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Fisher–Shannon �FS� and López-Ruiz, Mancini, and Calbet �LMC� complexity measures, detecting
not only randomness but also structure, are computed by using near Hartree–Fock wave functions
for neutral atoms with nuclear charge Z=1–103 in position, momentum, and product spaces. It is
shown that FS and LMC complexities are qualitatively and numerically equivalent for these
systems. New complexity candidates are defined, computed, and compared by using the following
information-theoretic magnitudes: Shannon entropy, Fisher information, disequilibrium, and
variance. Localization-delocalization planes are constructed for each complexity measure, where the
subshell pattern of the periodic table is clearly shown. The complementary use of r and p spaces
provides a compact and more complete understanding of the information content of these planes.
© 2008 American Institute of Physics. �DOI: 10.1063/1.2907743�

I. INTRODUCTION

Complexity measures are proposed as general indicators
of pattern, structure, and correlation in systems or processes.
Many alternative mathematical frameworks exist for quanti-
fying the notions of complexity or information, including the
Kolmogorov–Chaitin or algorithmic information theory,1,2

classical information theory of Shannon and Weaver,3 Fisher
information,4,5 logical depth,6 thermodynamical depth,7 com-
putational mechanics,8 and others. Most share formal simi-
larities with the others as well as with Bayes and information
theory.9

Indeed, the term complexity has many different mean-
ings and adjectives �algorithmic, geometrical, computational,
stochastic, effective, statistical, and structural� and is used in
very diverse fields �dynamical systems, time series, quantum
wave functions in disordered systems, spatial patterns, lan-
guage, analysis of multielectronic systems, cellular automata,
neuronal networks, self-organization, molecular or DNA
analyses, social sciences, etc.�.10–12 Although there is no gen-
eral agreement about the definition of what complexity is, its
quantitative characterization is a very important subject of
research in nature and has received considerable attention
over the last years.13,14

Therefore, the characterization of complexity cannot be
univoque and must be adequate to the type of structure or
process we study, to the nature and goal of the description we
want, and to the level or scale of the observation that we use.
In the same way, it is interesting to combine the properties of
the new proposals to characterize complexity and test them
on diverse and known physical systems or processes.

Fundamental concepts such as information or entropy
are frequently present in the proposals for characterizing

complexity, but some other ingredients that capture not only
uncertainty or randomness can be searched. One wishes also
to capture some other properties distinct from randomness,
such as clustering, order, or organization of a system or pro-
cess. Some of the definitions and relations between the above
concepts are not clear and even less how disorder or random-
ness take part in the aforementioned properties of the system
and vice versa.

Recent proposals for a quantitative study of complexity
try to formulate this magnitude as a product of two factors
taking into account order/disequilibrium and disorder/
uncertainty, respectively. This is the case of the characteriza-
tion of López-Ruiz, Mancini, and Calbet complexity15

C�LMC� that, like others, satisfies the boundary conditions
of vanishing in the extreme ordered and disordered limits.
The LMC complexity measure C�LMC� has been
criticized,13,16 modified17,18 and generalized,19,20 leading to a
useful estimator which satisfies several desirable properties
of invariance under scaling, translation, and replication. The
utility of this improved complexity has been checked in
many fields11,12,20 and allows reliable detection of periodic,
quasiperiodic, linear stochastic, and chaotic dynamics.15,20,21

Another simple and related measure of complexity has been
also proposed by Shiner, Davison, and Landsberg �SDL com-
plexity� as a product of disorder-order factors.18,22

The LMC measure, C�LMC��DeS=DL, is constructed
as the product of two important information-theoretic quan-
tities: The so-called disequilibrium D �also known as
self-similarity23 and information energy24�, which quantifies
the departure of the probability density from uniformity,15

and the Shannon entropy S, which is a general measure of
randomness or uncertainty of the probability density.3 Both
global magnitudes that play an important role in information
theory are closely related to measures of spread of a prob-
ability density, such as the variance V �which measures the
spreading of the density from its mean value�, and are called
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Renyi lengths �L=eS and 1 /D� in other contexts.25 Renyi
entropies are just the logarithm of these spread measures.26

Some uncertaintylike relations between the above infor-
mation magnitudes are known, establishing connections be-
tween position r and momentum p spaces. For instance, the
well known Heisenberg inequality, VrVp�n2 /4,27 with n be-
ing the space dimensionality, the more stringent relation Sr

+Sp�n�1+ln ��,28 and the lower bound to the Fisher infor-
mation product, IrIp�4n2 �Refs. 29 and 30� for central po-
tentials �conjectured to be also valid in the general case�.

