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Quantifying the dissimilarity among two or more many-electron systems by means of their
one-particle densities is a hot topic within the physical applications of the information theory. This
is a relevant achievement of the so-called “divergence measures,” for which several definitions have
been considered, each one with its own advantages and difficulties. Nevertheless, all of them are
considered in order to disclose the differences among the involved systems, neutral atoms in the
present work, according to their densities in the position and momentum spaces. The pioneering
Jensen–Shannon divergence �JSD� constitutes a particular case of the one-parameter Jensen–Tsallis
divergence �JTD�. The analysis here provided for the JTD of atomic systems generalizes and
improves some previous results on the JSD one. Such an improvement mainly arises from the
capability of JTD to modify, by means of its characteristic parameter, the relative contribution of
relevant specific regions of the atomic densities in both conjugated spaces. © 2010 American
Institute of Physics. �doi:10.1063/1.3298911�

I. INTRODUCTION

Information-theoretic divergence measures1–3 have been
successfully applied in many areas including statistical pat-
tern recognition, machine learning, neuronal networks, sig-
nal, image or speech processing, graph theory, computer vi-
sion, quantum information theory, or analysis of
multielectronic systems. The latter will be the focus of the
present paper.

The Kullback-Leibler divergence �Ref. 4� KLD, �also
referred as “directed divergence” or “information gain”�, one
of the Shannon entropy �S� based measures,5 is perhaps the
most important nonsymmetric divergence measure of infor-
mation theory and has been extensively studied and applied
in a great variety of fields.

Another entropy-based measure is the so-called Jensen–
Shannon divergence �JSD�.6 This divergence measures in
fact the statistical dependence between an arbitrary number
of probability distributions and there are some important rea-
sons why researchers choose JSD as a measure of diver-
gence, among them: �i� it is a symmetrized and smoothed
version of the KLD and hence it shares its mathematical
properties and intuitive interpretability, �ii� it has significance
in the framework of statistical physics, information theory,
and mathematical statistics,7 �iii� JSD is related to other
information-theoretical functionals �being a special case of
the Jensen differencem8 and the Csiszár divergence9� and it
is the square of a metric,10 and �iv� JSD can be generalized in
order to measure the distance between more than two distri-

butions, as well as by assigning different weights to each
one.6 This last point is especially interesting since permits to
take into account characteristics such as, for instance, differ-
ent sizes of the objects we are comparing �e.g., different
lengths of the subsequences in DNA analyses11 or different
subshells or regions in atomic and molecular dissimilarity
analyses12�.

Due to the aforementioned properties, the JSD can be
applied within a wide variety of fields, including signal/
image processing, computer vision problems,13 and to the
analysis of DNA sequences.11,14–18 The JSD has also been
used for measuring the distance between random graphs,19

for testing the goodness-of-fit of point estimations,20 in the
segmentation of textured images,21 and in the statistical char-
acterization of the mobility edge in disordered materials.22

In addition, the JSD divergence has been employed as
measure of distinguishability between mixed quantum states.
Distances between quantum states play a central role in
quantum information theory. An appropriate measure of dis-
tance is the quantum JSD �QJSD� between quantum states.
Majtey et al.10,23,24 studied this distance as a geometrical
measure of entanglement and applied it to different families
of states.

Exploring quantitatively the level of similarity/
dissimilarity between two different systems in terms of
meaningful divergence measures appears actually as a very
interesting field. Different divergence measures have been
recently proposed, including local- and global-character ones
�Fisher and Jensen–Shannon divergences, respectively�, with
the aim of analyzing the similarity and discrepancy among
quantum-mechanical or multielectronic models and systems,
such as atoms, ions, or relevant parts of them, throughout the
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Periodic Table.25 These systems have been considered as an
appropriate benchmark due to their strong hierarchical orga-
nization. The studied divergences, not only in the usual po-
sition but also in the momentum space, have been shown to
provide relevant information on the atomic shell structure
and other physical and chemical measurable magnitudes.26

Other relative measures have been recently used with
comparative purposes among physical distributions, apart
from the aforementioned KLD. For illustration let us men-
tion the “relative Rényi entropy” RREq,27 based in the con-
cept of the “q-order Rényi entropy” Rq.28 The interpretation
of RREq in terms of Rq is given in a similar fashion as the
KLD in terms of the Shannon entropy S. However, there
appear relevant constraints on the allowed values of the char-
acteristic parameter “q” �the order�, arising from the require-
ment of non-negativity of the RRE.

