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Abstract It is shown how knowledge of a few low-order radial momenhlm expectation values 
( p * )  and the central value y(0) of the electron momentam density in atomic systems allows 
us to bound from below and h v e  lhe momen” density y ( p )  for any value of the linear 
momentum, as well as the cumulative density and the cumulative radial density of any atom. The 
bounds are obtained by using Chebyshev inequalities and moment-theoxtic methods. Knowledge 
of a greater number of expectaxion values results in an improvement in the accuracy of the 
above mentioned bounds. A numerical study of this accuracy is canied out in a HartreeFock 
framework. 

1. Introduction 

The electron distribution of atomic systems in momentum space, described in terms of 
the monoparticular density y(P),  allows an easy interpretation of numerous physical and 
chemical phenomena (Parr and Yang 1989). The study of this distribution by means of the 
radial expectation values ( p x )  defined by 

where y ( p )  denotes the spherically averaged electronic momentum density, i.e. 

is particularly interesting. Some of the expectation values (p’) can be indirectly calculated 
from measurements in x- or y-ray Compton scattering processes, as well as from electron 
scattering experiments (williams 1977, Thakkar eful 1981, Cooper 1985, Bonham and Fink 
1986). 

We should note the physical meaning (Epstein 1973) of quantities l i e  ( p 2 )  (twice the 
electron kinetic energy), (p4) (proportional to the relativistic correction to the kinetic energy, 
due to the mass variation), ( p - ’ )  (twice the height of the peak of the Compton profile) and 
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(p") (the number of electrons of the system). The semiclassical relation between ( p 3 )  and 
the mean charge density ( p ) ,  as well as between ( p )  and the DiracSlater exchange energy 
KO is also known (Gadre and Pathak 1981). Many other rigorous relationships among these 
quantities have been recently proved (see, e.g., Porras and G6lvez 1990). 

The well known asymptotic behaviour (Benesch and Smith 1973) 

valid for high p-values, is of great importance in determining the range of orders for which 
the expectation values ( p a )  exist. It is easy to show that only those with -3 < LY < 5 are 
finite. 

Moreover, it is also known clnakkar 1987) thai the atomic momentum density at the 
origin, y(O), plays a significant role in describing the long-range behaviour of the atomic 
charge density p( r ) .  Some lower bounds to y(0) have been published (Gdvez 1989, Angulo 
et al 1991). They are usually expressed in terms of one or more radial expectation values 
(p") .  Numerical approximations and calculations of y(0) have also been reported (Gadre 
and Gejji 1984, Gadre and Chakravorty 1986). 

Not many other properties of y ( p )  are known. For atoms with nuclear charge Z up to 
Z = 54, it has been numerically shown (Westgate et a! 1985) that monotonicity (i.e. the 
negativity of the first derivative) only occurs for Z = 1-7, 11-13, 19-26,31,37-42,49-50. 
For the remaining atoms in this region of the periodic table, some of them (Z = 27-30, 
4345,  47-48) present their absolute maximum at the origin, i.e. ymar = y(O), while for 
those with Z = 8-10,14-18,32-3646,5144 this maximum is located at positions p # 0. 

The aim of this work is to obtain rigorous upper and lower bounds to the spherically 
averaged atomic momentum density y ( p )  in terms of the aforementioned quantities y(0) 
and (p").  So, we cover the range of intermediate values of p for which rigorous results 
are very scarce. This type of result allows one to check numerical approximations and 
theoretical computations on y ( p )  or related quantities. 

The only existing result in this field is that of Yue and Janmin (1984). who extended a 
previous work by King and Dykema (1983). They obtained upper bounds on y ( p )  in terms 
of the momentum expectation values (p-') and ( p - I ) ,  and the quantity (r2) (related to the 
diamagnetic susceptibility (March 1975)). 

