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The position-space entropy S, and the momentum-space entropy S, are two increasingly 
important quantities in the study of the structure and scattering phenomena of atomic and 
molecular systems. Here, an information-theoretic method which makes use of the 
Bialynicki-Birula and Mycielski’s inequality is described to find rigorous upper and lower 
bounds to these two entropies in a compact, simple and transparent form. The upper bounds 
to S,, are given in terms of radial expectation values (P) and/or the mean logarithmic radii 
(In r) and ((In r)2), whereas the lower bounds depend on the momentum expectation values 
(p”) and/or the mean logarithmic momenta (lnp) and ( (lnp)2). Similar bounds to S, are 
also shown in a parallel way. A near Hartree-Fock numerical analysis for all atoms with 
Z<54 shows that some of these bounds are so tight that they may be used as computational 
values for the corresponding quantities. The role of the mean logarithmic radius (In t) and 
the mean logarithmic momentum (lnp) in the improvement of accuracy of the 
aforementioned bounds is certainly striking. 

I. INTRODUCTION 

The position-space entropy S,, and the momentum- 
space entropy S, are two information-theoretic concepts 
which are increasingly important in the study of the struc- 
ture’” and collisional phenomena” of atomic and molec- 
ular systems. They have been shown to be related with 
some fundamental quantities such as, for example, the ki- 
netic energy,‘t9 and to predict momentum-space proper- 
ties”-‘3 of those systems. 

Let us consider a N-electron atomic system character- 
ized by the one-electron charge density p( rl) given by 

f(rd 
r1,r2 ,..., rN;u1,02 ,..., aN) 1 2dr2dr3...drN 

where $( r1,r2 ,..., rN;01,02 ,..., aN) is the normalized wave 
function of the system which is antisymmetric in the pairs 
( ri,ai) of position-spin electronic coordinates. The density 
function p(r) is, then, normalized to unity. The informa- 
tion entropy S, is defined as 

Sp= - p(r)lnp(r)dr. (1) 

The momentum-space information entropy S, of the 
one-electron momentum density y(p) is defined in a fully 
analogous way. Gadre et al. recently computed these two 
entropies in the Thomas-Fermi model for neutral atoms7 
as well as within a Hartree-Fock framework for some sim- 
ple systems (harmonic oscillator and hydrogen atom) and 
for several atoms and ions.8 In addition, they obtain’ rig- 
orous upper bounds to the information entropies Sp and S,, 
in terms of the second moment of the respective single- 
particle densities (i.e., (2) and (p2)) by means of the 
maximum entropy method in its simplest way; that is, for 

example, in the position space, by maximizing Sp subject to 
two constraints: normalization of the density p(r) to unity 
and the expectation value (2). 

One would like to extend the work of Gadre et al. to 
find new and improved additional bounds to the aforemen- 
tioned information entropies by including any moment- 
type constraint but this has not yet been done in spite of 
efforts of many authors. 14*15 The reason is that the solution 
of the integrals in the evaluation of the constant Lagrange 
multipliers of the probability density which maximizes the 
corresponding entropy cannot be expressed in terms of el- 
ementary functions, generally speaking. This maximum en- 
tropy problem can be analytically solved only in the case of 
one-moment constraint provided that moment is of posi- 
tive order. Even more, the existence of a solution is already 
problematic in the general case. Recently, Mead and Pa- 
panicolau’5 have found necessary and sufficient conditions 
for the existence of a maximum entropy solution for one- 
dimensional densities with an arbitrary number of moment 
constraints on a finite interval. In cases where the interval 
is infinite or semiinfinite, the maximum entropy problem is 
much less known and with not so much mathematical 
rigor. For finite many-particle systems, the relevant inter- 
val is usually the semiinfinite one, [0, CO >. In this case the 
only well-established analytical result possibly corre- 
spondsi5-19 to the mere existence of a solution to the prob- 
lem having as constraints the twoi or three” moments of 
lowest positive order in addition to the normalization to 
unity; partial generalization of this result was done by 
Einbu,20 who also considered the question of uniqueness. 

In the present work we use a method described in Sec. 
II to obtain several families of analytical upper and lower 
bounds to the atomic information entropies Sp and S, 
Upper bounds to Sp are given by means of one and two 
radial expectation values of positive and negative order 
with and without the mean logarithmic radius (In r). Cor- 
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S0(aba2,...,an) = - 
s 

p(r)hf(r;al,a2,...,a,)dr (8) 
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responding bounds to the momentum entropy S, are also 
given. The upper bounds to both atomic entropies are col- 
lected and proved in Sec. III and the lower bounds are 
contained in Sec. IV. Some numerical tests of the accuracy 
of these bounds are done in Sec. V for several neutral 
atoms within a Hartree-Fock framework. Briefly, they 
show that the inclusion of the mean logarithmic radius 
makes the new upper bounds to the entropy of information 
certainly tight in both position and momentum spaces. Fi- 
nally, some concluding remarks are given. 

and then we optimize So(ai,...,an) to find the best upper 
bound. Specifically, we will take the following prior esti- 
mates: 

fi(r)=APexp( -af) for a>O, (m+3)a>O, (9) 

II. THEORETICAL GROUND 

The information entropy for an absolutely continuous 
distribution with probability density p(r) is defined as2’ 

f2(r)=APexp( -Bp-+) for P>O, Y>O, (10) 

f3(r)=AJnexp(-P”-vYP) for P>O, (m+3)a>O, 
(11) 

S,= - 
s 

p(r)lnp(r)dr, (2) 

where p(r) is assumed to be normalized to unity, i.e., 

where A is a constant to be determined by means of the 
normalization condition and m, a, /!I, and Y are parameters 
to be calculated in the maximization process. 

