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LElTER TO THE EDITOR 

Atomic-charge log-convexity and radial expectation values 

J C Angulo and J S Dehesa 
Depanamento de Fisica Modema, Facultad de Ciencias, Uniwsidad de Granada. 18071- 
Granada, Spain 

Received 13 May 1991 

Abstract Let us denole by p ( r )  the spherically averaged electron density of an atomic 
system. First, it is found that there always exbe a parameter mo 3 0 such that the function 
p( r ) / r  IS lo arithmically convex for any 01 2 00. Furthermore, 00 3 max{p,O) with 

to obtain rigorous and wmpact inequalities involving three radial expectation values, 
which substantially generalize all the similar ones known up to now. nese inequalities 
allow us lo correlate sweral fundamental andlor measurable physical quantities such as 
the nuclear elslron attraction energy, the Langmin-Pauli diamagnetic susceptibiliry and 
so on. Thirdly. the logconvexity properly is investigated in a Hanree-Fack framework 
for all ground-state neutral atoms with Z < 54. In parlicular, it is found that ail the 
atoms have a lagconvex function p(r) / r6  and only H and He have a logconvex electron 
density p( r ) .  Finally, the accuracy of the abwe-mentioned inequalities is studied in the 
same numerical framework. 

p = 2(1/ * '3- 21 l) ,  I being Ihe ionization potential. Secondly, such a properly is used 

The study of the structural properties other than positivity of t h e  single-fermion 
density p ( r )  is a basic problem for all many-fermion systems in its own right and 
because it is of its great help to the practical and formal approaches of the modem 
density-functional theory. In the case of a N-electron system, where this problem is 
best controlled, the only rigorous information about the electron density p ( r )  of the 
ground state which one encounters in the literature (Parr and Yang 1989, Kryachko 
and Ludefla 1989, Dreizler and Gross 1990) is its behaviour near the origin (Kato 
1957, Steiner 1%3, Smith 1971) and at large distances (Morrell et 01 1975, Ahlrichs 
1976, Hoffmann-Ostenhof e! 01 1978, Alhrichs ef a1 1981, Silverstone 1981). In 
addition, from a numerical point of view, one knows that the spherically-averaged 
electron density p ( r )  defined as 

is (i) monotonically decreasing from the origin (Sperber 1971, Weinstein ef al 1975, 
Simas ef 01 1988, Angulo 1989) for all ground-state neutral atoms, from hydrogen to 
uranium, (U) convex (Angulo ef a1 1990) for the atoms with Z = 1,2,7-15 and 33-44 
while for the rest of the atoms up to Z = 54 it presenls a very small non-convex 
region. Furthermore, the complete monotonicity of the function p ( r )  was recently 
studied (Angulo and Dehesa 1991); we found that such a property is fulfilled for all 
neutral atoms below Xe to a reasonably good approximation, except for hydrogen 
where it is rigorous. 

09S347S~11130r)9+08503.S0 0 1991 IOP Publishing ud L299 
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Here we will study the logarithmic convexity of p(r), which is a property stronger 
than convexity but weaker than complete monotonicity. Since p(r) is not universally 
convex (Angulo et a1 l w ) ,  it will not be logarithmically convex, or shortly log- 
convex, for all neutral atoms. So, in looking for properties of p(r )  valid for the 
whole periodic table, we will analyse the log-convexity of the atomic electron function 
g,(r) G r-"p(r), a > 0, i.e. the non-negativity of the function 

and some physical consequences which are expressed via inequalities among radial 
expectation values. 

From the inequality h(r)  2 0 one directly observes that for each atomic system 
described by the density p ( r )  there always exists a minimal value a" > 0 given by 

such that for any a 2 a" the density function g,(r) is logarithmically convex. Taking 
into account that the asymptotic behaviour of p(r) is like roexp( -mr ) ,  where. I is 
the first ionization potential and p = 2 ( 1 / m  - 1) , one has that au > max{p, 0 )  
(Tal 1978). 

