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Inverse atomic densities and inequalities
among density functionals
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Rigorous relationships among physically relevant quantities of atomic systems
~e.g., kinetic, exchange, and electron–nucleus attraction energies, information en-
tropy! are obtained and numerically analyzed. They are based on the properties of
inverse functions associated to the one-particle density of the system. Some of the
new inequalities are of great accuracy and/or improve similar ones previously
known, and their validity extends to other many-fermion systems and to arbitrary
dimensionality. ©2000 American Institute of Physics.@S0022-2488~00!01512-7#

I. INTRODUCTION

The interest in the description of many properties ofD-dimensionalN-fermion systems in
terms of the one-particle density

r~r ![ (
s i521/2

11/2 E uC~r ,r2 ,...,rN ;s1 ,s2 ,...,sN!u2dDr 2¯dDr N

has increased in the last years, mainly due to the relevant role which plays in a density fun
theory framework.1 Much attention has been paid to the study of some observables, such
radial expectation values,2,3

^r n&[E r nr~r !dDr ~n.2D !

and the mean logarithmic radius,4–6

^ ln r &[E ~ ln r !r~r !dDr

which is the logarithm of the geometric mean of the variable,7 and it is related to the quantitie
^r n& as

^ ln r &5Fd^r n&
dn G

n50

. ~1!

The expectation valueŝr n& are proportional to the moments

mn[E
0

`

r nr~r !dr ~2!

of the spherically-averaged one-particle density

r~r !5
1

VD
E r~r !dVD ,
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whereVD52pD/2/G(D/2) is theD-dimensional solid angle, anddDr 5r D21drdVD . More pre-
cisely, ^r n&5VDmn1D21 , and the normalization is given bŷr 0&51.

For atomic systems, the expectation values^r n& and ^ ln r& have been extensively used
bound and/or estimate other global quantities6,8,9 and the density itself.10–12 Among those quanti-
ties, let us remark the so-called frequency moments of bothr(r ) andr(r ),

vn[E rn~r !dDr , ~3!

v̂n[E rn~r !dDr 5VDE
0

`

r D21rn~r !dr. ~4!

It can be proved thatvn>v̂n for any n>1, andvn<v̂n for 0,n<1. To do that, it is sufficient
to expand the functionF@r(r )#5rn(r ) aroundrn(r ) as

rn~r !5rn~r !1@r~r !2r~r !#nrn21~r !1@r~r !2r~r !#2n~n21!gn21~r !

with g(r )>0 being a function betweenr(r ) and r(r ) for eachr . The last term of the above
equation is non-negative forn>1, and then

rn~r !>rn~r !1@r~r !2r~r !#nrn21~r !

which, after integrating ondDr and taking into account that*r(r )rn21(r )dDr 5*rn(r )dDr ,
provides the desired inequalityvn>v̂n for n>1. Similarly, the relationshipvn<v̂n for 0,n
<1 is obtained.

For many-fermion systems, it is well-known1 that the frequency momentsv4/3 andv5/3 are
related to the local density approximations to the exchange and kinetic energiesK0 and T0 ,
respectively, as

K05
~3N!4/3

4p1/3 v4/3, T05
~3N!5/3p4/3

10
v5/3

and thatv25^r& is the average density. Concerning the radial expectation values^r n&, specially
relevant are those corresponding ton521 andn52 in atomic systems. They are proportional
the electron–nucleus attraction energy~which absolute value will be denoted byEeN! and the
diamagnetic susceptibility, respectively. In this sense, it is worthy to mention that

EeN5ZN^r 21&, ~5!

Z being the nuclear charge of theN-electron atom.
Another physically meaningful quantity is the information entropy of the density and

spherical average,Sr and Ŝr respectively, defined as13

Sr52E r~r !ln r~r !dDr , ~6!

Ŝr52E r~r !ln r~r ! dDr , ~7!

which play a relevant role in an information-theoretic framework as a measure of the deloc
tion of the density. They are related to the frequency moments as

Sr52Fdvn

dn G
n51

,
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Ŝr52Fdv̂n

dn G
n51

.

Consequently with the relationship betweenvn and v̂n , it is easily shown thatSr<Ŝr .
Different upper and lower bounds on the frequency momentsvn ~Ref. 8! and the information

entropySr ~Ref. 6! have been variationally obtained, in terms of radial expectation values a
the mean logarithmic radius.