Taking the atomic charge density p(r) as the function 
p(r), one finds rigorous upper bounds to the position-space 
information entropy SP in terms of one or two radial ex- 
pectation values (P) and the mean logarithmic radius 
(In r) defined as 

p(r)&= 1. (3) 

A generalization of this concept is the so-called relative 
entropy22 I(p,f ) associated to two probability density 
functions p(r) and f(r) and normalized to unity: 

I(pf I= I 
p(r) 

p(r)lnfO dr. (4) 

The relative entropy is a measure of the deviation of p(r) 
from f(r), which is usually called reference density or 
prior density. It has been successfully applied to a remark- 
able variety of fields, going from statistics22923 to quantum 
physics,‘*24 because it has several useful properties.22’23 In 
particular, it is non-negative, i.e., I(pf ) 20, which allows 
us to write 

Spc- p(r)lnf(rM. 
I 

It is interesting to remark that 

(5) 

Sp<- p(r)lnp(r)dr, s (6) 

where p(r) is the spherically averaged density defined by 

(P) = J f)dr)dr, (12) 

(In r) = J In rp(r)dr, (13) 

respectively. In an analogous way, rigorous upper bounds 
to the atomic momentum information entropy may be ob- 
tained in terms of the corresponding momentum expecta- 
tion values (p”) and the mean logarithmic momentum 
(lnp). 

(2) The lower bounds to the atomic information en- 
tropies SP and S, are obtained by combining the upper 
bounds encountered in the previous step with the 
Bialynicki-Birula and Mycielski (BBM) inequality given 
by 8,25 

S,+S,)3( 1 +ln n), (14) 

p(r) =& s 
p(r)&. 

where both electron and momentum densities are normal- 
ized to unity. This inequality and others involving infor- 
mation entropies have been already used in a variety of 
quantum-mechanical problems25-31 and more specifically 
in the study of atomic systems.7-9’1’ 

The inequality (6) easily follows from Eqs. (5) and (7) 
with the choice f(r) =p(r) as prior density. 

The method which will be used here to find lower and 
upper bounds to the atomic information entropies S,, and 
S, consists of two steps: 

( 1) We use in the inequality (5) as prior density, a 
n-parametric density function f (r;al,a2,...,an) normalized 
to unity to obtain a family of upper bounds 

In this way one can rigorously find lower bounds to SP 
in terms of one and two momentum expectation values 
(p”) and the mean logarithmic momentum (lnp) as well 
as lower bounds to S, by means of one and two radial 
expectation values (P) and the mean logarithmic radius 
(In r). Then, one has rigorous relationships between the 
information entropy in a space and fundamental and/or 
measurable quantities of the system in the complementary 
space, being given the latter ones by means of the afore- 
mentioned expectation values. 
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Ill. UPPER BOUNDS TO ATOMIC ENTROPIES 

Here we will collect the main infinite sets of upper 
bounds that we have found for the atomic information 
entropies together with their corresponding proofs. 

(i) If a> -3 and (m+3)a>O, then 
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and the mean logarithmic momentum (In p). Their corre- 
sponding expressions are similar to Eqs. (15)-(23) but 
keeping in mind that the only existing values (p*) are those 
with - 3 < a < 5 due to the pw8 asymptotic behavior of the 
atomic momentum density y(p) at large momenta.32’33 In 
particular, one can write 

Sp<Sp(a,m) E~~(A,,,,~(P)(~+~)‘~) -m(ln r) (15) 
with the parameter 

Sy<Sy(a,m) =ln(A,,,w)(m+3)‘a) -m(lnp) (24) 

for -3<a<5 and (m+3)a>O. Similarly, to Eqs. (20)- 
(23) one has 

4t,CX= 
47rr[ (m+3)/a] 

[al [(m+3)/ea](m+3)‘n’ (16) 

where e is the exponential number. For a fixed a, this 
inequality allows one to find an infinity of upper bounds 
S,(a,m) for (m+3)a>O. For m=O one has 

S,( -2,m) =ln 
i 

Am,-2 
(p-l)cm+3)12) --m(lnp) for m -c -3, 

(25) 

S,,(c~,0)=ln[A,(P)~‘“] for O<a< co, (17) 

where A,= Ao,,. Some particular cases of this expression 
are 

S,( -1,m) =ln( $Gi,) -m(lnp) for m < -3i26j 

S,( l,m)=ln(Am,l(p)m+3) -m(lnp) for m> -3, 
(27) 

Sy(2,m)=ln(A,2(p2)(m+3)‘2)-m(lnp) for m> -3, 
(18) (28) 

respectively. Since the kinetic energy is T=N(p2)/2 and 
taking into account Eq. (28)) one can write 

(19) 
SfCi (l+lng), (29) 

a relation recently obtained by Gadre and Bendale.’ Ex- 
pressions (24)-( 28) considerably extend and improve this 
relationship. 

Besides, Eq. ( 15) produces for a= -2, - 1, 1, and 2 the 
following families of bounds: 

Sp( -2,m) =ln 
( 

4-2 (r-2j(m+3)/2) --m(ln 4 for m-c -3, 
(20) 

S,(-l,m)=ln( (r$Fi+l)_m(lnr) for m< -3i21j 

SJ Lm) =ln(A,,l(r) m+3) -m(ln r) for m > -3, 
(22) 

S&m) =MA,,2(~) (m+3)/2)-m(ln r) for m> -3, 
(23) 

respectively. The optimization of Eqs. (20)-(23) allows 
one to find the m value which produces the best bounds to 
S,, although this is not analytically possible. 

To prove the main inequality ( 15) it is enough to use 
the function f, (r) given by Eq. (9) as a prior estimate in 
Eq. (8) and to calculate the normalization constant A via 
the elementary integral34 

I 
O” x”-le-Iupdx=-p- 

Ii, 
v’pr ( v/p ) for p,pv > 0. 

0 

Then, the optimization with respect to the parameter a 
leads to Eq. ( 15) in a straightforward manner. 