We will concentrate in the application of LMC-type
complexity measures to the study of multielectronic systems
and, in particular, to neutral atoms, where the one-particle
density, in position and momentum spaces, is the fundamen-
tal magnitude in this kind of studies.

Very recently, a new candidate for measuring the infor-
mation content of atomic systems was presented as the prod-
uct of Fisher information �I� and power Shannon entropy J
��1 /2�e�L2/3.31 In this form, a local magnitude I, which
measures the gradient content of the probability distribution,
is used instead of the disequilibrium D to quantify the level
of organization and pattern of the corresponding system. We
call this new measure, C�FS�� IJ, the Fisher–Shannon com-
plexity. Factors in the “power Shannon entropy” J are chosen
to have the rigorous uncertainty relationship C�FS�= IJ�n.32

The well known Cramer–Rao bound IV�1 �for dimen-
sion n=1 and infinite support interval�32,33 relates also two
important information measures, i.e., Fisher information and
variance, and will lead us to study a complexity measure
defined in terms of these magnitudes.

The aim of this work is to carry out a complete analysis
of information-theoretic and complexity measures for atomic
systems with nuclear charge Z=1–103, studying uncertainty,
localization, structure, and information content of these
simple but strongly structured systems.

To do this, in Sec. II, we use the above information
measures, L, D, I, V, and J, to compute Fisher–Shannon and
LMC complexity measures. We study all the information
magnitudes in the position and momentum spaces, as well as
in a joint product space rp that contains all the information
about the system. Fisher–Shannon and disequilibrium-
Shannon planes show the complementary behavior of the
complete set of atoms in the conjugated spaces, and the
shell-filling pattern throughout the periodic table of ele-
ments. In Sec. III, new proposals of complexity estimators
are defined, computed, and compared to the previous ones.
Results and conclusions are remarked in the last section.

II. LMC AND FS COMPLEXITY MEASURES
IN ATOMIC SYSTEMS

In this section, the strong correlation between the “com-
plexity” concepts �as previously defined in terms of different
global and local properties of the distribution� and some rel-
evant chemical and physical properties of atomic systems
�e.g., nuclear charge, shell-filling� is deeply analyzed by
means of their one particle densities in the three-dimensional

�n=3� position and momentum spaces, ��r� and ��p�, re-
spectively, which are well known to play a relevant role in
the description of many fermion systems.

The entropic quantities defined in the general case are
now expressed, in terms of the normalized-to-unity one-
particle densities, as follows: Shannon entropy

Sr = −� ��r�ln ��r�dr , �1�

from which exponential entropy Lr=eSr and power entropy
Jr=e2/3Sr /2�e are also defined, disequilibrium

Dr =� �2�r�dr , �2�

Fisher information

Ir =� ��� ��r��2

��r�
dr , �3�

and variance

Vr = �r2	 − �r	2, �4�

with �rk	�
rk��r�dr the radial expectation values of the dis-
tribution. According to these definitions, the corresponding
complexity measures Cr�LMC� and Cr�FS� are built up.

All the above expressions correspond to the position
space density ��r�. Similar definitions are also valid in mo-
mentum space by only replacing the density ��r� by ��p� as
well as the associated independent variable. In what follows,
we will employ the subscripts r or p according to the space
and density we are dealing with. For the present case �i.e.,
neutral atoms�, it is sufficient to consider the spherically av-
eraged densities ��r� and ��p� for a full description of the
system.

Other authors have recently dealt with some particular
factors of the complexity measures. In particular, Shannon
entropy has been extensively used in the study of many im-
portant properties of multielectronic systems, such as, for
instance, rigorous bounds,34 electronic correlation,35 effec-
tive potentials,36 similarity,37 and minimum cross entropy
approximations.38

More recently, Fisher information has been studied as an
intrinsic accuracy measure for concrete atomic models and
densities39,40 and also for quantum mechanics central
potentials.41 Also, the concept of phase space Fisher infor-
mation, where position and momentum variables are in-
cluded, was analyzed for hydrogenlike atoms and the isotro-
pic harmonic oscillator.42 Quantum similarities and self-
similarities �D� for neutral atoms were computed for Z
=1–54 only in the position space,43,44 but afterwards a more
complete analysis including Z=1–103 neutral systems and
singly charged ions has been done in position and momen-
tum spaces.45