To have an idea about the value of au, we have calculated it by means of the 
near-HartreeFock atomic wavefunctions of Clementi and Roetti (1974) for all neutral 
atoms with Z < 54. In doing so, care. has been taken about thc non-reliability of 
the corresponding ground-state density by considering the above mentioned physical 
behaviour of p(r) at large distances. The numerical results of a,, are shown in table 1. 
Therein one notices that: (i) the only atoms with a log-convex electron density p ( r )  
are hydrogen, where it is rigorous, and helium, (ii) for atoms with a nuclear charge 
Z, such that 3 < Z < 14, a" varies from 1.39 to 2.81 and (iii) for atoms with Z > 15, 
a" is always bigger than 3.00 without any monotonic behaviour; its maximum value is 
5.98 for xenon (Z = 54). 

The specific behaviour of au can be seen more transparently in figure 1 where the 
data contained in table 1 are shown. A simple phenomenological fit for a" in t e r m  
of Z has not been found. 

Since Ing,(r) is convex for some a, then In X p  is also convex (Karlin el al 1961) 
forp 2 0. Here X p  denotes the quantities 

where r(x) denotes the well known gamma function, and p p  are the moments around 
the origin of the density function g(r) given by 

Here the symbol (P) denotes the mth radial expectation value defined as 

(P) Jr'"p(r) d r .  
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lsble 1. Values of 010 for all neutral atoms, 1 < Z < 54, oblained with Clementi-Roetli 
near-HarIraFock wavcfunclions. ?he atomic density funclion p( r ) / r " ,  ~1 00. is 
logarilhmicalg convex. Atomic unia are used throughout. 
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l?&ing into account (2) and (3). this inequality transforms into the following 
general relationship among radial expectation values: 

which is valid for any many-electron system with a 2 a, and the above mentioned 
values of p ,  q, U and b. This relationship generalizes and improves the accuracy of all 
the similar atomic inequalities previously published (Bapline 1970, Blau et 01 1973, 
Gadre 1979). 

The richness of this relationship will be illustrated by taking into account the case 
p > q  withp = q + h  and m 2 0. Then, (4) becomes 

where 0 < U < 1, a 2 a,, and n = q - a 2 -a. Let us consider several sets of 
inequalities contained in this relationship: 

A. For U = $, (5 )  reduces as 

with m 1 0, a 2 a,, and n 2 --a. Here, we will analyse in detail only the subcases 
nl - 1 *"ti 7 ... - I ".._ -. 

A,. If m = 1, then (6) simplifies as: 

where one has already considered that for a k e d  n the best bound corresponds to 
the value a = a" Subcases of (7)  are: 

which are more accurate than the corresponding hounds known up to now (Gadre 
1979), at least for all the ground-state neutral atoms up to Xe. 

It is interesting to recall here the inequality 

(r)(f-2) 2 I (n + 2)2 (J"-')' with n > -1 
~ n + i j ( n + 3 j  



Letter to the Editor L303 

recently obtained by the authors (Angulo and Dehesa 1991) with only the assumption 
of monotonically decreasing behaviour (also called unimodality with mode at the 
origin or monotonicity of first degree or, simply, monotonicity) for the electron density 
p(r) .  SubcaSeS of (12) are 

The comparison between (7) and (12) shows that, for a given n, the lower bound 
(7) is higher, and so better, than the corresponding one given by (12) for the atomic 
systems with 

< (n + 2)(n + 1) 
In particular, this tells you that (i) the inequality (8) is more accurate than that given 
by (13) for all N-electron systems where 01" < 2, as occurs in the neutral atoms 
with Z=1,2 and 6-10, and (U) the inequalities (7) with n 2 1, such as e.g. those 
given hy (9), (10) and ( l l ) ,  are more accurate than the corresponding ones (12), 
together which those given by (14), (15) and (16), for all neutral atoms, hydrogen 
to xenon. This comparison seems to  indicate that the log-convexity of the atomic 
electron function p(r)/ru0 is, generally speaking, a stronger property than that of the 
monotonic decreasing of the eiectron density pirj. 

Even more interesting is the comparison of the inequality (7) based on the log- 
convexity of the atomic function p(r)/r"O with the recently found inequality (Angulo 
and Dehesa 1991) 

(17) 

obtained with the assumption of convexity for the electron density p(r). Subcases of 
(17) are: 

71:" ..,..""n*:̂ .̂. "I.,...". .I..,. c..- " L..".. - .I... .̂..̂-L,...̂.( /?\ :- ---- ̂ ^̂ .. ".- .L-- 
,110 *u,,,ya,ou,r J11VWl L u a ,  ,U, a y11"Gll ,' L U G  :"wG, VUUllU \,, w l l l U l G  aUuraLr; LLIdI, 

(22) 

the corresponding one given by (17) for those atomic systems having 

(I" < i (n  + 2)(n + 1). 