In a fully analogous way we can derive upper bounds 
to S,, depending on the momentum expectation values (p”) 

(ii) If a > - 3, but a#O, then 

32de 1’2 
S,Cg(a) =ln ,2 

I( ) 
((t-y - (P)-y2 1 

+ 3+; (lnr), 
( ) 

(30) 

Sp<Sp**(a)=f[4(r-“)(P)-3]1’2 

+lln8?r’ (4Wa)W)-3)“2-l 
2 a2(r--a)3 

+(3-ia)(ln r). (31) 
Some particular upper bounds from inequalities (30) and 
(31) are 

$( 1) =ln(32ae)“2+ln[ (r-l) - (r)-1]1’2+i(ln r), 
(32) 

g(2) =ln(8ae)“2+ln[ (rm2)- (?)-1]1’2+4(1n r), 
(33) 

and 

S,**(1)=6[4(r-‘)(r)-3]“2 

+llnsd [4(r-1)(r)-3]1’2-1 3 
2 (r-‘>3 +z On 4, 

(34) 
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T(2) =;(4(+)(3) -3)“2 

+lln22 [4w2H~)-311’2-- 
2 w2j3 * 

The best upper bound of these two infinite families 
$(a) and q*(a) is obtained by optimizing the corre- 
sponding expressions (30) and (3 I), respectively, but this 
may only be done numerically. 

It is interesting to remark that the limit case a-+0 of 
the two expressions (30) and (31) leads to a new upper 
bound for SP by means of the mean logarithmic radius 
(In r) and the mean-square logarithmic radius ( (In r>2) as 

Spc2$& ln{32de[ ((ln r)2)- (In r>2]}+3(ln r). (36) 

To prove the two main inequalities (30) and (3 1 ), we have 
used in Eq. (8) the function f2(r) given by IQ. (lo), 
properly normalized to unity, as a prior estimate. One ob- 
tains 

with 

A = 1 a 1 (wv)(m+3)‘2a 
8’%n+,,& Jb’) ’ 

where the K function is the modified Bessel function of the 
third kind or Basset function Kc(x). Then the succesive 
choices of (m + 3) /a = f i, f $ followed by optimization 
with respect to B and v produce the searched inequalities 
(30) and (3 1 ), respectively. O ther choices for (m + 3)/a 
would lead to new upper bounds. Here, once again the 
restriction a > -3 comes from the nonexistence of mo- 
ments of such orders of the atomic p density. 

Working similarly in the momentum space, one ob- 
tains upper bounds to the momentum entropy SY fully 
analogous to those for SP given in expressions (30)-( 36), 
but in terms of (pa>, (p-“), and (lnp). 

(iii) If z is a real number and p = (m + 3)/a is positive, 
then 

Sp<Sp(a,p,z) =ln 4yy’ D-Jz) 
( 1 

2 
+q+p In x 

Pa) zv> 
+(3--pa)(lnd+7g+~ (37) 

with 

x=&z(P) + CzVY+4p(P))i/2] 

and where D-,(z) is the parabolic cylinder function34 of 
order -p. A particular upper bound produced by this in- 
equality is 

2 1 871-s 
SP(a,l,z) ET+? In --& 1 -~#(z/fl)]~x~ 

P> zw> 
(38) 

for any real z [where C+(X) is the so-called error function]. 

The best member of the family of upper bounds 
{S,,(a,p,z)} would be obtained via optimization with re- 
spect to the three parameters a, p, and z; however, we have 
not been able to do this analytically. To prove inequality 
(37) we have used in Eq. (8) the function f3( r) given by 
zn.efiib properly normalized to unity, as prior estimate. 

A= 
Ial (2o)(m+3)/20~~-d/W 

4~r[(m+3)/alD-(m+3),cr(v/V/2~) ’ 

Then, the notations p= (m + 3)/a and z= v/ \Izs together 
with the minimization with respect to fl, lead to the 
searched inequality (37). One should also point out that to 
obtain the normalization constant A, the result34 

I 
m x- le-p2-vx~x 

0 

= (2P)-P’21(p>e “8PD-,(v/ @)  for /3,p > 0 

has been used. 
In a fully analogous manner one would obtain in the 

momentum space a family of upper bounds S,(a,p,z) to 
the momentum entropy S, similar to expressions (37) and 
(38) but given in terms of (pa), (p2”), and (lnp). 

IV. LOWER BOUNDS TO ATOMIC ENTROPIES 

The combination of the BBM’s inequality (14) with 
each upper bound to the position (momentum) informa- 
tion entropy produces a lower bound to the momentum 
(position) information entropy. Thus, we may obtain 
lower bounds to the entropy in one space by means of the 
expectation values of the coordinate in the complementary 
space. Here, we will only quote some of them. 

(i) If -3<a<S and a(m+3) >O, then the expres- 
sions (14) and (24) give 

SP>3(1+lnr)-Sy(a,m) 

=3(1+In~)-l1n(A,,,(p~)(~~~)‘~)+rn(lnp), (39) 

where the parameter A,,a is given by Eq. ( 16). Some pal 
titular cases are the following. 

For m=O, 

Sp>3(l+ln7r)-ln(A,(p”)3”2) O<a<5. 

For a=2, 

) (4.0 

S,>3( 1 +In rr) -ln(A,,2(p2)(m+3)‘2) +m(lnp), m> -3. 
(41) 
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TABLE I. Values, in atomic units, of the position entropy of information SP the radial expectation values 
(P) with Q= -2, - 1, 1, and 2, the mean logarithmic radius (In r) and the mean-square logarithmic radius 
((In r)‘) for all the atoms with Z(54. The near Hartree-Fock atomic wave functions of Clementi and 
Roetti have been used. 