The first aim of the present work is to present a one-
parameter generalized divergence, the Jensen–Tsallis diver-
gence �JTD�, to explore its advantages as compared to other
discrepancy measures and to contrast the results obtained on
simple but extremely organized systems like atoms. This
divergence can be constructed by simply replacing the
Shannon by the q order Tsallis entropy T�q� �Ref. 29� in the
JSD divergence definition, as will be described in the next
section. The Shannon entropy, a particular case of the Tsallis
one as q→1, shares the well-known additivity property from
which the joint entropy of a pair of independent random
variables is just the sum of the individual entropies. In the
present work we omit this property as a constraint and, in-
stead, the pseudoadditive Tsallis entropy is considered in or-
der to construct, similarly to JSD, the JTD.

Standard thermodynamics is extensive because of the
short-range nature of the interaction between subsystems of a
composite system. In other words, when a system is com-
posed of two statistically independent subsystems, then the
entropy of the composite system is just the sum of the entro-
pies of the individual systems, and hence the correlations
between the subsystems are not accounted. The Tsallis en-
tropy, however, does take into account these correlations due
to its pseudoadditivity property. Furthermore, many objects
in nature interact through long-range interactions such as
gravitational or unscreened Coulomb forces. Therefore the
property of additivity is very often violated and consequently
the use of a nonextensive entropy is more suitable for real-
world applications.

After introducing the aforementioned divergences and
the density functionals from which they are defined, a nu-
merical analysis is carried out for all neutral atoms through-
out the Periodic Table within a Hartree-Fock framework.30,31

In doing so, a comparison among the corresponding one-
particle densities in both position and momentum spaces is
performed. The results are interpreted according to the fol-
lowing features: �i� the dependence on the parameter q of the
JTD divergence for a given pair of atoms, �ii� the behavior of
JTD, for fixed q, according to the shell structure of the com-
pared systems, and �iii� the role played by the space �position
or momentum� considered for the aforementioned analyses.
Finally, some concluding remarks are given.

II. POSITION AND MOMENTUM SPACE DIVERGENCE
MEASURES FOR ATOMS

The relevant role played by the one-particle density ��r��
in the description of many-electron systems, as shown within
a density functional theory framework,32 invites us to think
about the extent to which the “similarity” between densities
corresponding to two different systems could be interpreted
as an indicator of analogy also between their physical and
chemical properties, as well as the best way to quantify it.
The same applies to the one-particle density ��p�� in the con-
jugated space, namely, the momentum one because it is also
a well-known source of information on the aforementioned
properties.33 In fact, the simultaneous analysis of both the
position and the momentum space densities has been proven
to provide, in different contexts, a much more complete
description.34 In the present work, normalization to unity is
chosen for the atomic densities.

The most widely employed double-density functional in
order to quantify how similar or different two distributions
are, both supposed to be defined over the same domain, is
defined in a similar fashion to the usual distance in the L2

space, namely, the quadratic distance, being in fact the norm
of the difference between the considered distributions. Addi-
tional measures, proposed as indicators of “information dis-
tance” between distributions, includes the quantum similarity
index35 and the Fisher divergence,25 which have been also
applied to the analysis of many-particle systems, such as,
e.g., atoms and molecules.36

Probably the most relevant divergence measure intro-
duced within the information theory is the KLD or relative
entropy,4 as mentioned in the introduction. It is defined as