The aim of this work is to obtain a new set of rigorous relationships among the afore
tioned quantities~i.e., radial expectation values, mean logarithmic radius, frequency moments
information entropy! starting from several known inequalities among them. In doing so, we
study the global properties of a new functionz(t), which is the inverse function of@r(r 1/D)#1/D,
as described in Sec. II. The new general inequalities are obtained and numerically analyzed
III, and some monotonicity properties ofz(t) are studied in Sec. IV. Finally, some concludin
remarks are given.

II. METHOD

Let us consider a rescalingf (r )[ra(r b) of a monotonically decreasing functionr(r ).0, for
arbitrary a,b.0. The decreasing character ofr(r ) induces the same property on the functi
f (r ). Consequently,f (r ) reaches its maximum valuef max5ra(0) at r 50, decreasing to zero asr
goes to infinity. Such a monotonic behavior allows one to consider the well-defined in
function f 21(t), which is also decreasing, and its domain being the interval@0,ra(0)#. Then, the
function z(t)[ f 21(t) assigns the valuer to the abscissat5ra(r b). More clearly,

z@ra~r b!#5r

or, equivalently,

z@ra~r !#5r 1/b.

Let us show now that, for specific values of the parametersa and b, there exists a strong
relationship between different global properties ofr(r ) and z(t), such as moments, frequenc
moments, mean logarithmic radius, and information entropy. We consider the general c
D-dimensional systems, but the three-dimensional one~i.e., D53! will be emphasized.

The momentmn of ordern.21 of the densityr(r ) is given by Eq.~2!, and it is related to the
corresponding radial expectation value as^r n&5VDmn1D21 . ForD53, V354p. Concerning the
inverse functionz(t), the moments

nn[E
0

ra(0)
tnz~ t !dt ~8!

are proportional to its radial expectation values as^tn&5VDnn1D21 , similarly to the case ofr(r ).
We now define the frequency moments ofz(t) by

Qn[VDE
0

ra(0)
tD21zn~ t !dt, ~9!

and its information entropy as

Sz[2E z~ t !ln z~ t !dDt52FdQn

dn G
n51

. ~10!

Let us prove that, fora5b51/D, the moments and the frequency moments ofz(t) are related to
those ofr(r ) as
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nn5
D

~n11!VD
v̂ n11

D
~n.21!, ~11!

and

Qn5nVDmDn215n^r D(n21)& ~n.0!. ~12!

To do that, we perform the change of variablet5ra(r ) in Eq. ~8!, what gives rise to

nn52aE
0

`

r 1/bra(n11)21~r !r8~r !dr.

Integrating by parts this equation, one straightforwardly obtains the expression

nn5
1

b~n11!
E

0

`

r ~1/b! 21ra(n11)~r !dr,

which provides the desired relationship~11! betweennn and v̂ n11
D

by choosinga5b51/D and
taking into account Eq.~3!. Carrying out a similar procedure starting from Eq.~9!, the correspond-
ing relationship~12! betweenQn andmDn21 is also obtained.

From Eq. ~12!, it is observed that the radial expectation values of the charge densit
proportional to the frequency moments ofz(t) in the three-dimensional case as

^r n&5
3

n13
Q11 ~n/3! .

Concerning the information entropy and the geometric mean ofz(t), we only need to remembe
Eqs. ~6! and ~10!–~12! to obtain the following relationships involving the same functionals
r(r ):

^ ln t&52
1

D
~11Ŝr!, ~13!

Sz5212D^ ln r &. ~14!

To have an idea of the functional form ofz(t), let us consider the three-dimensional case co
sponding to the charge density of hydrogen-like atoms with nuclear chargeZ in the ground state,
namely,

r~r !5
Z3

p
e22Zr. ~15!

With the changet[r1/3(r 1/3), this equation transforms into

z~ t !5F 3

2Z
ln

Z

p1/3t G
3

, tP@0,Z/p1/3#. ~16!

Then, the functional form ofz(t) ~at least for hydrogenlike atoms! is (a2b ln t)3.
It is worthy to mention that Eqs.~11! and ~13! are also valid for nonmonotonic densitie

while Eqs.~12! and ~14! transform into inequalities as

Qn<nVDmDn21 ~n>1!, ~17!