Z so W*) (r-9 (4 (2) (In 4 ((ln r12) 

1 4.144 71 2.000 00 l .OCOOO 1.500 00 3.000 00 0.229 64 0.447 67 
2 2.698 41 5.995 92 1.687 34 0.927 25 1.184 66 -0.270 82 0.510 37 
3 3.701 38 10.072 30 1.905 18 1.673 27 6.210 46 -0.078 56 1.253 60 
4 3.623 86 14.406 02 2.102 18 1.532 20 4.329 68 -0.100 50 1.279 75 
5 3.405 40 18.732 65 2.275 89 1.362 10 3.169 94 -0.163 76 1.229 68 
6 3.106 03 23.128 86 2.448 22 1.190 76 2.298 70 -0.250 07 1.172 20 
7 2.801 61 27.602 83 2.619 43 1.049 98 1.725 81 -0.339 15 1.14141 
8 2.550 62 32.157 09 2.782 4-l 0.95 1 28 1.396 58 -0.415 87 1.143 80 
9 2.298 86 36.785 78 2.946 5 1 0.864 20 1.137 49 - 0.492 46 1.161 38 

10 2.055 26 41.490 03 3.111 32 0.789 15 0.937 57 -0.566 61 1.193 52 
11 2.330 05 46.316 85 3.220 94 0.985 74 2.468 19 -0.53191 1.398 68 
12 2.395 03 51.235 23 3.326 70 1.021 21 2.464 10 -0.527 17 1.486 31 
13 2.445 55 56.180 56 3.423 06 1.055 02 2.572 99 -0.521 58 1.560 74 
14 2.418 96 61.159 04 3.517 38 1.034 16 2.303 70 -0.531 07 1.590 12 
15 2.358 81 66.170 64 3.609 85 0.998 09 2.017 48 -0.547 89 1.603 00 
16 2.260 04 71.303 64 3.718 59 0.959 98 1.811 22 -0.576 16 1.626 54 
17 2.221 89 76.279 08 3.786 61 0.930 76 1.625 64 -0.586 29 1.622 22 
18 2.133 84 81.389 48 3.873 60 0.892 82 1.446 40 -0.609 94 1.626 81 
19 2.301 66 86.536 96 3.941 76 1.023 75 2.694 44 -0.585 83 1.741 79 
20 2.363 04 91.721 68 4.007 97 1.062 32 2.829 18 -0.575 95 1.797 80 
21 2.298 11 96.873 05 4.081 38 1.022 68 2.531 17 -0.595 09 1.796 29 
22 2.218 68 102.026 57 4.155 45 0.981 61 2.280 82 -0.617 87 1.793 70 
23 2.135 14 107.195 02 4.229 26 0.942 63 2.065 98 -0.64168 1.793 03 
24 1.955 70 112.332 38 4.310 90 0.853 33 1.567 49 -0.686 66 1.758 63 
25 1.962 58 117.563 03 4.376 38 0.871 50 1.723 14 -0.690 91 1.798 71 
26 1.882 17 122.777 78 4.448 26 0.840 75 1.582 45 -0.714 13 1.805 39 
27 I.800 09 127.999 61 4.520 27 0.811 49 1.459 57 -0.737 80 1.814 04 
28 1.718 30 133.231 52 4.592 14 0.783 88 1.350 14 -0.761 44 1.824 62 
29 1.563 29 138.426 79 4.671 66 0.726 35 1.113 23 -0.800 77 1.816 80 
30 1.556 30 143.733 57 4.735 48 0.733 40 1.166 42 -0.808 34 1.851 34 
31 1.574 27 149.032 29 4.795 17 0.754 66 1.319 66 -0.809 88 1.893 85 
32 1.567 30 154.361 88 4.853 96 0.756 16 1.299 05 -0.815 20 1.921 22 
33 1.549 75 159.709 70 4.911 87 0.750 91 1.243 96 -0.822 23 1.942 11 
34 1.534 20 165.081 12 4.968 22 0.747 11 1.210 30 -0.828 67 1.962 48 
35 1.510 58 170.46161 5.023 96 0.739 12 1.157 12 -0.836 50 1.978 75 
36 1.481 44 175.848 11 5.079 11 0.728 85 1.097 86 -0.845 28 1.992 51 
37 1.576 17 181.235 23 5.126 32 0.805 38 1.842 85 -0.831 71 2.062 09 
38 1.621 34 186.672 61 5.172 89 0.837 17 2.001 22 -0.824 35 2.104 31 
39 1.614 03 192.094 24 5.221 12 0.829 48 1.877 40 -0.828 09 2.117 65 
40 1.594 42 197.524 10 5.269 72 0.817 05 1.759 00 -0.834 50 2.126 55 
41 1.523 34 202.942 17 5.321 12 0.773 04 1.426 58 -0.851 47 2.112 98 
42 1.490 53 208.384 25 5.369 63 0.758 41 1.336 54 -0.860 46 2.119 11 
43 1.461 66 213.825 44 5.417 37 0.747 32 1.278 76 -0.868 73 2.127 42 
44 1.429 94 219.289 83 5.464 95 0.735 75 1.224 64 -0.877 63 2.135 26 
45 1.395 41 224.751 59 5.512 31 0.723 48 1.170 43 -0.887 14 2.142 50 
46 1.301 89 230.202 42 5.562 94 0.682 02 0.914 76 -0.906 67 2.129 75 
47 1.323 23 235.698 01 5.606 32 0.699 48 1.073 11 -0.906 87 2.157 44 
48 1.332 89 241.226 06 5.648 04 0.708 17 1.132 05 - 0.907 74 2.178 11 
49 1.351 83 246.735 53 5.689 70 0.724 70 1.253 68 -0.906 58 2.205 30 
50 1.357 02 252.249 16 5.730 15 0.729 43 1.260 72 -0.907 30 2.223 14 
51 1.354 93 257.773 28 5.770 04 0.729 37 1.236 54 -0.909 17 2.236 89 
52 1.353 53 263.311 10 5.809 19 0.730 08 1.226 06 -0.910 83 2.250 45 
53 1.346 66 268.858 67 5.848 03 0.727 68 1.197 24 -0.913 42 2.261 28 
54 1.335 75 274.408 36 5.886 49 0.723 33 1.16008 -0.916 69 2.270 22 

For m=O and a=2, =N(p2)/2 allows to correlate the position entropy S, and 
the quantum-mechanical kinetic energy T as 

3/2 
S,>3( 1 +ln 7r) --In . (42) 

The last inequality together with the definition T (43) 
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TABLE II. Values, in atomic units, of the momentum information entropy S, the momentum expectation 
values (pa) with a= -2, - 1, 1, and 2, the mean logarithmic momentum (lnp) and the mean-square 
logarithmic momentum ((ln~)~) for all the atoms with 2~54. The near Hartree-Fock atomic wave 
functions of Clementi and Roetti have been used. 

