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Quantum similarity for atoms is investigated using electron densities in position and momentum
spaces. Contrary to the results in position space, the analysis in the momentum space shows how the
momentum density carries fundamental information about periodicity and structure of the system
and reveals the pattern of Mendeleev’s table. A global analysis in the joint r-p space keeps this
result. © 2007 American Institute of Physics. �DOI: 10.1063/1.2429064�

I. INTRODUCTION

Quantum similarity theory1,2 was originally developed in
order to establish quantitative comparisons between molecu-
lar systems by means of their fundamental structure magni-
tudes: electron density functions. Applications of this impor-
tant theory have been one of the cornerstones of recent
chemical research in molecules.3 Similarity of atoms in mol-
ecules has been extensively studied by the pioneering group
of Carbó-Dorca and also by others researchers.4 One of the
most attractive applications of computer-aided techniques in
molecular modeling stands on the possibility of assessing
certain molecular properties before the molecule is synthe-
sized. The field of quantitative structure activity/property re-
lationships has demonstrated that the biological activity and
the physical properties of a set of compounds can be math-
ematically related to some simple molecular structure
parameters.5

The generality of the measure definitions makes possible
to use them for comparing other quantum objects. In particu-
lar, a few quantum similarity measures �QSMs� between at-
oms and nuclei have already been defined and computed.
Due to the simple structure of these quantum objects, atoms
and nuclei are excellent benchmark systems for the general
theory. Only a few papers deal with these fundamental quan-
tum systems. In Ref. 6 simple and accurate relationships be-
tween atomic and nuclear quantum similarity measures and
their constituent elements were found. In particular, for a
wide range of atoms and nuclei, the QSM is described as a
polynomial function of the number of electrons �degree 3� or
nucleons �degree 1� of the system. Also exact quantum mo-
lecular overlaplike and Coulomb-type self-similarity mea-
sures have been studied in a selected series of mono- and
polyatomic systems �atoms and molecules� with the same
number of electrons.7 The aim of the work was to study the
concentration of electronic charge in molecules, and a good
linear relationship between the overlap self-similarity mea-
sure and the volume was found. More recently, an informa-
tion theory approach in a numerical Hartree-Fock framework

has been used to investigate quantum similarities of atoms
�H–Xe�.8 The basic result is that a nearest neighbor similarity
is retrieved, masking periodicity, and confirming the earlier
work of Robert and Carbó-Dorca.6 Nevertheless, the intro-
duction of shape functions9 and the information discrimina-
tion concept, with reference to the noble gas atom of the
previous row, were found to reveal some periodicity.

Most of the work on quantum similarity has been done
in the usual position representation r. Nevertheless, methods
for assessing quantum molecular similarity have been also
developed in the, less known, momentum space p.10 Many of
the problems associated with the conventional position-space
procedures are avoided and particular emphasis is placed on
the variation of the long-range position-space electron den-
sity. This approach is particularly suited to problems for
which molecular activity depends more on features of this
long-range slowly varying valence electron density and less
on precise details of the bonding topology.

The principal aim of the present work is to investigate
the unexplored, to the best of our knowledge, momentum-
space similarity for atomic systems with nuclear charge Z
=1–103 and to extract complementary information to that
obtained in the position space �Z=1–54�.8

Information entropy is a magnitude of paramount impor-
tance in the study of many-electron systems and has been
extensively used as a measure of distance between two elec-
tron distributions or processes. Entropy of a system can be
calculated in both position and momentum spaces. Moreover
the sum of these two quantities provides uncertainty relations
or principles similar to others derived in quantum theory.
These principles are usually interpreted as statements about
the precision of a quantum measurement. However, they may
also be considered as due to intrinsic uncertainty in a phase-
space description of quantum systems. Bialynicki-Birula and
Mycielski have derived an important inequality in terms of
the information entropies of position �S�� and momentum
�S�� one-particle densities ���r� and ��p�, respectively�11
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S� + S� � 3�1 + ln �� �1�

�normalization ���r�dr=���p�dp=1 will be used through-
out�. This means that when a system becomes more localized
in position space, it becomes more delocalized in momentum
space, and vice versa. Some other important results involv-
ing the entropy sum have also been obtained.12,13

The previous results on entropy suggest that new calcu-
lations in a joint phase-space r-p taking into account the
properties of both spaces can give complementary informa-
tion on the quantum similarity of atoms, nuclei, or mol-
ecules. We have employed, apart from the corresponding
densities associated with both individual spaces, a joint r-p
density which entropy is just the sum of the entropies in the
separated spaces to calculate atomic quantum similarities in
the joint space. This allows us to compare results on atomic
similarity in position, momentum, and phase spaces.

