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Our aim in this paper is twofold. First, to find the necessary and sufficient condi-
tions to be satisfied by a given sequence of real numbers$vn%n50

` to represent the
‘‘entropic moments’’* [0,a]@r(x)#ndx of an unknown non-negative, decreasing and
differentiable ~a.e.! density functionr(x) with a finite interval support. These
moments are called entropic moments because they are closely connected with
various information entropies~Renyi, Tsallis, . . .!. Second, we outline an efficient
method for the reconstruction of the density function from the knowledge of its first
N entropic moments. ©2001 American Institute of Physics.
@DOI: 10.1063/1.1360711#

I. INTRODUCTION

The problem of moments1,2 asks when a given sequence of complex numbers may be re
sented as the moments around the origin of a non-negative measure, defined on the line~Ham-
burger!, on a half-line~Stieltjes!, on a finite interval~Hausdorff! or on the unit circumference~the
trigonometric moment problem!.

This is a classical topic in analysis which has illuminated an extraordinary number of s
tific subjects from both standpoints, theoretical and applied. Indeed, it has facilitated
developments3 in function theory, in functional analysis, in spectral representations of opera
in Fourier analysis as well as in probability and statistics. Also, it has numerous application
only in approximation theory, in numerical mathematics and for the prediction of stoch
processes, but also in linear prediction, in inverse scattering, in digital filtering and for the
mination of rigorous relationships among physical quantities of many-particle systems with
framework of the density functional theory as well as in the design of algorithms for simul
physical systems. The latter should not surprise anybody since the own terminology ‘‘probl
moments’’ was taken by Stieltjes from Mechanics. Moreover, he used very often physica
cepts~mass, stability, electrostatic properties, . . .! in solving analytical problems.1,4

In this paper, we shall focus our attention on the problem of entropic moments, which d
from the ordinary moment problem above mentioned in that it does not consider the mom
around-the-origin of a density functionr(x) defined by

mn5E
K
xnr~x!dx, ~1!

but the quantities

vn5E
K
@r~x!#ndx, ~2!

which are called frequency moments ofr(x), xPK, in probability and statistics.5–9 The study of
these quantities was initiated by Yule following a suggestion of Pearson. Then Sichel6,7 usefully
employed them for the fitting of certain frequency curves. It happens that estimators bas
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frequency moments are, at times, much better than the ordinary moment estimates. Moreo
frequency moments are fairly efficient in the range where the ordinary moments are
inefficient.10 This is so in some cases where the rangeK is unlimited and the density is poorl
known.8

It is interesting to remark that the frequency momentsvn are location independent whenK
5R ~Hamburger case!; that is, two densities differing only in location have identical frequen
moments. In these cases, the location parameter can be provided by the mode, the media
other appropriate quantity.9

We shall call the quantitiesvn the ‘‘entropic’’ moments of the density functionr(x), because
they are closely connected to the so-called Renyi and Tsallis entropies ofr(x) defined11,12 by

Sq
R
ª

1

12q
ln E

K
@r~x!#q dx; q.0, qÞ1, E

K
r~x!dx51, ~3!

and

Sq
T
ª

1

q21 F12E
K
@r~x!#q dxG ; q.0, qÞ1, E

K
r~x!dx51, ~4!

respectively. The entropic adjective allows us to identify more appropriately the momentsvn from
the other type of moments8 ~moments around the origin, central moments, factorial mome
absolute moments, . . .! of a frequency distribution.

In addition, the entropic momentsva have various physical meanings depending on the na
of the associated density functionr ~charge density, momentum density, . . .!. Indeed, they char-
acterize some density functionals which describe certain physical quantities of fundamental
experimentally accessible character such as, up to a constant factor, the Thomas–Fermi
energy (v5/3), the Dirac exchange energy (v4/3) and the electron average density (v2) of the
many-electron systems; see, e.g., Ref. 24.

This paper has a twofold aim. First we solve the Hausdorff entropic moment problem in
II, which allows us to characterize a density function by means of its entropic moments. Th
Sec. III, we describe a practical procedure to reconstruct the density from its entropic mom

II. THE HAUSDORFF ENTROPIC MOMENT PROBLEM

Let K5@0,a# with a.0, andM(K) the set of real density functionsf (x) bounded onK and
such thatf (0)51 and f (a)50. We have obtained the following result for this set of function

Theorem 1: The necessary and sufficient conditions which the given sequence of po
numbersv0 ,v1 , . . . ,vn , . . ., must satisfy in order that a positive, decreasing and differentia
(a.e.) density function f(x),xPK, having these entropic moments (2) may exist, are given by

Sk
vm11

m11
>0 and Skvm>0, ~5!

for k,m50,1,2,. . . , and being

Skvm5vm2S k
1Dvm111 . . . 1~21!kvm1k .

Proof: Let us first prove the sufficiency condition. For convenience we adopt the notati

mm[
vm11

m11
, nm[vm ; m50,1,2,. . . ,
 May 2008 to 150.214.102.130. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



e

-
ove

of the
ave at

he

l-
The

hich
ses.

c mo-
ents is

esti-

of

2311J. Math. Phys., Vol. 42, No. 5, May 2001 The Hausdorff entropic moment problem

Downloaded 19
so thatnm5mmm21 for m51,2,. . . , andm21[a. If conditions ~5! are fulfilled, the Hausdorff
theorem for the ordinary moment problem on the interval@0,1# allows us to state1 that

'!z~ t !>0 on @0,1#, such thatE
0

1

tmz~ t !dt5nm

and

'!g~ t !>0 on @0,1#, such thatE
0

1

tmg~ t !dt5mm .