Qn>nVDmDn21 ~0,n<1!, ~18!
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Sz>212D^ ln r &. ~19!

To see that, let us consider a density functionr(r ) having local extrema atr 1 ,r 2 ,...,r 2M21 ,
where thekth maximum and minimum are located atr 2k21 andr 2k , respectively~taking r 1[0 if
the first local extrema is a minimum!, and definer 0[0 andr 2M[1`. Then, and following the
same procedure as in Sec. II, let us define the functionszk(t) (k51,...,2M ), each one associate
to the piece ofr(r ) between consecutive extrema@what is allowed due to the monotonic charac
of r(r ) in such subintervals#, with zk(t)[0 out of its subinterval. Now, definez(t):@0,rmax

1/3 #
→@0,̀ ) as

z~ t ![(
k51

2M

~21!kzk~ t !.

Taking into account thatzk(t) is a monotonically increasing function for oddk and decreasing for
evenk, it is observed thatz(t) is monotonically decreasing, even for nonmonotonicr(r ).

For z(t) defined in such a way, it is not difficult to show that Eqs.~11! and~13! also hold. Let
us now prove the inequalities~17!–~19!. In doing so, let us consider thenth frequency moment of
z(t),

Qn[VDE
0

rmax
1/D

tD21F (
k51

2M

~21!kzk~ t !Gn

dt ~20!

as well as the sum

Sn[(
k51

M

@Qn
(2k)2Qn

(2k21)#5nVDE
0

`

r Dn21r~r !dr5nVDmDn21 , ~21!

where

Qn
(k)5~21!kVDF r k21

Dn r~r k21!2r k
Dnr~r k!

D
1nE

r k21

r k
r Dn21r~r !drG ,

is the nth frequency moment ofzk(t). Let us prove thatQn<Sn if n>1, andQn>Sn if 0 ,n
<1. To do that, consider the function

FM~n![F (
k51

2M

~21!kzk~ t !Gn

2 (
k51

2M

~21!k@zk~ t !#n. ~22!

Using induction onM , it can be proved thatFM(n)<0 if n>1 andFM(n)>0 if 0,n<1. This
result, together with Eqs.~20!–~22!, gives rise to the desired inequalities~17! and~18! which, after
taking into account Eq.~10!, provide also the inequality~19!.

In Secs. III and IV, different inequalities involving such kind of quantities are used to ob
a wide new set of relationships among them, and some particular cases corresponding to
systems will be explicitly given and analyzed.

III. APPLICATIONS: GENERAL INEQUALITIES

Let us consider any rigorous relationship involving moments and/or frequency moment
monotonically decreasing function. This is, for instance, the case of ground-state neutral
systems, for which the electron densityr(r ) is known to be monotonically decreasing. So, E
~11!–~12! allow us to replace the involved moments by frequency moments, and conve
Then, a new relationship among the same kind of quantites is obtained, being also valid f
decreasing density. Similarly, inequalities containing the information entropy and/or the
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logarithmic radius give rise to new relationships, by taking into account Eqs.~13!–~14!. In some
cases, the resulting inequalities will be also valid for nonmonotonic densities.

We will center our attention on the following known inequalities:~i! variational upper and
lower bounds onvn in terms of two radial expectation values^r k& and ^r n&, and~ii ! variational
upper bounds on the information entropySr in terms of one radial expectation value and the me
logarithmic radiuŝ ln r&. Carrying out the procedure described above, these inequalities trans
respectively, into~i! a relationship among one radial expectation value and two frequency
ments, and~ii ! a bound onSr in terms of the mean logarithmic radius and one frequency mom
As particular applications, let us remark~i! an accurate inequality among the energiesEeN , K0 ,
andT0 , and~ii ! a relationship involvingSr , ^ ln r& and one ofK0 andT0 .

A. Inequalities involving ˆŠr k
‹,va ,vb‰

In Ref. 8, the following upper and lower bounds on frequency momentsvn , valid for any
D-dimensional density functionr(r ), are variationally obtained in terms of two radial expectat
values:

vn>F1~a,b,n,D !F ^r b&n(a1D)2D

^r a&n(b1D)2DG1/~a2b!