II. POSITION AND MOMENTUM-SPACE SIMILARITIES
FOR ATOMS

The one electron densities of an N electron system in
position and momentum spaces, ��r� and ��p� respectively,
are basic ingredients in the study of many physical properties
from a density functional theory perspective. Much attention
has been paid to the relevant role played by the position-
space density ��r� in the description of many-electron sys-
tems. However, a similar study in terms of the electron dis-
tribution in momentum space has still to be much more
worked out.

The electron distribution of atomic systems in momen-
tum space, described in terms of the monoparticular density
��p�, allows to easily interpret numerous physical and
chemical phenomena and plays a fundamental role in the
description of important properties of these systems.14,15

Also, ��p� is an experimentally accessible quantity by sev-
eral techniques.16,17

The most straightforward means of obtaining
momentum-space wave functions is to perform the Fourier
transform of the familiar position-space wave function. The
relationship in p space between the wave function
��p1 , . . . ,pN� and the total electron momentum density ��p�
is exactly the same as in r space. The contribution, for in-
stance, to ��p� of an electron in molecular orbital ��p� is
simply ���p��2. The momentum-space electron density falls
very slowly with increasing �p�, which corresponds in posi-
tion space to the quickly varying outer valence electron den-
sity. The form of the electron density in r space ��r� is de-
termined largely by the core electron and consequently by
the nuclear positions. ��p�, in contrast, emphasizes the
chemical interesting features of the valence electron distribu-
tion.

The QSM between isolated atoms is defined in a com-
pletely similar form as for molecules or other quantum
systems,7

MAB �� �A�r1���r1,r2��B�r2�dr1dr2, �2�

where �A�r1� and �B�r2� are the �spinless� electron density
functions of both systems A and B, and ��r1 ,r2� is a sepa-

ration operator. Most often, � is chosen as the Dirac delta
function ��r1−r2� reducing Eq. �2� to an overlap-type inte-
gral, and the other most oftenly used operator being r12

−1,
transforming Eq. �2� in a Coulomb-type integral. One can
generalize these computations by using other positive powers
r12

n of the interdistance. Normalization is taken by defining a
quantum similarity index �QSI�,

QSI �
MAB

	MAAMBB

, �3�

running between 0 and 1. Evaluation of a similarity index for
atoms is straightforward using electron densities of sufficient
quality for the isolated atoms. In a completely similar way
one can compute similarity indices in momentum space by
using the corresponding momentum densities �A�p1� and
�B�p2�.

MAA �or MBB� is called quantum self-similarity and is
obtained, independently of the operator, when comparing a
system with itself. It is related to the electronic charge den-
sity occupation in the space, that provides information on the
charge concentration of the considered quantum object.
When the selected operator is the overlap one, self-
similarities can be considered as the square of the norm of
the density function in the chosen metric. This is a very
important measure of localization, also called as linear
entropy,18 in contrast with the �nonlinear� Shannon entropy
�closely related to Renyi entropies Rq��� of orders 2 and 1,
respectively, as MAA=e−R2 and Sp=R1�, or in other contexts,
informational energy and inverse participation number.19

Other related indices to the QSI one have been also de-
fined and computed as the dissimilarity between two
systems,10

DAB � MAA + MBB − 2MAB, �4�

which is the square of the L2 norm.

III. NUMERICAL ANALYSIS OF THE QSI FOR ATOMS
IN CONJUGATE SPACES

In this section, a numerical analysis of the behavior of
the QSI associated with the delta operator ��r1 ,r2�=��r1

−r2� for ground-state neutral atoms is carried out throughout
the periodic table for systems with nuclear charge Z
=1–103. Such a study has been performed for both conju-
gate spaces �position r and momentum p� as well as for the
phase space corresponding to the pair �r ,p�. Phase-space
density functions and entropies have been successfully used
in other contexts, such as the study of dynamical properties
and complexity of many-body quantum states.20,21

In order to obtain the one-particle densities ��r� and
��p�, and its product

f�r,p� � ��r���p� ,

associated with the aforementioned spaces, it is necessary to
compute the N-particle wave function ��r1 , . . . ,rN� and its
Fourier transform ��p1 , . . . ,pN�. The position-space wave
function is expressed as an N-dimensional determinant,
which elements 	i�r j� �i , j=1, . . . ,N� correspond to the one-
electron orbitals, which radial part is expressed as a linear
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combination of Slater-type functions 
�r�=rne−�r, employing
the accurate set of coefficients provided by Koga et al.,22

from which consequently are also expanded functions ��p�
�the radial part being a rational function on p2� and f�r ,p�.
Concerning the systems considered in this work, i.e., isolated
atoms, it is sufficient to deal with the spherical averages of
the one-particle densities, namely, ��r� and ��p�, as well as
the two-dimensional density f�r , p� built up from the previ-
ous ones.

