (Anguleet al 1995),
and have the form

k Y Yk Y
BPME @y — YO (Y0 ) a0 Lk k=12 12
R A Pl [ : (12)

The approximatiorB,¥~ () which takes into account all the existing momentsbof)
(i.e. vo, v1 and vy) is of the form given by (7) and must be numerically computed. In
spite of the small amount of information used, the latter is a good approximatisii-jo
This is shown in figure 3, where the aforementioned ‘direct’ approximations are plotted
together with the corresponding Hartree—Fock aBgr(r), for the helium atom (Clementi
and Roetti 1974).

2. Two point Padé (TPP) reconstruction of B(r)

In this method we construct Pacpproximants tg(p) taking into account the information
provided by the first coefficients in its smallbehaviour, i.e.

o) ™0
yip=3" n,( ) pr (13)
n=0 )

and considering simultaneously the corresponding largeehaviour (Thakkar 1987).
General expressions for the large- and smaliehaviour of electronic momentum densities,
corresponding to atomic orbitals with arbitrary angular momentum quantum nurteere

been derived (Thakkar 1987). These expansions were used to calculate the first three
coefficients in each of the smah-Maclaurin and larggr asymptotic expansions of the total
electronic momentum densities of all neutral atoms from hydrg@ée- 1) to lawrencium

(N = 103 (Thakkaret al 1987).
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Figure 3. Hartree—Fock reciprocal form factaqiBy r(r)) and ‘direct’ ME approximations
BPME (), BPME (1) and B)4E (r) for the helium atom(N = 2). Atomic units (au) are used.

This information is sufficient to construct TPP approximaptg (p) to y(p) in the
whole range ofp. These approximants are special cases of the so-called multipoint
Pace approximants (Baker and Graves-Morris 1981) for which many results on algebraic
properties, recurrence relations, bounds and convergence are known (see eapfdema
and Casass 1985, Draux 1987, Goalez-Vera and Njstad 1990).

We consider here subdiagonal TPP approximants of type

TPP . PM—l(p)
Yo D=0 )

where L and 2V — L are the number of pieces of information gt= 0 and at infinity,
respectively, andPy,_; and Q, are polynomials at most of degré¢ — 1 and M in the
variablep. These approximations are constructed in such a way that they fulfil the following
conditions:

0<L<2M (14)

vimt (p) —v(p) = O(p") (p — 0) (15)
viu'(p)—y(p) =0 D) (p— o0). (16)

Then, the coefficients aPy,_1 and Q, are computed by expanding (14) in power series
of p and p~! and imposing the constraints given by (15) and (16). In doing so, one has to
consider the aforementioned small- and lapgbehaviour ofy (p).

It is clear that (14) gives approximations i p) in the whole range op. Then, they
can be inserted into (2) to obtain the corresponding TPP approximations to the reciprocal
form factor B(r) (to be denoted by3! 77 (r)).

As an illustration (see figure 4), we show here TPP approximations of they#ffi(p),
val ¥ (p) andyd,PP (p), i.e. those that make use of eightf2= 8 in (14)) constraints: three,
four and five atp = 0 and five, four and three at infinity, respectively. Previous two-point
Pack approximants of lower order (e.g5"” (p) or v, (p)) provide bad approximations
in the neighbourhood of its poles because they lie in the positive real axis, while (as it might
be expected) TPP approximants of higher order (Ji&'” (p)) lead to approximations to
y(p) as good as the ones plotted in figure 4. Finally, table 1 includes a comparison between
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Figure 4. Differencesyf? — yyr, y4FF — yur andydf? — yyp between the Hartree—Fock

momentum densityyy r(p)) and the TPP approximations,,”” (p), v, (p) and yIFF (p)
for the helium atom(N = 2). Atomic units (au) are used.

Table 1. Comparison among the reciprocal form fact8(r) and different two-point Pax
approximations in a Hartree—Fock framework for the helium atom. Atomic units are used.

TPP TPP TPP
r B34 By Bg, Hartree—Fock

0.0 2.00000 2.00000 2.00000 2.00000
0.2 1.99493 196035 1.95734 1.96300
0.4 1.89091 1.85997 1.85759 1.86202
0.6 1.74182 1.71593 1.71427 1.71731
0.8 156806 1.54775 154671 1.54854
1.0 138588 1.37094 1.37038 1.37130
1.2 1.20678 1.19655 1.19632 1.19664
14 103811 1.03174 103170 1.03167
1.6 0.88410 0.88065 0.88073 0.88052
1.8 0.74658 0.74528 0.74540 0.74513
20 0.62598 0.62611 0.62624 0.62595
3.0 0.24009 0.24157 0.24160 0.24156
40 0.08464 0.08510 0.08509 0.08511
5.0 0.02829 0.02828 0.02827 0.02828
6.0 0.00909 0.00901 0.00901 0.00901
7.0 0.00283 0.00278 0.00278 0.00278
8.0 0.00085 0.00084 0.00084 0.00084

the corresponding Padapproximants taB(r), i.e. BL P (r), BIFP(r), BLF* (r), and the
Hartree—Fock quantitydy r(r) (Clementi and Roetti 1974).

Summarizing, in this work we have presented two different tight approximations to an
important quantity in the coordinate space such as the reciprocal form #gtorin terms of
a very limited amount of information related to the momentum space. These approximations
are constructed by using two complementary methods (maximum entropy and two-point
Padce approximants) having two relevant characteristics in common: the approximations
provided by both of them are model independent, and also they are completely general, i.e.
they can be applied to other atomic magnitudes (e.g. form factors (£arab1996)) and
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also to other kinds of systems, such as molecules, solids or nuclei (see e.gn/Asttal
1996).
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