Complexity studies for atoms have also been carried out,
but most of them are only for Z=1–54.12,46 Recent complex-
ity computations, using relativistic wave functions in the po-
sition space, were also done.47 Some other complexity works
simply take the position density,48 not the momentum one as
basic variable. In this sense, it is worthy to point out the
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different behaviors displayed by some of these quantities in
position and momentum spaces for atomic systems, as we
have recently shown.49,50

For carrying out the numerical calculations needed in
order to analyze the aforementioned quantities in atomic sys-
tems, as well as the relationships among themselves, we have
employed the accurate near-Hartree–Fock wave functions of
Koga et al.,51 which provide the one-particle densities ��r�
and ��p� for neutral atoms with nuclear charge within the
range of Z=1–103, from which the entropic and informa-
tional quantities are computed.

The first step in the present complexity-based study is to
analyze the different information provided by the LMC and
FS complexities for the whole set of atomic system consid-
ered here. A comparison between both complexities can be
established attending to the results displayed in Fig. 1, where
they are plotted as a function of the nuclear charge Z in each
conjugated space, namely, position �Fig. 1�a�� and momen-
tum �Fig. 1�b��. In both cases, the strong structural similarity
between the C�LMC� and C�FS� clearly appears. Here, let us
remark that each complexity consists of two factors, one of
them always defined in terms of the Shannon entropy S, be-
ing the other factor that characterizes more specifically the
corresponding complexity because we are using a global

quantity �i.e., disequilibrium D� for C�LMC� and a local one
�i.e., Fisher information� for C�FS�. Nevertheless, there are
no relevant structural differences between complexities
based on the global or the local one. Additionally, such a
comment can be done independent of the conjugate space
considered.

Another relevant characteristics of all curves plotted in
Figs. 1�a� and 1�b� are �i� the similar magnitude order of both
complexities, taking into account their different definitions
and �ii� the strong correlation appearing between the shell-
filling process in atomic systems �and also the group which
atom belongs to� and location of extrema �maxima and
minima� or, equivalently, monotonicity �increasing or de-
creasing� between consecutive extrema.

It is worthy to point out that, with very a few exceptions,
C�LMC� and C�FS� in both position and momentum spaces
reach minimum complexity values for noble gases as well as
for the anomalous shell-filling set of atoms �specially re-
markable are the values Z=24,29,46, all characterized for
losing an s electron�. Also maxima are frequently associated
with shell structure. Nevertheless, in order to associate their
location with the shell-filling process, it is better to do it
separately for position and momentum spaces. In this sense,
it is remarkable the fact that, with only two exceptions in
momentum space �namely, subshells 5p and 6p�, the mono-
tonic behavior of both LMC and FS in position and momen-
tum spaces are exactly the same. Taking this fact into ac-
count, we will discuss such a behavior referring only to
complexity having in mind that discussion is applicable to
any of them.

As mentioned above, both complexities display exactly
the same monotonic behavior within each subshell in posi-
tion space. These comments allow us to assure that, for in-
stance, complexity always increase in position space when
adding s electrons. Last comment can also be done for mo-
mentum space complexity �with the only exception of Z=4�.
However, monotonic behavior for non-s subshells is opposite
to that of position space.

So, the connection between shell-filling patterns and
complexity values is very clearly stated. Let us remark again
that complexity is composed of two factors. In this sense, it
is also interesting to analyze the contribution of each one to
the total complexity which, for the present purposes and as a
consequence on comments of Fig. 1, essentially reduces to
the study of Shannon entropy �by means of the exponential
entropy L� and disequilibrium D. This is done in Fig. 2,
where such a disequilibrium-Shannon plane is shown in both
position �Fig. 2�a�� and momentum �Fig. 2�b�� spaces. Again,
the shell-filling patterns are observed in both cases, much
more clearly in momentum than in position space, requiring,
in this last case, a detailed analysis of location of extrema
and monotonic behaviors. Nevertheless, two important
points should be pointed out concerning the differences of
both position and momentum planes: �i� Pieces of curve in
momentum spaces belong to independent and disjoint ranges
of values in ordinate axis �i.e., exponential entropy Lp�, in-
creasing when involving a new outer subshell, while disequi-
librium Dp shows a decreasing trend when adding electrons
within an specific subshell; however, position space quanti-

FIG. 1. C�LMC�=DL and C�FS�= IJ complexities for neutral atoms with
nuclear charge Z=1–103 in �a� position space and �b� momentum space.
Atomic units �a.u.� are used.
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ties Lr and Dr display exactly the opposite monotonic behav-
iors; �ii� the aforementioned trends for all the involved quan-
tities defining both planes make the heavy atoms to
concentrate at different locations attending to the space we
are dealing with, namely, on the lower-right corner �position
space� and the upper-left one �momentum space�.

