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LElTER TO THE EDITOR 

Improved lower bounds for the atomic charge 
density at the nucleus 

F J Gilvez, I Porras, J C Angulo and J S Dehesa 
Departamento de Fisica Moderna, Facultad de Ciencias, Universidad de Granada, E-18071 
Granada, Spain 

Received 11 March 1988 

Abstract. Lower bounds F ( a ,  p) to the electronic charge density of atomic systems with 
N electrons at the nucleus, p(O), are given by means of any two radial expectation values 
( r e )  and ( r P ) ,  for real (Y #p, in a rigorous and simple way. In particular, p ( 0 ) a  
( N / 8 ~ ) ( r - ~ ) ~ / ( r - ' )  which improves bounds found previously. An interesting property of 
these bounds is that they are equal to the exact value p ( 0 )  in the limit p + -3 for any fixed 
(Y value. 

The electronic charge density of N-electron systems with nuclear charge 2 at the 
nucleus p ( 0 )  is an important ingredient in the study of isotope shifts of atomic spectra, 
particularly field shifts (Blundell et al 1984, 1987, Otten 1987). Also it plays a relevant 
role in various physical problems (Thirring 1981) such as parity violation (Bouchiat 
and Bouchiat 1974, Henley and Wilets 1976) and the determination of the average 
electron density ( p )  (Tal and Levy 1980, Gadre and Chakravorty 1986a), a quantity 
recently found to be experimentally measurable from the form factor of scattered 
x-rays (Hyman et a1 1978, 1984). 

In addition, p ( 0 )  has been shown to be related to the atomic binding energy 
(Hoffmann-Ostenhof et a1 1978), the total electron-nucleus attraction energy (Sen 
1984) and the Thomas-Fermi kinetic and Dirac exchange energy density functionals 
(Pathak and Bartolotti 1985). Nevertheless, to our knowledge, no exact expression of 
p (0) is available for light and heavy atoms although some approximate calculations 
and parametrisations are often mentioned (Blundell et a1 1984, 1987, Otten 1987). 

There exist rigorous upper bounds to p ( 0 )  due to Hoffmann-Ostenhof et al (1978) 
in terms of the radial expectation value (I-') of the electronic charge density p ( r )  and, 
for S-state atoms and ions, to King (1984) by means of (r;') and (r;;). Also Tal and 
Levy (1980) found additional approximate upper bounds in terms of (r') ,  with a > -3 
and ( p " ) ,  with a > 1. Lower bounds to p ( 0 )  are even more scarce in the literature. 
The only rigorous result has been found for S-state atomic systems by King (1984). 

Recently Gilvez and Dehesa (1988) have derived rigorous lower bounds to p ( 0 )  
by means of ( T u )  for any real a > -3 as 

of which that corresponding to a = -2, i.e. 
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is sharper than those with a>-2. The quality of the last bound monotonically 
decreases with N for neutral atoms. For clarity, let us state that ( r e )  refers to 

( r a )  = r a p (  r )  dr. 
N ( 3 )  

Here we will improve the quality of these bounds by generalising the bounds given 
by (1) and essentially conserving their simplicity. We have found that p ( 0 )  may be 
bounded from below in terms of any two expectation values ( r a )  and ( r P )  as 

where a and p are real numbers, a > p, and 

The symbol B denotes the beta function defined by 

For a fixed a, the sharper these lower bounds F(a, p ) ,  the smaller is p. Then, the 
lower bound F ( a ,  p )  of highest quality is obtained when p + -3  for a fixed a value 
since expectation values ( r P )  with p S -3  are not physical. Furthermore, the lower 
bounds F (  a, p )  have the following interesting property: 

p ( 0 )  = lim F ( a ,  p ) .  ( 5 )  
p + - 3  

Before proving all these results, let us note that the inequality (4) for a = -1  and 
p = -2 gives 

N ( r-'j2 
87r ( r  I )  

p ( 0 ) S  F(-1, -2) =- - 

and that F(0,  a )  is exactly the bound given by the inequality (1). 
It can be shown that this bound F(-1, -2) is sharper than any other F(-1, p ) ,  

p > -2. The quality of this bound is analysed in table 1 for some ground-state atoms 

Table 1. Comparison between the lower bounds F(0,  -2) and F(-1, -2) given by (2) and 
(6) respectively, and the values of p ( 0 )  calculated with non-relativistic Hartree-Fock 
wavefunctions for several neutral atoms. Atomic units are used everywhere. The last two 
columns give the ratios F(0,  -2)/p(O) and F(-1, -2)/p(O) respectively. 