KLD��1,�2� � � �1�r��ln
�1�r��
�2�r��

dr� , �1�

having its roots in the Shannon entropy5

S��� � −� ��r��ln ��r��dr� , �2�

a well-known information-theoretic measure of uncertainty
which, in particular, quantifies how the distribution spreads
over its whole domain, possessing consequently a “global
character” as opposite to other information measures, more
sensitive to relevant local changes, such as e.g., the Fisher
information.37,38

The absence of symmetry of the KLD divergence in-
duces its symmetrized version KLS��1 ,�2��KLD��1 ,�2�
+KLD��2 ,�1�, in order to get an appropriate interpretation of
this quantity as an information distance. Both divergences
KLD and KLS have been widely studied, finding applica-
tions in a great variety of fields such as, for instance, mini-
mum cross entropy estimation39 or indexing and image
retrieval.40

An information measure of divergence strongly related
to both the Shannon and the relative entropies is the so-
called “JSD.” It is characterized for quantifying the
“Shannon entropy excess” of a mixture of distributions with
respect to the mixture of their entropies. More specifically, it
is given by19,41
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JSD��1,�2� � S��1 + �2

2
� −

1

2
�S��1� + S��2�� , �3�

the mathematical definition clarifying the above interpreta-
tion as entropy excess of the mean density with respect to the
mean entropy of the involved distributions.

Apart from preserving the global character of the Shan-
non entropy, the JSD possesses the main properties required
for a measure to be interpreted as an informational distance,
namely, non-negativity �as a consequence of the convexity of
the S��� functional�, symmetry, and the minimum value 0
being reached only when �1=�2.

For our present purposes, i.e., the analysis and compari-
son of neutral atoms throughout the Periodic Table in terms
of their one-particle densities in both conjugated position and
momentum spaces ���r�� and ��p��, respectively�, the defini-
tion domain is the whole three-dimensional space. In this
sense, it should be pointed out that �i� all expressions given
in the present work for an specific space �position or momen-
tum� will be also valid in the conjugated one by only replac-
ing properly the corresponding variables and distributions
and �ii� for atomic systems in the absence of external fields,
it is sufficient to deal with the spherically averaged densities
��r� and ��p� defined over the non-negative real line �0,��.

The Shannon entropy S constitutes a particular case of
the so-called Tsallis entropy of order q �Ref. 29�

T�q���� �
1 − ��q����

q − 1
, �4�

with ��q�����	�q�r��dr� being the frequency moment of the
order of q of the distribution ��r��. Both the Tsallis entropy
and some frequency moments play a relevant role in the
description of quantum many-body systems by means of
their one-particle densities. The convergence of the involved
integral depends on the short- and long-range behavior of the
distribution we are dealing with. The limiting case q→1,
taking into account the normalization constraint ��1����=1,
provides the Shannon entropy: T�1����=S���.

Replacing the Shannon entropy by the Tsallis one in the
JSD definition gives rise to a new double-density functional,
the JTD of order q 42,43

JTD�q���1,�2� � T�q���1 + �2

2
� −

1

2
�T�q���1� + T�q���2�� ,

�5�

in such a way that JTD�1�=JSD, the new divergence gener-
alizing the previously introduced JSD one and preserving its
main properties as mentioned in the introduction. Nonexten-
sive divergences closely related to the JTD divergence above
defined have been applied in the fields of symbolic sequence
segmentation,44 geological, or medical image registration42

and machine learning techiques.43

The non-negativity of JTD�q� is guaranteed for q�0,
property which arises from the convex/concave character of
the frequency moments ��q� according to the value of q. This
parameter acts by smoothing the integrands for lower q val-
ues and enhancing the contribution of the outermost region
of the atomic domain. A detailed analysis of the behavior of

JTD according to its dependence on the parameter q, the
characteristics of the involved systems and the conjugated
space where the densities are defined is carried out in the
next section.

