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Our aim in this paper is twofold. First, to find the necessary and sufficient condi-
tions to be satisfied by a given sequence of real numhess,_, to represent the
“entropic moments” [ 5[ p(x)]"dx of an unknown non-negative, decreasing and
differentiable (a.e) density functionp(x) with a finite interval support. These
moments are called entropic moments because they are closely connected with
various information entropiedRenyi, Tsallis, ..). Second, we outline an efficient
method for the reconstruction of the density function from the knowledge of its first
N entropic moments. €2001 American Institute of Physics.

[DOI: 10.1063/1.1360711

I. INTRODUCTION

The problem of momentg asks when a given sequence of complex numbers may be repre-
sented as the moments around the origin of a non-negative measure, defined on (Harre
burgeyp, on a half-line(Stieltjeg, on a finite intervalHausdorfj or on the unit circumferencghe
trigonometric moment problem

This is a classical topic in analysis which has illuminated an extraordinary number of scien-
tific subjects from both standpoints, theoretical and applied. Indeed, it has facilitated many
developmentsin function theory, in functional analysis, in spectral representations of operators,
in Fourier analysis as well as in probability and statistics. Also, it has numerous applications not
only in approximation theory, in numerical mathematics and for the prediction of stochastic
processes, but also in linear prediction, in inverse scattering, in digital filtering and for the deter-
mination of rigorous relationships among physical quantities of many-particle systems within the
framework of the density functional theory as well as in the design of algorithms for simulating
physical systems. The latter should not surprise anybody since the own terminology “problem of
moments” was taken by Stieltjes from Mechanics. Moreover, he used very often physical con-
cepts(mass, stability, electrostatic properties, ).in solving analytical problems?

In this paper, we shall focus our attention on the problem of entropic moments, which differs
from the ordinary moment problem above mentioned in that it does not consider the moments-
around-the-origin of a density functign(x) defined by

= [ X000, &
but the quantities
wp= JK[p(X)]”dX. 2

which are called frequency moments(fx), x e K, in probability and statistics.® The study of
these quantities was initiated by Yule following a suggestion of Pearson. Then®Sicisefully
employed them for the fitting of certain frequency curves. It happens that estimators based on
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frequency moments are, at times, much better than the ordinary moment estimates. Moreover, the
frequency moments are fairly efficient in the range where the ordinary moments are very
inefficient® This is so in some cases where the ra#gés unlimited and the density is poorly
known®

It is interesting to remark that the frequency momeajsare location independent wheh
=R (Hamburger cagethat is, two densities differing only in location have identical frequency
moments. In these cases, the location parameter can be provided by the mode, the median or any
other appropriate quantity.

We shall call the quantities, the “entropic” moments of the density functigi(x), because
they are closely connected to the so-called Renyi and Tsallis entropjg)pflefined’!? by

SR-—LInJ’[ (x)]9dx; >0 #1 J (x)dx=1 3
q'_l_q K p y q ] q ] Kp ]
and
1
Sg::q_—l 1—fK[p(x)]q dx|; g>0, g#1, JKp(x)dx=1, (4)

respectively. The entropic adjective allows us to identify more appropriately the momgfrtsm
the other type of momerftdmoments around the origin, central moments, factorial moments,
absolute moments, .). of a frequency distribution.

In addition, the entropic moments, have various physical meanings depending on the nature
of the associated density functign(charge density, momentum density, )..Indeed, they char-
acterize some density functionals which describe certain physical quantities of fundamental and/or
experimentally accessible character such as, up to a constant factor, the Thomas—Fermi kinetic
energy (ss3), the Dirac exchange energyf;;) and the electron average density,] of the
many-electron systems; see, e.g., Ref. 24.

This paper has a twofold aim. First we solve the Hausdorff entropic moment problem in Sec.
I, which allows us to characterize a density function by means of its entropic moments. Then, in
Sec. lll, we describe a practical procedure to reconstruct the density from its entropic moments.

II. THE HAUSDORFF ENTROPIC MOMENT PROBLEM

LetK=[0,a] with a>0, and M(K) the set of real density functiorf§x) bounded orK and
such thatf(0)=1 andf(a)=0. We have obtained the following result for this set of functions.
Theorem 1: The necessary and sufficient conditions which the given sequence of positive
numberswg,wq, . . . ,w,, - . ., Must satisfy in order that a positive, decreasing and differentiable
(a.e.) density function(k),x € K, having these entropic moments (2) may exist, are given by

w
Ekm"rllzo and >Xw,=0, (5)

for k,m=0,1,2, .., and being

k
1

Ekwmzwm—( omi1t - (D50

Proof: Let us first prove the sufficiency condition. For convenience we adopt the notations

=wm+1
Mm=mi1

V=0, mM=0,12...,
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so thatyv,=mu,_; for m=1,2,..., andu_,=a. If conditions(5) are fulfilled, the Hausdorff
theorem for the ordinary moment problem on the intefl] allows us to statethat

1
A!z(t)=0 on [0,1], such thatf tMz(t)dt= v,
0
and
1
J!'g(t)=0 on [0,1], such thatf t"g(t)dt=pup,.
0
On the other hand, let us define
1
h(t):f z(s)ds, te[0,1].
t