Here, we are interested in obtaining rigorous upper and lower bounds to y ( p )  in terms 
of y(0) and the first few lowest-order expectation values ( p " ) ,  using a procedure based on 
Chebyshev inequalities (Shohat and Tamarkin 1943, Corcoran and Langhoff 1977). The 
same procedure also allows us to obtain upper and lower bounds on (i) the integrated 
momentum density W ( p )  = l:y(p)dp and (ii) the number of electrons with hear 
momentum lower than p ,  B ( p )  = 4 z  l,' p 2 y ( p )  dp. 

This technique has also been applied to find (Antolfn et ~l 1993) upper and lower 
bounds to the atomic charge density p ( r ) ,  its first derivative p'(r) ,  the integrated charge 
density W ( r )  = Ji p ( r )  dr and the number of electrons enclosed in a sphere of radius r ,  
Q(r )  = 4 n  1,' r Z p ( r )  dr, as well as in a variety of fields such as particle physics (Antolin 
and Cruz 1986, Antolfn 1990), thermodynamics (Gordon 1968) and solid state physics 
(Gaspard and Cyrot-Lackmann 1973, L6pez et al 1974). 

In section 2, a review of the technique used is given. In section 3, the results of the 
previous section are applied to the physical cases represented by the aforementioned atomic 
functions y ( p ) ,  W ( p )  and B ( p )  (i.e. momentum density, integrated r.omentum density and 
integrated radial momentum density, respectively). Finally, some concluding remarks are 
given in section 4. 
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2. Chebyshev upper and lower bounds 

Let g(p) be a non-negative function related to ~ ( p ) ,  in which the moments around the origin 
can be expressed in terms of y(0)  and the radial expectation values (p") .  We construct the 
Stieltjes function 

The non-negativity of the weight function g(p) allows us to obtain, via moment theory, 
approximations or rigorous bounds on H ( z )  by using the properties of the orthogonal 
polynomials associated with the weight g(p). 

A formal series expansion of H ( z )  can be obtained in terms of the moments 

in the form 
m 

H ( z )  = C P i Z ' .  
i=O 

The rigorous bounding properties of the Pad6 approximants for this type of function are the 
consequence (Corcoran and Langhoff 1977, Antolin et al 1993) of bounding the cumulative 
weight G(p) 1," g(p) dp. The residues and poles of the Pad6 approximants are easily 
related to the quadrature parameters Sf"' > 0, pj"' E [0, 00) which satisfy the extremely 
non-linear moment equations 

n 

= CSj")[pj")]' k = 0,1,. . . ,2n - 1 
i=l 

(3) 

and yield bounds on G(p)  at the points pj") in terms of 6 y )  as follows 

i - l  i E$"' < ~(p,(")) < CS,'"' i = 1,2, ..., n.  (4) 

It is possible to obtain bounds at any point p E 10, CO), and not only at the fixed points 
pi'"', by reducing the order of the moment equations (3) in the form 

j=1 j=1 

where now we can impose a quadrature point at an arbitrary position p = pj"' for some 
value of i (Corcoran and Langhoff 1977, Baker and Graves-Moms 1981, Antolin and Cruz 
1986). A more detailed description of the method can be found in the above mentioned 
references, as well as in Antolin et al (1993). It should be pointed out that, due to the 
procedure used to obtain the bounds, the arithmetic mean of the upper and the lower bound 
obtained for a given number of moments is a convergent approximation to ~ ( p ) .  This type 
of approximation can be compared with other techniques which build up densities from 
moments (Antolin 1990). 
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3. Applications to atomic systems 

In the previous section, a model-independent method to obtain lower and upper pointwise 
bounds to a given quantity G ( p )  has been derived in terms of the moments of g ( p ) .  Here 
this method can be applied in a straightforward manner to the following atomic quantities: 
the momentum density y(p); the integrated momentum density W ( p ) ,  and the number of 
electrons with linear momentum lower than p ,  B ( p )  taking into account the following 
observations. 