On the other hand, let us define

h~ t !5E
t

1

z~s!ds, tP@0,1#.

So, h8(t)52z(t). Moreover,h(t) has the same ordinary moments asg(t); then, they are
equal. Thusg(t) is a decreasing function sinceg8(t)52z(t). We can definef (x) as its inverse
with xP@g(1)50,g(0)5a#, which will be positive, decreasing and differentiable~a.e.!. One
should realize that in case thatg(t) is a constantc.0 on some subintervals, this would provok
a jump discontinuity forf (x) in x5c andvice versa. Then, it is straightforward to obtain that

E
0

a

@ f ~x!#m dx5nm5vm ; m50,1,2, . . . .

To prove necessity, we define the inverse off (x) ash(t), tP@0,1#, which is decreasing and
differentiable~a.e.!. A simple change of variablet5 f (x) allows us to find the following relation-
ship between the entropic moments off (x) and the ordinary moments ofh(t):

mE
0

a

tmh~ t !dt5
vm11

m11
, m50,1,2, . . . .

Now we consider the functionz(t)52h8(t), tP@0,1#, and we realize that its ordinary mo
ments are given byvm . Then, the direct application of the classical Hausdorff moment ab
mentioned leads us to the relations~5!. h

III. DENSITY RECONSTRUCTION

Associated to any moment problem there exists an inverse problem, namely that
reconstruction of the corresponding density function. Moreover, in practical purposes we h
our disposal only a finite number of moments. The inverse Hausdorff~ordinary! moment problem
~1!, that is the determination of the densityr(x) from the moments around the origin$mn%n50

` ,
was first proposed by Pafnuty Chebyshev.13 It is a severely ill-conditioned problem because of t
lack of a priori information and the large involved numerical instabilities.14–19 To avoid these
instabilities, various regularization methods~Tikhonov, maximum-entropy methods, orthogona
polynomials based methods, . . .! have been proposed; see Ref. 16 for a brief survey.
maximum-entropy method has been widely and efficiently used for scientific applications.16,20–22

It consists in maximizing an entropic functional, and it allows us to find a density estimate w
converges to the solution of the problem when the number of the involved moments increa

Here we shall use a maximum entropy method to solve the inverse Hausdorff entropi
ment problem discussed in the previous section when the number of known entropic mom
finite. Based on the proof of Theorem 1, this method first computes the maximum-entropy
mate to the solutionz(t) of the inverse Hausdorff problem related to the sequence$mn%n50

` with
mn[ vn11 /n11. Then, the inverse of the estimatedz(t) is the desired approximated solution
 May 2008 to 150.214.102.130. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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our problem. Let us notice that, although we know that the asymptotic (N→`) approach toz(t)
is inversible, the differentNth estimates toz(t) may not have this property. In the case that th
is not any inversible approach, our method is not applicable.

Although we may use any entropic functional to be maximized, we have chosen the F
information measure defined by

Ef[E
[0,a]

@ f 8~x!#2

f ~x!
dx,

if f (x).0, and Ef50 if f (x)[0. Contrary to other entropic functionals~e.g., Boltzmann–
Shannon information entropy, Burg entropy, positiveL2 entropy!, this choice has the advantage
taking into account information from the derivative of the function, what is expected to ha
strong smoothing effect on the estimate. In doing so we follow the operation lines of Bor
Limber, and Noll23 to which we refer for further details.

To illustrate the method and the rate of convergence of the Fisher-information estimate
function f (t) from its first N11 entropic momentsvn5*0

1@ f (t)#ndt, n50,1, . . .,N, we have
represented in Fig. 1 the exact values and the Fisher estimates for the casesN54 andN58 of a
specific function, namely,

f ~ t !5
1

2
1

1

10
lnS 1

At1B
21D , with A5

1

11e5 and B5
1

11e25 2
1

11e5 . ~6!

We visually notice in the figure the fast convergence of the method for this function as
as the good precision reached with nine entropic moments.

Finally we show in Fig. 2 the reconstruction of the functionf (t) given by ~6! from the first
N11 moments around the originmn5*0

1f (t)tn dt in the casesN54 and 8. The comparison of th
two figures for the two correspondingNth cases illustrates that there are functions that may
better estimated or reconstructed from the entropic moments~2! that from the ordinary moment
~1!. Needless to say that there exist other functions where the reciprocal situation occurs; co
for example, the inverse of the functionf (t) given by Eq.~6!.

FIG. 1. Graphical representation of the functionf (t)5
1
21

1
10 ln@1/(At1B) 21# and its estimates from the entropi

momentsvn , n50,1,. . . ,N with N54 andN58.
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IV. CONCLUSIONS

In this paper we have posed the entropic moment problem, whose elements are infor
measures of an unknown density function. Physically, the entropic moments may also de
some fundamental and/or experimentally accessible quantities of quantum-mechanical sys
already pointed out. Then, we have solved the Hausdorff entropic moment problem by u
some specific properties of the inverse function of the density according to the lines of a
work of the authors.24 Moreover, our strategy has let us outline a maximum-entropy method b
on an algorithm of minimization of the Fisher information measure23 which allows one to solve
the inverse finite Hausdorff entropic moment problem; that is, to determine the density fun
from its first few entropic moments. We realize that other density reconstruction procedures
do not include the previous determination of the inverse density function~which would avoid the
requirement of decreasing behavior for the density! would be desirable.
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