Z s, W2) (P-9 (P) (p’) &P) ((lnp)‘) 

1 2.421 86 5.000 ‘xl 1.697 70 0.848 83 1.00000 -0.333 33 0.467 38 
2 3.913 52 1.022 35 0.535 15 0.699 75 1.430 85 0.145 41 0.415 89 
3 3.996 88 2.950 67 0.576 20 0.545 07 1.651 67 0.033 87 1.099 56 
4 4.190 12 1.580 70 0.394 90 0.464 63 1.821 62 0.089 85 1.169 93 
5 4.705 90 0.650 48 0.239 18 0.425 96 1.962 32 0.275 15 1.057 36 
6 5.156 52 0.326 62 0.159 85 0.40172 2.093 83 0.440 34 1.056 75 
7 5.549 33 0.185 76 0.11423 0.384 96 2.220 43 0.584 90 1.121 92 
8 5.867 34 0.117 21 0.086 76 0.370 64 2.337 75 0.701 43 1.219 32 
9 6.163 32 0.078 35 0.067 94 0.360 08 2.454 56 0.809 08 1.339 51 

10 6.437 02 0.054 80 0.054 56 0.351 97 2.570 90 0.908 06 1.474 75 
11 6.483 07 0.267 25 0.071 99 0.336 63 2.675 27 0.861 33 1.766 08 
12 6.515 25 0.256 65 0.071 49 0.323 13 2.772 33 0.849 12 1.919 84 
13 6.619 18 0.164 78 0.060 93 0.311 98 2.862 38 0.877 97 1.969 98 
14 6.733 72 0.114 03 0.052 12 0.302 45 2.947 43 0.916 02 2.013 16 
15 6.848 63 0.083 23 0.045 04 0.294 15 3.028 60 0.957 03 2.059 03 
16 7.002 42 0.064 89 0.039 90 0.286 33 3.104 94 1.014 09 2.146 77 
17 7.052 09 0.050 57 0.035 14 0.279 75 3.179 71 1.031 90 2.162 26 
18 7.155 27 0.040 45 0.031 26 0.273 77 3.251 83 1.070 88 2.217 46 
19 7.172 56 0.139 56 0.038 14 0.266 54 3.319 37 1.042 70 2.388 40 
20 7.18000 0.152 05 0.039 37 0.259 83 3.383 75 1.030 57 2.492 86 
21 7.303 20 0.122 14 0.034 75 0.255 62 3.445 57 1.077 04 2.537 12 
22 7.426 70 0.103 30 0.03 1 07 0.252 02 3.505 77 1.123 55 2.594 01 
23 7.547 04 0.087 95 0.027 93 0.248 8 1 3.564 83 1.168 91 2.656 54 
24 7.751 33 0.048 10 0.021 27 0.247 41 3.622 75 1.262 37 2.679 40 
25 7.776 80 0.065 91 0.022 95 0.243 3 1 3.679 52 1.255 55 2.795 46 
26 7.882 52 0.057 15 0.020 92 0.240 77 3.734 92 1.295 21 2.865 44 
27 7.985 97 0.033 90 0.016 45 0.239 74 3.789 63 1.333 97 2.939 03 
28 8.086 37 0.044 39 0.017 62 0.236 39 3.844 29 1.371 58 3.014 49 
29 8.250 39 0.028 37 0.014 14 0.235 65 3.897 59 1.447 97 3.071 81 
30 8.278 50 0.035 08 0.015 03 0.232 67 3.950 67 1.443 59 3.169 69 
31 8.323 80 0.028 27 0.014 42 0.229 85 4.002 58 1.451 52 3.23 1 02 
32 8.371 38 0.023 24 0.013 67 0.227 15 4.053 44 1.462 98 3.283 00 
33 8.418 10 0.019 75 0.012 95 0.224 54 4.103 33 1.475 80 3.331 38 
34 8.458 27 0.017 38 0.012 36 0.221 96 4.152 06 1.487 04 3.378 01 
35 8.499 34 0.015 24 0.011 75 0.219 49 4.199 71 1.499 81 3.422 19 
36 8.540 76 0.013 49 0.011 17 0.217 14 4.246 94 1.513 36 3.465 05 
37 8.544 18 0.043 36 0.013 38 0.214 47 4.292 43 1.495 23 3.567 87 
38 8.542 20 0.050 23 0.014 19 0.211 89 4.337 37 1.484 71 3.639 14 
39 8.590 46 0.04188 0.013 18 0.209 76 4.380 77 1.501 a 3.668 12 
40 8.640 51 0.036 78 0.012 35 0.207 80 4.423 50 1.519 67 3.702 27 
41 8.732 60 0.020 10 0.010 10 0.206 3 1 4.465 85 1.564 31 3.703 08 
42 8.782 24 0.018 04 0.009 53 0.204 56 4.507 14 1.583 08 3.743 58 
43 8.828 75 0.016 89 0.009 07 0.202 84 4.547 91 1.600 26 3.785 67 
44 8.875 45 0.015 81 0.008 65 0.201 22 4.588 18 1.617 60 3.828 66 
45 8.922 05 0.014 79 0.008 24 0.199 67 4.628 00 1.635 15 3.871 98 
46 8.988 63 0.004 50 0.006 65 0.198 53 4.666 96 1.678 06 3.885 62 
47 9.013 78 0.013 03 0.007 52 0.196 75 4.705 74 1.669 86 3.960 71 
48 9.024 81 0.017 09 0.008 CO 0.194 94 4.743 13 1.663 96 4.019 83 
49 9.048 75 0.014 51 0.007 84 0.193 34 4.781 43 1.666 71 4.059 90 
50 9.072 79 0.012 75 0.007 63 0.191 71 4.818 40 1.671 28 4.093 86 
51 9.096 56 0.011 30 0.007 39 0.190 13 4.854 71 1.677 05 4.124 79 
52 9.11693 0.010 29 0.007 20 0.188 57 4.890 19 1.682 01 4.155 76 
53 9.138 06 0.009 38 0.006 99 0.187 05 4.925 66 1.687 94 4.185 05 
54 9.159 75 0.008 57 0.006 77 0.185 57 4.960 19 1.694 64 4.212 88 

which was iirst discovered by Gadre and Bendale’ in 1987. 
This result is generalized by inequalities (39)-( 41) via the 