(i) g ( p )  = --y'(p). The non-negativity of tbis function occurs for many atomic systems, 
as previously pointed out. We can bound the cumulative weight 

in terms of the moments 

which results in upper and lower bounds to y ( p )  in terms of ~(0). ( P - ~ ) ,  ( p - I ) ,  . . .. 

density allows us to bound the function 
(ii) g ( p )  = y ( p ) .  The quantum-mechanical non-negativity of the electron momentum 

in terms of the moments 

(iii) g ( p )  = 4npzy(p) I ( p ) .  The non-negativity of the radial momentum density 
makes it possible to bound the function 

(which represents the number of electrons with linear momentum lower than p )  in terms of 
the radial expectation values 

Then, the method provides rigorous pointwise lower and upper bounds to ~ ( p ) ,  W ( p )  
and E ( p )  in the whole periodic table by meam of y(0) and the momentum expectation 
values ( p k ) .  To have an idea of the quality of these bounds, we have numerically analysed 
them in three different atoms (helium, potassium, rubidium) within the framework of a 
realistic model. 

In figures l(a), 2(a) and 3(a). we compare the bounds obtained by using four, six and 
eight moments with the Hartree-Fock (Clementi and Roetti 1974) momentum density y ( p )  
of helium (2 = 2), potassium (Z = 19) and rubidium (2 = 37) atoms, respectively. It is 
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Figure 1. (a)  Spherically averaged momentum density y ( p )  (fill curve) and four, six and eight 
moment upper and lower bounds and (b) comparison between the four and eight moment upper 
bounds and the Yue and Janmin upper bound (see equation (1) of Yue and Janmin (1984)) for 
the helium ground-state atom. The full curve represents the spherically averaged momentum 
density. Atomic units are used. 

-- 4moments -._ 

- - - 4 moments 
------- 8 moments - - - - Yw-Janmin 

10-1 10-'J% 1 10'12 10 lo-' 10-"Z 1 WZ la 

P ( a 4  P (a.u.1 

Figure Z (a) Spher idy  averaged momentum density y ( p )  (full curve) and four, six and eight 
moment upper and lower bounds, and (b) comparison between the four and eight moment upper 
bounds and Ihe Yue and Jan& upper bound (see equation (I) of Yue and Ianmin (1984)) for 
the potassium ground-state atom. The full curve represents the spherically averaged momentum 
density. Atomic units are used, 

observed that the accuracy of these bounds improves for the three atoms here studied, when 
the number of moments considered increases, as we expected. This improvement is more 
evident for the lower bounds, particularly in going from the four-moment to the six-moment 

In figures l(b), 2(b) and 3(b), our upper bounds are compared with the best (for 
intermediate and high momenta) upper bound of Yue and Janmin, i.e. equation (1) of Yue 
and Janmin (1984), for each of the above mentioned atom. Notice that our results are 

CaSe.  
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Figure 3. ( a )  Spherically avenged momentum density v(p) (hrll curve) and four, six and eight 
moment upper and lower bounds and (b) comparison between the four and eight moment upper 
bounds and the Yue and Janmin upper bound (see equation (1) of Yue and Janmin (1984)) for 
the rubidium ground-state atom. The full curve represents the spherically avenged momentum 
density. Atomic units are used. 

considerably better than those of Yue and Janmin at low and high momenta (specially for 
the case of eight moments), while their upper bound is lower than ours for a narrow region 
around p = 1 au. 

4. Concluding remarks 

The knowledge of some radial momentum expectation values (pk)  and the central value of 
the electron momentum density y(0) allows us to obtain rigorous upper and lower bounds 
not only t0 the momentum density y ( p )  for those atoms having a y ( p )  monotonically 
decreasing, but also to the cumulative momentum density Y ( p )  as well as the cumulative 
radial momentum density B ( p )  for any atom. These bounds require knowledge of only 
the few lowest-order radial expectation vdues ( p k ) ,  as their accuracy improved when the 
number of moments considered is increased. 

It is remarkable that the arithmetic mean of the upper and lower bound to y ( p ) ,  Y ( p )  
and B ( p )  for a given number of moments converges to the exact bounded function when 
this number increases. 

Moreover, it should be pointed out that the procedure described here in order to obtain 
the bounds can be applied to many other interesting density functions. 
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