III. CRAMER–RAO INFORMATION PLANE
AND OTHER COMPLEXITY MEASURES

Taking those previously mentioned factors as basic in-
formation, additional quantifications of complexity for differ-
ent systems and processes should also be considered. In this
sense, the so-called Cramer–Rao product has been consid-
ered in other contexts.52 It is defined as C�CR�� IV, i.e., in
terms of two very different �attending to their definitions�
factors, again a local �I� and a global �V� one.

Nevertheless, the existence of a nontrivial lower bound
for a product of information factors,32,33 which such a very
different origin and definition in terms of the density, reveals
again the strong relation connecting the degree of uncertainty
in both the local and global sense.

Concerning the behavior of the Cramer–Rao complexity
C�CR� throughout the periodic table, in a similar way as
done in Sec. II for C�LMC� and C�FS� complexities, its de-

pendence on the nuclear charge Z and correlation with
atomic shell structure are clearly displayed in Fig. 3 in the
three spaces r, p, and rp.

It is firstly observed that many of the minima of Cr�CR�
and all of them for Cp�CR� also appeared in both complexi-
ties discussed in the previous section. Moreover, shell struc-
ture patterns are almost identical for the three complexities,
where up to five different factors �exponential entropy, dis-
equilibrium, power entropy, Fisher information, and vari-
ance� have been employed.

In order to justify some of those similarities among com-
plexities, it appears interesting to compare the different indi-
vidual factors mentioned above. An example is shown in
Fig. 4, where a comparison between the exponential entropy
L �a factor in LMC complexity� and the variance V �within
the Cramer–Rao complexity� is carried out in both conju-
gated spaces. Again, a strong structural similarity between
both quantities of such a different origin, in a different way
in each space can be clearly observed. In position space,
again, local minima are almost identically localized in both

FIG. 2. Disequilibrium-Shannon plane �D ,L� for neutral atoms with nuclear
charge Z=1–103 in �a� position space and �b� momentum space. Atomic
units �a.u.� are used.

FIG. 3. C�CR�= IV complexity for neutral atoms with nuclear charge Z
=1–103 in �a� position space, �b� momentum space, and �c� product space.
Atomic units �a.u.� are used.
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curves, which are composed of monotonic pieces associated
with shell-filling, as discussed in the previous figures. How-
ever, such shell-filling pattern is much more clearly observed
in the variance than in the exponential entropy.

On the other hand, similarity in momentum space con-
sists of a monotonically increasing behavior for both quanti-
ties when increasing the nuclear charge, showing an almost
identical shape differing only by a scaling factor.

It is important to note here, looking at Figs. 1, 3, and 4,
how complexity measures detect not only randomness or dis-
order but also the own structure and organization of the
physical systems that we are dealing with. Indeed, Fig. 4�a�
shows two measures of spread �Vr� and randomness �Lr�,
which are both peaked and decreasing in r space, showing
that the uncertainty related to heavy systems is smaller than
the one corresponding to light atoms. Nevertheless, for large
Z, the exponential entropy Lr is a rather monotone function
of Z. In a similar way, localization �Dr� or accuracy factors
�Ir� are strictly monotonic increasing functions of Z in posi-
tion space. However, the corresponding LMC or CR com-
plexities, in position space �plotted in Figs. 1 and 3, respec-
tively� show very different increasing and rugged behavior.

This different trend of entropy and complexity is even

more clear in momentum space, where exponential entropy
�Lp� and variance �Vp� are smooth monotonic increasing
functions �see Fig. 4�b�� whereas respective complexities are
peaked and structured functions of Z, showing all the com-
plex organization of the atomic shell structure. Localizations
�Dp or Ip� in this space are the factors which incorporate
structure to the complexity measures. Therefore, the utiliza-
tion of localization and randomness factors to construct com-
plexities, as well as the complementary use of position and
momentum spaces are fundamental to having a complete de-
scription of the information content of the atomic systems. In
this sense, Fig. 3�c�, which shows the Cramer–Rao complex-
ity in the product space, is a good example of the completely
structured behavior of the periodic table of elements.