Sy>3(1+1n~)-Sp(a,m) 

inclusion of expectation values (p”) of index a other than 
2 and/or the mean logarithmic momentum (lnp). More- 

=3( l+ln n-) -ln(A,,,a(p)(m+3)‘a) +m(ln r) (4) 

over, the inequalities ( 14) and ( 15) lead to the following Some particular cases are the following. For m =O, 

lower bound. If a> -3 and a(m+3) >O, then S,>3(1+ln~)-ln(A,(P)3’“), O<a<co. (45) 
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SD 
6 1111,1111,1111,1111,IIII,IIII 

3/2 (a.u.) 

(46) 

(47) 

0 ,,,,‘,,,,‘,.,,‘lll,‘,,,,‘,,l,l 
0 10 20 30 40 50 60 

Z 

Sy>3(l+ln7r)-ln _ (r 1),+3+m(ln 4, m < -3. 

S,.>3( 1 +In r) -ln(A,,l(r)m+3) +m(ln r), m > -3 
(48) 

For a=2, 

which is already known.9 
For a= - 1, 

A,,-1 

For a= 1, 

S,,>3( l+ln r) -~II(A,,,~(?)‘“+~“~) +m(ln r), m > -$. 
(49) 

Of course, for a fixed a the best lower bound is obtained in 
each case by optimizing with respect to m but this cannot 
be analytically done in general. 

(ii) From inequalities ( 14) and (36), one has 

S,>$( 1 -ln 2) +$ In a-ln( ((In r)2) - (In r)2)1’2 

-3(ln r). (50) 

A similar lower bound for the information entropy in po- 
sition space, SP, may be written by means of the expecta- 
tion values (lnp) and ((lnp)2). 

V. NUMERICAL STUDY 

Here we will study the quality of the bounds found in 
the two previous sections for all atoms with 204 by 
means of the near Hartree-Fock atomic wave functions of 
Clementi and Roetti.35 We will concentrate on the first set 
of upper bounds given in Sec. III; specifically, we will con- 
sider the quantities 

Sp(a,m) with a= -2, -1, 1, and 2 and m=O,mopt 

given by Eqs. ( 18)-(23)) and the corresponding ones 
S,(a,m) in the momentum space. The symbol mopt de- 
notes the value of m which gives the optimal (i.e., best) 
bound in the corresponding equation to the entropy. It is 
important to remark that Sp(a,m=O)~Sp(a) depends 
only on (S), whereas S,,(a,m#O) depends additionally on 
(In r), and similarly for Sr( a,m ) in momentum space. In 
addition, the accuracy of the upper bounds Si and its part- 
ner S; in momentum space, will be analyzed. They are of 
enormous interest since they depend on the mean logarith- 
mic radius and the mean-square logarithmic radius, only. 

To carry out this numerical study, we evaluate firstly 
the Hartree-Fock values of the position space entropy SP 
and the expectation values (P), with a= - 2, - 1, 1, and 
2, (In r), and ((In r)2). These are given in Table I. The 

FIG. 1. Comparison between the Hartree-Fock value of the position 
entropy of information SP for all the atoms with 1 <Z<54 and two upper 
bounds S,(a) =S,(a,m=O) which depend on a radial expectation value 
(P). Atomic units are used throughout. 

values of the corresponding quantities in momentum space, 
that is S, (pa), (Inp), and ((lnp)2) are shown in Table 
II. Then, once we know these expectation values, any of 
the searched bounds may be easily calculated and com- 
pared with the Hartree-Fock (HF) value of the corre- 
sponding entropy. This is done in Tables III and IV and 
Figs. l-6. 

In Figs. 1 and 2 the bounds S,,(a) and SJa) depend- 
ing on a specific radial expectation value (only the cases 
a= 1, 2 are shown) are compared with the HF entropy, 
respectively. One notices that (i) the bounds with a = 1 are 

2 
1 1 

ot~““,,‘,“,“‘,,“““,“,‘,~ 
0 10 20 30 40 50 60 

Z 

FIG. 2. Comparison between the Hartree-Fock value of the momentum 
entropy of information S, for all the atoms with 1 <Z<54 and two upper 
bounds S,,(a) ES? (a,m =O) which depend on a radial expectation value 
(p”). Atomic units are used throughout. 
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TABLE III. Values, in percent, of the upper hound Sp(a,m) to the TABLE IV. Values, in percent, of the upper bound S,(a,m) to the 
position entropy SP with a= -2, - 1, 1, and 2, and m=m,+ [i.e., the momentum entropy ST with a = -2, - 1, 1, and 2, and m = mopt (i.e., the 
optimal value of m in the same sense that it produces, for a given a, the optimal value of m in the same sense that it leads, for a given a, the best 
best upper bound as given by IQ. (15)] for all atoms with Z<54. upper bound) for all atoms with Z<54. 