, a.b.2D
n21

n
~23!

for any n.1, and

vn<G~a,b,n,D !@^r a&2n(b1D)1D^r b&n(a1D)2D#1/~a2b!, b,D
12n

n
,a ~24!

for any 0,n,1, and where

F1~a,b,n,D !5
nn~a2b!2n21

H VDBF n~b1D !2D

~a2b!~n21!
,
2n21

n21 G J n21 H @n~b1D !2D#n(b1D)2D

@n~a1D !2D#n(a1D)2DJ 1/~a2b!

~25!

and

G~a,b,n,D !5nn~a2b!2n21H VDBF n~a1D !2D

~a2b!~12n!
,
2n~b1D !1D

~a2b!~12n! G J 12n

3H F 1

2n~b1D !1DG2n(b1D)1DF 1

n~a1D !2DGn(a1D)2DJ 1/~a2b!

. ~26!

Consider Eqs.~23!–~26! applied to the functionz(t), i.e., after making the substitutionsvn

→Qn and $^r a&,^r b&%→$^ta&,^tb&%, and replace the parameters$n,a,b% by k[D(n21), a
[11a/D and b[11b/D. Now, taking into account the identities~11!–~12! connecting mo-
ments and frequency moments ofr(r ) andz(t), upper and lower bounds on^r k& in terms of two
frequency moments ofr(r ) are obtained; the lower ones fork.0,

^r k&>LD~a,b,k!F v̂b
a(D1k)2D

v̂a
b(D1k)2DG1/@D(a2b)#

for any a.b.D/(D1k) andk.0, and the upper ones fork,0

^r k&<UD~a,b,k!@v̂a
D2b(D1k)v̂b

a(D1k)2D#1/@D(a2b)# ~27!

for any a.D/(D1k).b andk,0, and where
0 Oct 2008 to 150.214.102.130. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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LD~a,b,k!5

S 11
k

D D k/D

@D~a2b!#11 ~2k/D !

H VDBFb~D1k!2D

~a2b!k
,21

D

k G J k/D H @ab~D1k!2aD#b(D1k)2D

@ab~D1k!2bD#a(D1k)2DJ 1/@D(a2b)#

,

and

UD~a,b,k!5

S 11
k

D D k/D

@D~a2b!#11 ~2k/D !H VDBFa~D1k!2D

2k~a2b!
,
D2b~D1k!

2k~a2b! G J 2k/D

$@ab~D1k!2bD#a(D1k)2D@aD2ab~D1k!#D2b(D1k)%1/@D(a2b)# .

~28!

In some cases, and due to the relationship betweenvn andv̂n , the frequency momentsv̂a andv̂b

can be replaced byva and vb , respectively. Such substitution is allowed~i.e., the involved
inequalities are connected appropriately! when, additionally to the conditions ona and b given
above, occurs that~i! b<1<a for the lower bounds, and~ii ! b>1 for the upper bounds.

For many-fermion systems in the three-dimensional case (D53), especially interesting are
the bounds corresponding tok521 ~involving the electron–nucleus attraction energy! and k
52 ~involving the diamagnetic susceptibility! in terms of the frequency moments of order 4/
5/3, and 2~related toK0 , T0 , and^r&, respectively!. Among them, let us remark the inequali
obtained by takingk521, a55/3, andb54/3 in Eqs.~27! and~28!, valid for any atomic system
with nuclear chargeZ,

EeN<~36K0T0!1/3Z,

i.e., a relationship among three energies and the nuclear charge. For neutral atomic syste
1<Z<92, the above inequality presents a high accuracy, which monotonically increases
77% to 93%,~see Fig. 1!, as observed in a Hartree–Fock framework by means of analytical w
functions.14,15

FIG. 1. Electron–nucleus attraction energyEeN and upper bounds in terms of the exchange-correlation (K0) and kinetic
(T0) energies and the nuclear chargeZ, calculated in a Hartree–Fock framework~Refs. 14, 15!. Atomic units~a.u.! are
used.
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B. Inequalities involving ˆSr ,va ,Š ln r‹‰

Let us carry out the same procedure as before, starting from the known variational
bounds on the information entropySr in terms of one radial expectation value^r k& and the mean
logarithmic radiuŝ ln r&, namely6,16

Sr<AD~k,m!1m ln^r k&1~D2km!^ ln r &

for all m.0, k.2D, where

AD~k,m![m1 ln
VDG~m!

ukumm .

This upper bound can be optimized in the parameterm for fixed values of^r k& and ^ ln r&.
However, such an optimization has to be numerically done.