A few observations may now be made. 
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(i) The inequality (8) is more accurate than (18) for all N-electron systems with 
a,, c 1. The only neutral atoms satisfying this condition are H and He, where a,, = 0, 
i.e. the electron density p( r )  is logarithmically convex from the nucleus. 

(ii) The inequality (9) is more accurate than (19) for every N-electron system with 
a,, c 3. All the neutral atoms, hydrogen to silicon, as well as copper and zinc fulfil 
this condition. 

(iii) The inequalities (7) with n 2 2, of which (8) and (9) are two instances, are 
more accurate than the corresponding convexity-based inequaiities (17). of which (ZU) 
and (21) are again two particular subcases, for those many-electron systems satisfying 
the associated condition (22). All neutral atoms, hydrogen to xenon, belong to this 
class of electron systems. 

These observations show that the accuracy of the inequalities based on the loga- 
rithmic convexity of p(r)jr"0 is ereater than that of those based on the convexity of 
p(r) for both light and heavy atoms unless an expectation value of negative order is 
involved. 

A2. If m = 2, then (6) transforms into 

( f ) 2  forn > -ao. (23) (n + a,, + 4)(n + e,, + 3) 
(n + (Yg + 2)(n + a,, + 1) 

( f + 2 ) ( f - 2 )  2 

Some important subcases are: 

B. For a = i ,  (5) reduces to 

with m > 0, a 2 a,, and n > -au. In particular, for m = 2 one has 

where, again, we have considered that for a fixed n the value a = a,, gives the best 
bound. Some important subcases are: 
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C. For a = f ,  (5) reduces as 

with m 2 0, (L 2 a,, and n 2 -ao An important particular subcase occurs for m = 3 
and n = 0, i.e. 

where it is already included that the value a = (L,, gives the best bound. 
D. For a = f ,  (5) transforms into 

[r(n + a + 2m + I)]' r (n  + a + 1) +.,,,,/3-2 
(?+"-2)'(r-2) 2 (y ) [ r ( n  + a4m/3 + 1)i3 

(34) 

with m 2 0, a 2 a, and n > -aw A relevant particular subcase occurs for n = 0 and 
m = 3, that is 

where, again, the optimal value a = a,, was taken into account. 
Finally, for completeness, let us mention that other sets of inequalities have 

Matcha 1981, Angulo and Dehesa 1991) and/or the nuclear charge Z (GAlvez and 
Porras 1991). Among them, particularly connected to this work are the inequalities 
(Gilvez and Porras 1991) 

bees p"b!$.hefi, *&,hi& ifi;,&Je p,(jre thZB thrc :&ia! expec:n~os p&jre 8-6 

of which some particular cases are 

(r-') < Z ( r - ' )  ( r - ' )  < z2 ( r )  2 2 
for neutral atoms. 

p(r )  of an atomic system in its ground state has the following property: the func- 
tion p ( r ) / P o  is logarithmically convex with 01" given by (1). Secondly, this property 
has been used to obtain a general, rigorous and compact inequality involving up 
to three radial expectation values, which includes, as particular cases, all the sim- 
ilar inequalities previously published. Thirdly, by means of the near-Hartree-Fock 
atomic wavefunctions of Clementi and Roetti, the log-convexity property has been 
investigated. The analysis of the first 54 neutral atoms shows that a" varies non- 
monotonically with Z, its values going from zero (H, He) to  5.98 (Xe). This indicates 
that hydrogen and helium are the only two atoms to  be logarithmically convex from 
the origin. Finally, the Hartree-Fock analysis of some of the encountered inequalities 
shows that the log-convexity of the atomic function p(r)/r"o produces inequalities 

. .  m I ..-- ^_._^ I."" I.--.. "L *I.". .I.̂  "..L"-:..",h. "....-"""a e,n-*-,." A....":... 
1" ~uiitiiiaiuc, ii uas vcc;li XIVWIL uiai LUG q m c ~ t ~ ~ y  avtirdgru ci-icuu~~ utiirirry 
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of, generally speaking, higher accuracy than those based on either the monotonic 
decreasing or even the convexity of the electron density p ( r )  for both light and heavy 
atoms unless expectation values of negative order are involved. 
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