Z m (-trn) m (-7rnj m (Lm) m 24 
SP 

1 -4.09 91.7 -5.33 96.7 0.00 100.0 -1.17 99.6 
2 -4.01 87.9 -5.13 95.2 -0.28 100.0 -1.34 99.0 
3 -3.63 92.4 -4.02 95.9 -2.02 95.2 -2.32 93.8 
4 -3.56 89.9 -3.91 93.7 -1.92 96.5 -2.21 96.2 
5 -3.54 87.8 -3.89 92.2 -1.80 97.2 -2.12 97.3 
6 -3.53 85.5 -3.91 90.7 -1.68 97.6 -2.04 97.9 
7 -3.53 83.3 -3.93 89.3 -1.57 97.8 -1.97 98.3 
8 -3.53 81.4 -3.96 88.3 -1.49 98.0 -1.92 98.5 
9 -3.54 79.3 -3.98 87.0 -1.41 98.1 -1.88 98.6 

10 -3.54 77.0 -4.01 85.7 -1.34 98.2 -1.84 98.6 
11 -3.51 82.6 -3.91 90.6 -1.90 95.1 -2.31 90.2 
12 -3.49 83.7 -3.87 91.5 -1.95 95.9 -2.31 92.4 
13 -3.48 84.2 -3.83 91.8 -2.00 96.2 -2.32 93.3 
14 -3.47 83.7 -3.81 91.3 -1.98 96.7 -2.29 94.5 
15 -3.46 82.7 -3.81 90.5 -1.95 97.0 -2.26 95.3 
16 -3.46 81.6 -3.80 89.6 -1.93 96.7 -2.24 95.4 
17 -3.46 80.8 -3.80 88.9 -1.89 97.3 -2.21 96.4 
18 -3.45 79.5 -3.80 87.9 -1.86 91.3 -2.18 96.7 
19 -3.44 82.8 -3.76 90.9 -2.05 96.6 -2.37 92.6 
20 -3.43 83.6 -3.74 91.5 -2.08 97.0 -2.37 93.6 
21 -3.43 82.9 -3.74 91.1 -2.06 91.3 -2.36 94.1 
22 -3.43 82.0 -3.74 90.5 -2.03 97.5 -2.34 94.2 
23 -3.43 81.0 -3.75 89.9 -2.01 97.6 -2.33 94.2 
24 -3.43 78.5 -3.77 88.1 -1.92 97.9 -2.27 94.6 
25 -3.43 78.9 -3.76 88.6 -1.96 97.6 -2.30 93.8 
26 -3.43 77.9 -3.77 87.9 - 1.94 97.6 -2.29 93.7 
27 -3.43 76.8 -3.71 87.2 -1.92 97.6 -2.28 93.5 
28 -3.43 75.1 -3.78 86.5 -1.90 91.5 -2.27 93.2 
29 -3.44 72.9 -3.80 84.4 -1.82 97.6 -2.23 92.9 
30 -3.43 73.2 -3.80 84.9 -1.86 97.3 -2.25 92.5 
31 -3.43 73.9 -3,79 85.6 -1.92 96.7 -2.29 91.3 
32 -3.43 74.0 -3.78 85.8 -1.93 96.8 -2.29 91.8 
33 -3.43 73.7 -3.77 85.6 -1.93 96.9 -2.28 92.5 
34 -3.42 73.5 -3.77 85.5 -1.93 91.0 -2.28 93.0 
35 -3.42 73.1 -3.77 85.2 -1.93 97.2 -2.27 93.5 
36 -3.42 72.5 -3.71 84.7 -1.92 97.3 -2.25 93.9 
31 -3.41 75.2 -3.75 87.2 -2.06 95.5 -2.39 88.4 
38 -3.41 76.2 -3.73 88.1 -2.10 95.3 -2.41 88.9 
39 -3.41 76.1 -3.73 88.0 -2.09 95.8 -2.40 89.8 
40 -3.41 75.8 -3.73 87.8 -2.08 96.2 -2.39 90.5 
41 -3.41 74.3 -3.73 86.5 -2.03 97.0 -2.34 92.1 
42 -3.41 13.6 -3.73 86.0 -2.01 97.2 -2.33 92.5 
43 -3.40 73.0 - 3.73 85.5 -2.00 97.3 -2.32 92.1 
44 -3.40 72.3 -3.13 85.0 -1.99 91.4 -2.31 92.1 
45 -3.40 71.5 -3.73 84.4 -1.98 97.4 -2.30 92.1 
46 -3.41 68.9 -3.74 82.0 -1.91 97.7 -2.23 95.0 
47 -3.40 69.9 -3.73 83.1 -1.95 97.4 -2.29 92.6 
48 -3.40 70.4 -3.73 83.6 -1.98 97.3 -2.31 92.2 
49 -3.40 71.0 -3.12 84.3 -2.01 96.8 -2.33 91.2 
50 -3.40 71.2 -3.72 84.5 -2.02 96.9 -2.34 91.5 
51 -3.39 71.2 -3.71 84.5 -2.02 97.0 -2.33 92.0 
52 -3.39 71.2 -3.11 84.4 -2.03 97.1 -2.33 92.4 
53 -3.39 11.0 -3.71 84.3 -2.03 97.2 -2.33 92.8 
54 -3.39 70.7 -3.71 84.0 -2.02 91.2 -2.32 93.2 

Z m (-?rn) m (-?rn) m (*T&j m (2Yh 
1 -4.30 89.5 -5.71 96.4 0.11 99.4 -1.24 96.9 
2 -4.22 93.6 -5.50 98.0 -0.22 99.5 -1.43 97.5 
3 -3.61 91.4 -3.99 94.9 -1.77 98.0 -2.15 97.1 
4 -3.67 93.8 -4.05 96.4 -1.92 96.8 -2.26 95.4 
5 -3.71 95.7 -4.24 98.1 -1.82 97.4 -2.24 95.7 
6 -3.84 96.5 -4.40 98.8 -1.72 91.8 -2.20 95.8 
7 -3.90 97.0 -4.53 99.1 -1.63 98.0 -2.17 95.9 
8 -3.96 97.3 -4.63 99.3 -1.56 98.0 -2.15 96.0 
9 -4.00 97.5 -4.72 99.4 -1.49 98.2 -2.12 96.1 