III. NUMERICAL ANALYSIS OF THE JTD FOR ATOMS
IN CONJUGATED SPACES

As discussed in the previous section, the main feature of
the JTD�q� as compared to other ones and, particularly, to the
JSD, is its capability of enhancing/diminishing the relative
contribution of different regions within the domain of the
distributions under comparison. To the best of our knowl-
edge, the only relative measure with a characteristic param-
eter applied in the past for multilectronic systems is the
RRE,27 by comparing their densities only with hydrogenic
ones. The RRE of order q, built up in terms of the Rényi
entropy,28 embodies the KLD divergence as a particular case.
The non-negativity of the relative Rényi measure requires
the fulfillment of the very strong constraint 0�q�1 for its
characteristic parameter. Such is not the case of JTD�q�,
where the only constraints on the value of q arise from the
convergence conditions on the involved frequency moments
according to the long- and short-range behaviors of the dis-
tribution, conditions also required with the Rényi relative
entropy even for order q below 1.

Let us consider, as a first step, a fixed neutral system for
computing its JTD�q� divergence with respect to all neutral
atoms through the Periodic Table with nuclear charges Z
=1–103. This will be done for several values of the param-
eter q as well as in both conjugated spaces. For illustration,
we choose as initial system the Mg atom �Z=12� and the
values q=0.6, 1.0, 1.4, 2.0, as well as q=0.2 in position
space. Let us remark that the last value is not allowed in
momentum space, where the convergence conditions require
q�3 /8=0.375 due to the long-range behavior of the mo-
mentum density45 while the exponential decrease for the po-
sition density46 guarantees the convergence for any q�0.

The corresponding JTD curves are displayed in Fig. 1,
for position and momentum spaces �Figs. 1�a� and 1�b�, re-
spectively�. Some comments are in order. In both spaces, it is
clearly observed that the structure of the curves strongly de-
pends on the value of q. In fact, if we consider the smoothest
curve in a figure �understood according to the number and
enhancement of local extrema�, varying the q value in a
monotone way provokes that the curves increase their level
of structure progressively, as measured by the number of
extrema and their enhancement. After crossing a critical
value, the successive curves lose the unimodal shape, keep-
ing always their minimal value 0 at Z=12. In fact, the value
q=1 which provides the JSD through the equality JTD�1�

=JSD appears very close to the critical one in both spaces, in
spite of the number of extrema displayed by the JSD at this
level. However, the aforementioned variation follows oppo-
site trends in each space. While the highly structured curves
are displayed for low q values in position space, the situation
for momentum space is absolutely different in that higher
values of q are required in order to depart from unimodality.

A straightforward interpretation of the observed opposite

044105-3 Jensen–Tsallis divergence of atomic systems J. Chem. Phys. 132, 044105 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



behaviors noted above might be obtained by considering the
physical meaning of the position and momentum densities,
as well as their respective structural properties. A well-
known fact on the position density for ground-state neutral
atoms is that the maximum value is systematically reached at
the origin. The same is also true in momentum space for a
numerous group of systems while for the others the maxi-
mum appears shifted from the origin but not significantly.

The differences between the short- and large-range val-
ues are enhanced if the power of the density within the inte-
grand of ��q���� increases, making the value of JTD to be
strongly determined by the region of the density around the
origin. Conversely, decreasing the value of the parameter q
smoothes the integrand, raising up the relative contribution
of the outermost region.

In the position space, the neighborhood of the origin
corresponds to the region of the electron cloud surrounding
the nucleus, which is governed by the nuclear charge Z and
the Coulombic potential. However, the origin in momentum
space is associated to electrons with low values of the linear
momentum or, equivalently, with low-speed electrons which
are just those located in the outermost or valence region of
the atomic system. This fact justifies the observed opposite
trends in terms of q: as its value increases, the enhancement

in position space corresponds to the nuclear region, whereas
in momentum space corresponds to the valence one.