Keeping in mind the relationships~11!, ~13!, and~14!, the previous inequality applied to th
function z(t) gives rise to

@12m~a21!#Ŝr<BD~a,m!1m ln v̂a1D^ ln r &

for any m,a.0, where

BD~a,m![ma1 ln
VDG~m!

Dua21u~ma!m ,

and which is also valid forSr instead ofŜr if m(a21)<1. In such a case, the above inequal
holds forva instead ofv̂a if, additionally, a>1. Then,

Sr<
1

12m~a21!
@BD~a,m!1m ln va1D^ ln r &#, 1<a<11

1

m
. ~29!

Especially interesting are the particular casesa54/3, 5/3 in the three-dimensional case, whi
involve the quantitiesK0 andT0 . It is numerically observed that, for most neutral atoms with
<N<92, the optimal value of the parameterm is around 1 fora54/3 and around 2/3 fora
55/3. For those particular values, Eq.~29! reads as

Sr<C~N!1 3
2 ln K01 9

2 ^ ln r & ~30!

and

Sr<C8~N!1 6
5 ln T01 27

5 ^ ln r &, ~31!

where

C~N!521 ln
8p2

)N2

and

C8~N!521 ln
$9p@2G~2/3!#9%1/5

N2 .

A numerical study of these inequalities within the aforementioned framework is carried out in
2 for all neutral atoms with 1<N<92. Notice that both inequalities are quite accurate. Indeed
accuracy of inequality~30! varies between 89% and 96%, while that of inequality~31! decreases
0 Oct 2008 to 150.214.102.130. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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from 98% to 52% for increasingN. It is worthy to remark that this accuracy can be improved
choosing the exact optimal value of the free parameterm for each specific atom.

Let us also mention that other relationships involving moments and/or frequency momen
be obtained from known analytical inequalities. In this sense, expressions containing^r 3& would
provide equations on the average density^r&, and the upper bounds6 on Sr in terms of botĥ r &
and ^r 2& give rise to inequalities involvinĝln r&, K0 andT0 , but much more cumbersome.

IV. CONVEXITY OF INVERSE ATOMIC DENSITIES

In addition to the monotonically decreasing character of the charge densityr(r ) for all neutral
atoms with 1<Z<92, higher monotonicity properties have been numerically17–19 studied by
means of analytical Hartree–Fock wave functions.14,15 Among those properties, it is worthy t
mention the charge convexity, i.e., the non-negativity of the second derivativer9(r ) of the charge
density. It is known17,19 that such a property is valid for a great group of atoms (Z5122, 7
215, 33244) of the Periodic Table, while for the rest (Z5326,16232, 45292) convexity is
very weakly violated@i.e., the functionr9(r ) shows up a very small region of negativity#. In Ref.
17, it is shown that the convexity ofr(r ) allows one to improve many different relationship
among radial expectation values and/or other relevant quantities.

As described in Sec. II, the inverse functionz(t) associated withr(r ) is a monotonically
decreasing function. The next step is to study the convexity ofz(t), i.e., the conditionz9(t)>0. If
convexity would be valid for a given system, one should wonder on the improvement o
relationships described in the previous sections when taking into account such a property.
that the convexity of the functionz(t) for the three-dimensional case is equivalent to the conve
of its inverse, i.e., of the functionf (r )5@r(r 1/3)#1/3. Then, it is not difficult to observe that th
condition f 9(r )>0 transforms into

3rr~r !r9~r !26r~r !r8~r !22r @r8~r !#2>0.

There is not ana priori relation between the convex character ofr(r ) andz(t) @i.e., neither the
convexity ofr(r ) implies the convexity ofz(t) nor conversely#.

We have numerically studied the second derivativez9(t) for the charge densityr(r ) of all
neutral atomic systems with nuclear charge 1<Z<92, by means of the analytical Hartree–Fo

FIG. 2. Information entropySr and upper bounds in terms of the nuclear chargeZ, the mean logarithmic radiuŝln r& and
the exchange correlation (K0) and kinetic (T0) energies, respectively, calculated in a Hartree–Fock framework~Refs. 14,
15!. Atomic units are used.
0 Oct 2008 to 150.214.102.130. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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wave functions of Refs. 14 and 15. It is observed that all the atoms with a nonconvexz(t), i.e.,
Z516, 20, 49292 ~46 atoms!, also have a nonconvexr(r ) ~69 atoms!. Moreover, the nonconvex
ity region ~when exists! of z(t) is very small; its width is typically only 1026– 1025 times the
length of the total support interval@0,r1/3(0)#.