One could also wonder, concerning the connection be-
tween location of extrema and shell structure in both spaces,
if such a connection is mainly due to one specific factor of
Cramer–Rao complexity or, perhaps, to both of them. This is
the main purpose of Fig. 5, in which the Cramer–Rao plane
is drawn in both spaces for the atomic systems considered
here. Keeping in mind that shell structure was previously
well displayed in both conjugate spaces, the different origins
of the local extrema when dealing with position and momen-
tum space are non observed. In this sense, Fig. 5�a� �position
space� reveals that in going from one subshell to the next

FIG. 4. Exponential entropy �L� and variance �V� for neutral atoms with
nuclear charge Z=1–103 in �a� position space and �b� momentum space.
Atomic units �a.u.� are used.

FIG. 5. Cramer–Rao plane �I ,V� for neutral atoms with nuclear charge Z
=1–103 in �a� position space and �b� momentum space. Atomic units �a.u.�
are used.
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one, Fisher information Ir appreciably increases its value; in
fact, ranges of values of Ir for each specific subshell are
represented as a disjoint set of intervals over the abscissa
axis. However, the same is not true for the variance Vr where
a monotonically decreasing behavior is displayed within
each individual subshell �apart from the aforementioned
anomalous shell-filling exceptions�, but now with most of the
corresponding associated ranges overlapped within a narrow
interval of values. Additionally, the increasing tendency of Ir

and the decreasing of Vr against Z make the heavy atoms to
appear concentrated next to the lower-right corner of the
figure.

A similar analysis to that given above, but now in mo-
mentum space �Fig. 5�b��, provide an exactly opposite be-
havior concerning Vp and Ip factors. Now, it is the variance,
the factor, which displays such a subrange of values decom-
position �i.e., increasing variance when considering an outer
valence subshell atom�, while the decreasing behavior with a
subshell is now associated with Fisher information Ip. Both
opposite monotonic behaviors compare to those of position
space make now the heavy atoms to appear next to the
upper-left corner.

The above discussion establishes again a common prop-
erty to the previously analyzed disequilibrium-Shannon
plane �Sec. II�, where similar trends concerning shell struc-
ture and location of light and heavy atoms were observed.

Finally, we have also analyzed other possible complexity
measures based on the individual information factors consid-
ered here, such as the products obtained when replacing the
factor on the Cramer–Rao complexity by a complementary
one �also in all spaces�. For instance, the products DV �where
disequilibrium replaces Fisher information� and IL �with
variance replaced by exponential entropy�. For the sake of
simplicity, we do not show here the associated figures, but a
detailed study of both local extrema and range of values of
individual factors provide similar conclusions to those
deeply analyzed for other complexities.

IV. CONCLUSIONS

We have used some information-theoretic magnitudes,
measuring randomness �S ,L ,J�, spread �V�, localization �D�,
and intrinsic accuracy �I� to compute several measures of
complexity, each one consisting of two localization-
delocalization factors: C�LMC�=DL, C�FS�= IV, C�CR�
= IV, and the products DV and IL. We have tested these pro-
posals on atoms, known to be strongly organized and hierar-
chical systems.

It is observed that it is not sufficient to study the above
measures only in the usual position space but also in the
complementary momentum space, in order to have a com-
plete description of the information-theoretic behavior of
these systems. The universality of the method allows one to
apply it to any multifermionic system by using the corre-
sponding one-particle density in both conjugated spaces.

We have shown that LMC and Fisher–Shannon com-
plexity measures �using respectively very different, global
and local, first localization factors� give similar qualitative
and quantitative results for neutral atoms for Z=1–103 in

both position and momentum spaces. This result contrasts
with other previous ones, where diverse atomic information
magnitudes must be arbitrarily factorized or scaled in order
to compare them.

The pattern of the periodic table is clearly displayed, and
the shell-filling process is readily captured by the measures.
Atoms are clustered according to their atomic groups and a
similar structure within each atomic period is found. Position
and momentum analyses provide a complementary display of
this structure. In general, position space patterns in
localization-delocalization planes are inverse, as one would
expect according to the uncertainty relations, to those of mo-
mentum space.

New proposals of LMC-type complexity measures �IV,
DL, and IL� are constructed and computed for the whole set
of physical systems. In particular, we concrete in the
Cramer–Rao complexity �IV� where the external global char-
acter of S is changed by another well known spread measure
�now centered on the average position�: The variance V. We
conclude that similar trends are followed by this measure,
capturing faithfully not only randomness or localization but
also the rich organization of the periodic table in the comple-
mentary conjugated spaces.
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