Taking into account that the shell-filling patterns are de-
termined by the valence region, they are clearly observed in
momentum space for large q. Then, the JTD divergence
value is mainly based on the different characteristics of the
systems under comparison according to their dissimilarity in
what shell-filling concerns, while the comparison in position
space is mainly determined by the values of their nuclear
charges. Opposite trends are observed when decreasing the
value of the parameter q. The same reasoning given above
for explaining the JTD behavior as q increases also applies
for the decreasing case. So that, the role played by the value
of the parameter q allows one to obtain a higher level of
information on the shell-filling effects by enhancing the rela-
tive contribution of different specific regions according to the
space we are dealing with. A continuous variation in q makes
the contribution to the comparative measure of the outermost
spatial region or, equivalently, of the valence subshell con-
taining the low-speed electrons, to vary also in a continuous
way.

Concerning the structure of the curves displayed, their
local extrema can be classified according to two different
characteristics: �i� the lower JTD divergence when compar-
ing an atomic system to another one belonging to the same
group and �ii� JTD values when one of the involved atoms
belongs to the so-called “anomalous shell-filling” set of
atomic systems. As will be shown below, this is a common
feature in the study of dissimilarity based on the JTD diver-
gence. The main achievement of the JTD in the present ap-
plication is its ability to quantify the dissimilarity between
atomic systems according to one of the more physically rel-
evant characteristics, namely, the shell-filling process which
determines most of the atomic chemical properties, being
strongly related also to some experimentally accessible quan-
tities, such as, e.g., the first ionization potential.32

The present comparative performance is far from the
concept of “distances among atoms” according to the values
of their nuclear charges, essentially interpreted as size or
weight for neutral atoms. This fact is clearly displayed in the
Fig. 2, where the JTD of both Z=36, 38 atoms along the
Periodic Table is displayed. Those systems have been chosen
in order to consider a couple of atoms with very similar
nuclear charges but strongly different valence subshells as
well as many other physical characteristics. In doing so, the
JTD are given for q=0.5 �below 1�, q=1.5 �above 1�, and the
limiting case q=1 for which JTD turns out to be JSD. For the
JSD divergence, there appear slight differences between the
curves for Z=36 and Z=38, independently of the space con-
sidered. It is also worth noting that the range of values for
JSD in both spaces is roughly the same.

Dealing with position space in Fig. 2�a�, the JSD mea-
sure allows to observe a slight structure in the curves, which
disappears completely for the higher order divergence JTD
�q=1.5� but which extremely enhances for the low-order q
=0.5, with both curves displaying in fact absolutely different
structures and extrema at similar positions but with opposite
maximum/minimum character. So it is concluded the conve-
nience of dealing with low-order JTD in order to get relevant
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FIG. 1. Jensen–Tsallis Divergence JTD�q� between Mg �nuclear charge
Z=12� and all neutral atoms with the Z=1–103, �a� in position space
for q=0.2, 0.6, 1.0, 1.4, 2.0 and �b� in momentum space for
q=0.6, 1.0, 1.4, 2.0. Atomic units are used.
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information on the valence characteristics. An opposite trend
is displayed in Fig. 2�b� for momentum space, where higher
order JTD are the useful ones when analyzing the aforemen-
tioned properties. In both spaces, the JTD curves progres-
sively modify their shapes as the parameter q varies in a
continuous form, making the number of extrema and their
enhancement also to vary in a monotonic way.

In all cases, the appearance of local extrema in the
curves is determined, as remarked in the discussion of Fig. 2,
by the groups of the Periodic Table which the atoms belong
to. The divergence of a system with respect to an atom of the
same group is smaller than that of its neighbors displayed in
the figures as apparent minima. In the present case, the va-
lence orbital of Z=36 is p6 while for Z=38 it is s2. Those
minima correspond, respectively, to atoms with identical va-
lence orbital. Additional extrema, mainly minima, are asso-
ciated with systems that suffer from the anomalous shell-
filling effects.