So, h'(t)=—z(t). Moreover,h(t) has the same ordinary momentsgs); then, they are
equal. Thugy(t) is a decreasing function singg (t) = —z(t). We can defind (x) as its inverse
with xe[g(1)=0,g(0)=a], which will be positive, decreasing and differential{iee). One
should realize that in case thgft) is a constant>0 on some subintervals, this would provoke
a jump discontinuity forf (x) in x=c andvice versaThen, it is straightforward to obtain that

a
J [f(X)]"dx=vp=w,; m=0,12,...
0

To prove necessity, we define the inverse f) ash(t), te[0,1], which is decreasing and
differentiable(a.e). A simple change of variable= f(x) allows us to find the following relation-
ship between the entropic momentsfg¢k) and the ordinary moments of(t):

Wmt1
m+1’

a
mf tTh(t)dt= m=0,1,2,...
0

Now we consider the function(t)=—h’'(t), te[0,1], and we realize that its ordinary mo-
ments are given bw,,. Then, the direct application of the classical Hausdorff moment above
mentioned leads us to the relatiofis. O

[ll. DENSITY RECONSTRUCTION

Associated to any moment problem there exists an inverse problem, namely that of the
reconstruction of the corresponding density function. Moreover, in practical purposes we have at
our disposal only a finite number of moments. The inverse Haus@mdfnary) moment problem
(1), that is the determination of the densjiyx) from the moments around the orig{p,}1—g,
was first proposed by Pafnuty ChebysH&it is a severely ill-conditioned problem because of the
lack of a priori information and the large involved numerical instabilitlés!® To avoid these
instabilities, various regularization metho@&khonov, maximum-entropy methods, orthogonal-
polynomials based methods.) have been proposed; see Ref. 16 for a brief survey. The
maximum-entropy method has been widely and efficiently used for scientific applicititthé2
It consists in maximizing an entropic functional, and it allows us to find a density estimate which
converges to the solution of the problem when the number of the involved moments increases.

Here we shall use a maximum entropy method to solve the inverse Hausdorff entropic mo-
ment problem discussed in the previous section when the number of known entropic moments is
finite. Based on the proof of Theorem 1, this method first computes the maximum-entropy esti-
mate to the solutioz(t) of the inverse Hausdorff problem related to the sequépgg, —, with
Mmn= w,.1/n+1. Then, the inverse of the estimated) is the desired approximated solution of
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FIG. 1. Graphical representation of the functid)(‘[):%wLﬁ,ln[l/(AH B) —1] and its estimates from the entropic
momentsw,, n=0,1,.. ., N with N=4 andN=8.

our problem. Let us notice that, although we know that the asymptbitie ) approach taz(t)
is inversible, the differenith estimates ta(t) may not have this property. In the case that there
is not any inversible approach, our method is not applicable.
Although we may use any entropic functional to be maximized, we have chosen the Fisher
information measure defined by
[f'(0)]?
o J'[O,a] f(x) dx,

if f(x)>0, andE{=0 if f(x)=0. Contrary to other entropic functionalg.g., Boltzmann—
Shannon information entropy, Burg entropy, positiieentropy), this choice has the advantage of
taking into account information from the derivative of the function, what is expected to have a
strong smoothing effect on the estimate. In doing so we follow the operation lines of Borwein,
Limber, and Nolf® to which we refer for further details.

To illustrate the method and the rate of convergence of the Fisher-information estimates for a
function f(t) from its first N+1 entropic moment&)nzfé[f(t)]”dt, n=0,1,...,N, we have
represented in Fig. 1 the exact values and the Fisher estimates for théNcadeandN=28 of a
specific function, namely,

1 1

L 1I ! 1 ith A= ! d B=
2 0" An e L) With A= and B s

fW=3%1 1+e ©

We visually notice in the figure the fast convergence of the method for this function as well
as the good precision reached with nine entropic moments.

Finally we show in Fig. 2 the reconstruction of the functifqt) given by (6) from the first
N+ 1 moments around the origjm,= [3f(t)t"dt in the case®=4 and 8. The comparison of the
two figures for the two correspondingth cases illustrates that there are functions that may be
better estimated or reconstructed from the entropic mom@ithat from the ordinary moments
(1). Needless to say that there exist other functions where the reciprocal situation occurs; consider,
for example, the inverse of the functidiit) given by Eq.(6).
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FIG. 2. Graphical representation of the functif) = %Jr 1—10 In[1/(At+B) —1] and its estimates from the moments,
n=0,1,...,N with N=4 andN=8.

V. CONCLUSIONS

In this paper we have posed the entropic moment problem, whose elements are information
measures of an unknown density function. Physically, the entropic moments may also describe
some fundamental and/or experimentally accessible quantities of quantum-mechanical systems as
already pointed out. Then, we have solved the Hausdorff entropic moment problem by use of
some specific properties of the inverse function of the density according to the lines of a recent
work of the authoré* Moreover, our strategy has let us outline a maximum-entropy method based
on an algorithm of minimization of the Fisher information meaStvehich allows one to solve
the inverse finite Hausdorff entropic moment problem; that is, to determine the density function
from its first few entropic moments. We realize that other density reconstruction procedures which
do not include the previous determination of the inverse density fungiibich would avoid the
requirement of decreasing behavior for the densitpuld be desirable.
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