For the present case �i.e., delta operator�, the calculation
of the QSI involving the phase-space function f�r , p� reduces
to the product of the corresponding QSI in both separate
spaces. However, its calculation is not a trivial task in other
cases, such as those involving the variables r12 or p12. Nev-
ertheless, as it will be shown below, even the choice of the
simplest operator, i.e., the overlap one, reveals the relevant
role played by the momentum variable in order to display
structural and physical properties of the involved densities.
Additional work employing more complex phase-space dis-
tributions f�r ,p� �e.g., Wigner23 and Husimi24 ones� will be
also carried out.

Concerning the values of the QSI obtained for different
pairs of atomic systems through the Periodic Table, the main
results are given and discussed below, in order to study how
the value of the QSI reflects the similarity in shell filling and
structure.

In Fig. 1, the results concerning the QSI of each alkaline
atom �Z�=3,11,19,37,55,87� with respect to the whole Pe-
riodic Table �Z=1–103� are provided for position �Fig. 1�a��,
momentum �Fig. 1�b��, and phase �Fig. 1�c�� spaces.

As pointed out by other authors,4,8 the value of the
QSI�r�Z ,Z�� in position space �Fig. 1�a�� between atoms
with nuclear charges Z and Z� mainly depends on �Z−Z��,
i.e., on how close they are located in the Periodic Table; in
fact, for any fixed value Z� it is a unimodal function on Z,
attaching its maximum value 1 �as should be expected� at
Z=Z�, and no periodicity or shell structure is revealed by
such a function.

However, such properties are clearly displayed in Figs.
1�b� �momentum space� and 1�c� �phase space�, both involv-
ing the momentum variable p. Local extrema appearing in
Fig. 1�b� are closely related to the process of shell filling.
Maxima of QSI� p for all alkaline atoms are attached for
atoms belonging to the same group and, additionally, for sys-
tems involved in the anomalous filling of subshells 5s and
6s. However, QSI� p always displays a relative minimum
when comparing a noble gas with an alkaline atom, as well
as for anomalous filling of 4d and 5d as well as half filling of
4d subshell.

Similar comments can be done concerning Fig. 1�c�
�phase space� which involves simultaneously both conjugate
variables r and p. Location of extrema occurs at same posi-
tion when only considering p �Fig. 1�b��, but the differences
of the corresponding QSI�rp values are emphasized when
adding the information provided by the position space.

The aforementioned structural behavior of the QSI de-
pending on the momentum-space variable �with or without
taking into account position-space information� is also ob-
served for all other groups of the Periodic Table. For in-

stance, Fig. 2 provides the values obtained for the QSI� p
associated with the momentum density of halogens �Z�=9,
17, 35, 53, and 85� compared to the corresponding density of
all atomic systems with Z=1–103. Comments about the lo-
cation of extrema in these curves are similar to those given
previously for Fig. 1�b� corresponding to alkalines. As be-
fore, maxima appear when comparing two halogen atoms
�i.e., systems belonging to the same group�, and additional
ones are displayed associated, in this case, with the anoma-

FIG. 1. Quantum similarity index �QSI� of alkaline atoms �Z�
=3,11,19,37,55,87� in �a� position, �b� momentum, and �c� phase spaces.
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lous filling of d subshells �3d, 4d, 5d, and 6d�; again, minima
occur for the ns filling �n=3,4 ,5 ,6 ,7� as well as to the
previously mentioned maxima for the anomalous d filling,
giving rise, in these cases, to a set of pairs maximum-
minimum.

The aforementioned differences on the structure of the
QSI involving or not the information coming from momen-
tum space �dominated by the shell structure and the value of
the nuclear charge, respectively� are also clearly observed in
Fig. 3, in which QSI�Z ,Z�� are analyzed for two atoms with
very close values of nuclear charge �namely, Z�=18 and 20�
throughout the whole Periodic Table. As should be expected,
both curves appearing in Fig. 3�a�, corresponding to
QSI�r�Z ,18� and QSI�r�Z ,20� are very close everywhere
due to the close values of the chosen nuclear charges, while
the corresponding graph associated with the QSI�rp quantity
presents a very strong difference between both curves, due to
the fact that, as mentioned before, their structure is mainly
the result of the shell-filling process. In fact, for the chosen
atoms Z�=18 and 20, with external orbitals 3p6 and 4s2,
respectively, minima of one are located at maxima of the
other, and vice versa. So, Fig. 3 again emphasizes the funda-
mental role played by the momentum-space properties in or-
der to analyze and compare the shell structure of two many-
electron systems.

IV. CONCLUSIONS

The comparison of two many-electron systems in what
concerns the shell structure requires the consideration of the
momentum-space variable p through the corresponding one-
particle density. As previously known, the corresponding
density in position space ��r� only provides, by means of the
quantum similarity index, information on how close the at-
oms are located at the periodic table. In order to get addi-
tional knowledge on the groups to which the systems belong,
it is sufficient to deal with the momentum variable and, pref-
erably, with both conjugate variables associated with the
phase space in order to emphasize the aforementioned infor-
mation.
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