The Fig. 3 provides a corroboration of the previous ob-
servations. The curves correspond to the JTD values in po-
sition space of each atom belonging to the noble gases group,
as compared to all the atomic systems throughout the Peri-
odic Table. According to those comments, it should be ex-

pected a similar behavior for all the atoms belonging to the
same group. A comparison between the cases q=1 and q
=0.2 �Figs. 3�a� and 3�b�, respectively� makes one again to
notice that, in spite of the similarity �at least roughly� among
the shapes of the curves, they are almost identical for the low
q order JTD as compared to the JSD. Similar observations
can be noted from Fig. 4 with regard to momentum space,
where now the comparison between Fig. 4�a�, corresponding
to JSD, to the higher q order in Fig. 4�b� makes the curves
closer, with the only exception of the Z=2 �helium� one. The
reason explaining this exception is the different structure of
the Helium, with an “s” valence subshell, as compared to the
“p” one for the others in the same group.

The analysis of the JTD divergence between atomic sys-
tems carried out above, regarding to the relevancy of the
considered divergence order q, the shell structure of the sys-
tems under comparison as well as the information provided
by the position and momentum densities allow us to consider
this comparative measure as a powerful tool in order to ap-
propriately quantify the dissimilarity of atomic systems on
the basis of their respective one-particle densities.

It is worthy to remark that, in spite of the availability of
other comparative measures, the JTD allows to perform a
deeper and more detailed study as compared to the other
ones.25 Attending to that comparison, the behavior of the

0.001

0.01

0.1

1

10

0 20 40 60 80 100 120
Z

JSDr

q=0.5

q=1.5

36

38

36
38

36
38

JTDr(q)

(a)

0.0001

0.001

0.01

0.1

1

10

100

1000

0 20 40 60 80 100 120
Z

JSDp

q=0.5

q=1.5

36
38

36
38

36

38

JTDp(q)

(b)

FIG. 2. JTD�q� divergences of systems with nuclear charge Z=36 �solid� and
Z=38 �dashed� with respect to all neutral atoms with Z=1–103 for
q=0.5, 1.0, 1.5, in �a� position and �b� momentum spaces. Atomic units
are used.
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FIG. 3. JTD in position space JTDr
�q� for the noble gases

�Z=2, 10, 18, 36, 54, 86� with respect to all neutral atoms with
Z=1–103, for �a� q=1.0 and �b� q=0.2. Atomic units are used.
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JTD in the conjugated spaces deserves a relevant comment,
concerning its capability to provide relevant information in
both spaces, contrary to the case of many other measures,
such as for instance the quadratic distance, the quantum
similarity index, and the Fisher divergence, which are not
able to provide the aforementioned informational description
when dealing with the position space, requiring to perform
this type of analysis by means of the momentum space den-
sity.

IV. CONCLUSIONS

In this work we have proposed a divergence measure,
based in concepts taken from the information theory, to study
the dissimilarity among several multielectronic distributions.
It has been shown how the JTD allows a deep introspection
within the structure of the atomic one-particle densities. The
JTD captures relevant differences in any of the conjugated
spaces. This is not the case of other measures of divergence
employed with multielectronic systems. The neutral atoms
have constituted a benchmark for the present analysis, dis-
playing their complex and hierarchical organization along
the Periodic Table. The employment of the JTD as a diver-
gence measure can be applied not only to compare a couple
of probability distributions, but also to an arbitrary number

of them, even assigning different weights to each distribution
considered as a whole, apart from the weighting effect of the
characteristic parameter of JTD.

Further applications of this generalized divergence are
actually being carried out for atoms and molecules, such as
the comparisons among �i� distributions computed within
different models for a given system, �ii� parts or components
of the global system, �iii� atomic species involved in ioniza-
tion processes, and �iv� initial and final products in chemical
reactions. On the other hand, the generality of the techniques
here employed allows the extension of this study to many
relevant physical and chemical systems and/or processes.
The results of those studies are being currently investigated
in our laboratories and will be provided elsewhere.
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FIG. 4. JTD in momentum space JTDp
�q� for the noble gases

�Z=2, 10, 18, 36, 54, 86� with respect to all neutral atoms with
Z=1–103, for �a� q=1.0 and �b� q=2.5. Atomic units are used.
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