For a convex functionz(t), let us consider the density function given by its second derivat
i.e., z9(t). Its momentsnn

(2) are related to those ofz(t) by

nn
(2)5n~n21!nn22 ~n.1!

and they are proportional to the frequency moments ofr(r ) as

nn
(2)5

nD

VD
v̂ n21

D
~n.1!.

Then, for convexz(t), inequalities involving its moments are improved by considering the qu
tities nn

(2) instead of nn . For illustration, the expressionn2n4>n3
2 ~obtained from Ho¨lder’s

inequality20! which leads to

v̂5/3>
15
16v̂4/3

2

for the three-dimensional case, is improved by the inequalityn4
(2)n6

(2)>n5
(2) , since this gives

v̂5/3>
25
24v̂4/3

2 .

A similar comment can be done for other inequalities involving expectation values of the de

V. UNCERTAINTY-LIKE RELATIONSHIPS

As mentioned in Sec. I, the information entropy of a density is a measure of its degr
delocalization. It means that many-electron systems having a very peaked densityr ~i.e., with the
complete electron cloud almost located around some position! have a very low information en
tropy Sr . And, conversely, systems with a very flat or uniform density~corresponding to a very
delocated electronic cloud! present a high value of their information entropy.

This property provides a different formulation21 of the Heisenberg uncertainty principle i
terms of the information entropies of the one-particle densities in position~r! and momentum~g!
spaces. This principle states the impossibility of having a quantum system highly localized in
complementary spaces simultaneously, and its reformulation in terms of information entrop
given by21

Sr1Sg>3~11 ln p!. ~32!

A similar statement can be done concerning the entropies of the two complementary~in some
sense! densitiesr(r ) andz(t). Attending to the definition ofz(t), it should be also expected som
kind of connection between the entropiesSr and Sz @a peakedr(r ) provide a flatz(t), and
conversely#.

In this section we numerically study the sumSr1Sz for all neutral atoms with nuclear charg
1<Z<92 in a Hartree–Fock framework,14,15and we compare them to the corresponding quan
for hydrogen-like systems with the same nuclear charge. From the well-known expressions
electron density for hydrogenic atoms with nuclear chargeZ ~see Sec. II!, one easily obtains tha

Sr531 ln p23 lnZ ~33!

and
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Sz53C1 ln 82
11

2
13 lnZ, ~34!

where C50.5772... is Euler’s constant. Then, remark that hydrogenic atoms for the su
entropies is constant~i.e., does not depend on the nuclear chargeZ!,

Sr1Sz53C1 ln 8p2 5
2 52.455 818... . ~35!

In Fig. 3, the entropy sumsSr1Sz andSr1Sg are plotted for the aforementioned neutral atom
First, we observe that the sumSr1Sz is always greater for a neutral atom than for the hydroge
one with the same nuclear chargeZ, i.e., Sr1Sz>3C1 ln 8p25/2. This may indicate that this
entropy sum is a good atomic correlation measure. Moreover, we notice that the values of th
through the Periodic Table lie in the interval 2.45<Sr1Sz<3.15, which is much narrower tha
the interval of the corresponding values of the sumSr1Sg . Then, the entropySz @and, conse-
quently with Eq.~14!, the mean logarithmic radiuŝln r&# can also be considered as a measure
the delocalization of the density. We are presently studying the implications of these two o
vations in the physics of many-fermion systems.

VI. SUMMARY

Different density functionals ~e.g., frequency moments, information entropy! of
D-dimensional many-particle systems have been expressed in terms of expectation values~radial
and logarithmic! of a density function with finite support. This connection allows one to ob
many rigorous relationships among those quantities~some of them physically relevant and/o
experimentally accessible! by means of known inequalities of variational type or based on cla
cal integral inequalities. In some cases, the resulting new inequalities are of great accura
have been even improved by taking into account additional analytic properties~e.g., convexity! of
the densities involved.

FIG. 3. Sums of information entropiesSr1Sg and Sr1Sz , calculated in a Hartree–Fock framework~Refs. 14, 15!.
Atomic units are used.
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