2 5.99 1.687 
4 14.42 2.102 
7 27.71 2.614 

10 41.49 3.111 
14 61.16 3.517 
18 81.39 3.870 
36 175.86 5.097 
54 274.44 5.870 
86 453.83 7.030 

3.6 1.35 
35 10.06 

206 46.91 
620.1 122.78 

1766 307.65 
3 840 607.24 

32 235 3 857.29 
111 217 11 279.62 
457 897 38 200.39 1 

1.69 
15.74 
81.81 

220.16 
592.45 

1225.92 
8 686.14 

27 568.34 
100 251.22 

37.5 46.9 
28.7 44.9 
22.8 39.7 
19.8 35.5 
17.4 33.5 
15.8 31.9 
12.0 26.9 
10.1 24.8 
8.3 21.9 
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where also a comparison is made with the bound F(0 ,  - 2 )  given by the inequality ( 2 ) .  
The non-relativistic values of (r-l) and (F2) are quoted by Desclaux (1973) and those 
of p ( 0 )  are based on non-relativistic atomic wavefunctions as quoted by Tal and Levy 
(1980), Gadre and Chakravorty (1986b) and Ghosh and Parr (1987). One should 
notice that although the bound F(-1, - 2 )  is not yet sharp, it is of much better quality 
than F(0,  - 2 ) ,  and its decreasing behaviour against Z is slower. 

To prove the main inequality (4) we start from the fact that the spherically averaged 
charge density p (  r )  decreases monotonically in atomic systems (Sperber 1971, 
Weinstein et al 1975). Then, one may write for any positive q that 

where wq is the so-called frequency moment of order q of the density function p(r). 
Recently, it has been shown (Dehesa et al 1988) that w, (with n not necessarily integer 
but greater than one) is bounded from below as 

provided a > p > 3( 1 - n)/ n and with 

(a - P ) ( n  - 1)' n - 1 
C(a,p,  n ) = n " ( ~ ~ - p ) ~ " - '  

The combination of both inequalities (7) and (8) produces a set of lower bounds 
which have an increasing behaviour with q. Then, the best lower bound is for q+m. 
This lower bound turns out in a straightforward manner to be that given by the 
inequality (4). 

Let us now prove equation ( 5 ) .  We start with the expression of F(a, p )  given by 
(4). For a fixed a value, we will investigate the limit 

lim F ( a , p ) = l i m F ( a ,  - 3 + ~ ) .  
@ + - 3  E + O  

To do that, we note that 

(9) 

where S is a very small positive finite number so that p (  r) = p ( 0 )  in the interval 0 d r 4 S.  
On the other hand, operating in a similar manner and taking into account (46) one 
has that 

The combination of (9)-(11) leads to the required limiting equation (5). 
In conclusion, we have found an infinite set of lower bounds F(a, p )  to the charge 

density of atoms and ions at the nucleus in terms of any pair of radial expectation 
values in a fully rigorous way. They have two valuable characteristics: simplicity and 
exactness in the limit p + -3. In addition, the value F(-1, - 2 )  gives the sharpest 



L274 Letter to the Editor 

lower bound to p ( 0 )  known up to now. However, one should point out that its quality 
is not very high. So, there still exists space for further improvements. 

Finally, for the sake of completeness, let us indicate that a possible way to achieve 
lower bounds of higher quality is by improving p ( r )  s p(O),  which is the main ingredient 
of the inequality (4). This may be done by using better upper bounds to the atomic 
electronic density, as, e.g., those found by King (1983). In particular, the use of the 
inequality 

(where T denotes the atomic kinetic energy, and r, and a are determined so that 
p(O)(l- ar )  = T / 2 m  has a unique solution) leads with the procedure shown in this 
paper to a lower bound to p ( 0 )  which is similar (although not so simple and involving 
T )  to that given by inequality (4). The new lower bound is of higher quality than (4). 
Indeed, its ratio with the exact value of p ( 0 )  is 57% for He, 41% for Ne and 36% for 
Ar. These ratios are to be compared with 47%, 36% and 32% respectively as shown 
in table 1. One notices that a substantial improvement, especially for light atoms, is 
obtained. 

We are very grateful for partial financial support of the Comision Internacional de 
Ciencia y Tecnologia (CICYT), Spain. 
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