10 -4.04 97.1 -4.80 99.5 -1.43 98.3 -2.10 96.2 
11 -3.51 92.5 -3.93 96.2 -1.74 99.0 -2.21 97.5 
12 -3.50 93.4 -3.85 96.3 -1.87 99.0 -2.26 97.7 
13 -3.55 94.8 -3.91 97.2 -1.91 99.0 -2.28 97.7 
14 -3.60 95.7 -3.96 97.9 -1.92 99.0 -2.29 97.6 
15 -3.64 96.4 -4.02 98.3 -1.92 98.9 -2.29 97.5 
16 -3.66 96.5 -4.02 98.1 -1.88 98.9 -2.29 97.4 
17 -3,70 97.2 -4.10 98.8 -1.92 98.6 -2.30 91.1 
18 -3.73 97.5 -4.15 98.9 -1.91 98.5 -2.30 97.0 
19 -3.47 94.2 -3.82 97.4 -2.00 99.1 -2.34 97.8 
20 -3.45 94.4 -3.76 97.2 -2.06 99.2 -2.37 97.9 
21 -3.46 94.5 -3.78 97.3 -2.04 99.2 -2.36 97.9 
22 -3.47 94.5 -3.80 97.4 -2.02 99.1 -2.35 97.8 
23 -3.41 94.5 -3.82 97.4 -2.00 99.1 -2.34 97.8 
24 -3.53 94.8 -3.98 98.0 -1.90 98.9 -2.31 97.4 
25 -3.48 94.4 -3.84 97.4 -1.96 99.1 -2.33 97.7 
26 -3.48 94.4 -3.86 97.4 -1.94 99.1 -2.32 97.7 
27 -3.54 95.5 -4.09 99.2 -1.93 99.0 -2.31 97.7 
28 -3.48 94.3 -3.88 97.4 -1.90 99.1 -2.30 97.6 
29 -3.52 94.4 -4.03 97.9 -1.81 98.9 -2.27 97.4 
30 -3.49 94.2 -3.90 97.3 -1.86 99.1 -2.29 97.6 
31 -3.51 94.9 -3.90 97.6 -1.89 99.2 -2.30 97.7 
32 -3.53 95.5 -3.92 97.9 -1.90 99.2 -2.31 97.8 
33 -3.55 95.9 -3.93 98.1 -1.92 99.2 -2.31 91.9 
34 -3.57 96.2 -3.94 98.2 -1.93 99.2 -2.32 97.9 
35 -3.58 96.5 -3.95 98.4 -1.94 99.2 -2.32 91.9 
36 -3.60 96.8 -3.96 98.5 -1.94 99.2 -2.32 97.8 
37 -3.42 94.3 -3.15 97.3 -2.00 99.4 -2.35 98.2 
38 -3.41 94.3 -3.70 97.0 -2.04 99.5 -2.36 98.3 
39 -3.42 94.5 -3.12 97.3 -2.03 99.5 -2.36 98.3 
40 -3.43 94.7 -3.74 97.4 -2.03 99.5 -2.36 98.3 
41 -3.49 95.4 -3.86 98.1 -1.99 99.3 -2.35 98.0 
42 -3.49 95.5 -3.88 98.2 -1.99 99.3 -2.35 98.0 
43 -3.49 95.5 -3.89 98.2 -1.98 99.2 -2.34 97.9 
44 -3.50 95.5 -3.90 98.3 -1.98 99.2 -2.34 97.9 
45 -3.50 95.5 -3.91 98.3 -1.97 99.2 -2.34 97.9 
46 -3.75 98.3 -4.15 99.3 -1.93 98.8 -2.33 97.4 
47 -3.50 95.4 -3.93 98.3 -1.96 99.1 -2.34 97.8 
48 -3.46 95.1 -3.83 97.9 -1.99 99.2 -2.35 97.9 
49 -3.48 95.6 -3.83 98.0 -2.01 99.3 -2.36 98.0 
50 -3.49 95.9 -3.83 98.2 -2.02 99.3 -2.36 98.1 
51 -3.51 96.2 -3.84 98.3 -2.03 99.3 -2.37 98.1 
52 -3.52 96.4 -3.84 98.4 -2.04 99.3 -2.37 98.1 
53 -3.53 96.7 -3.85 98.5 -2.04 99.3 -2.37 98.1 
54 -3.54 96.8 -3.85 98.5 -2.05 99.3 -2.38 98.1 

considerably better than those with a=2 in both position In Tables III and IV the bounds Sp(a,mopt) and 
and momentum spaces, and (ii) the bounds S,(a), which S,(a,m,,,) are compared with the position and momen- 
depend on (P), show up the same structure as the position tum entropies S, and S, respectively. This is done by giv- 
entropy SP; this is not true in the momentum case, al- ing the values of the bounds in percent. A few observations 
though the general shape is very similar. are in order. Fit of all, the bounds are very accurate in 
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FIG. 3. Quality of the upper bounds SJ 1,m) with m=O and mopt (the 
value of m which leads to the beat upper bound to the position entropy SP 
as given by Eq. ( 15); its value is shown in the sixth column of Table III) 
for all atoms, from hydrogen through xenon. Comparison between these 
bounds and the Hartree-Fock value is done. Notice that SJ 1,O) only 
depends on (r) but S,,( l,m,,) depends additionally on (In r). Atomic 
units are used throughout. 

the whole region of the periodic table. Generally speaking, 
the bounds with a= 1 [i.e., SP( l,mopt) and Sr( l,m,&] are 
again the tightest ones. The worst case occurs for Z= 11 in 
position space where the bound lies within 4.8% of the HF 
value, and for Z=4 in momentum space where the bound 
lies within 3.2% of the corresponding HF value. 

To gain insight into the bounds S,(a,m), we compare 
in Fig. 3 the HF position entropy and the bounds 
S,,(a,O)=S,,(a) and Sp(l,m&. Now we observe more 
transparently the considerable improvement brought by 
both the inclusion of the mean logarithmic radius and the 

Z 0 10 20 30 40 50 60 

Z FIG. 4. Quality of the upper bounds Sr( 1,m) with m=O and mopt (i.e., 
the value of m which leads to the best upper bound to the momentum 
entropy S+ its value is given in the sixth column of Table IV) for all 
atoms, from hydrogen through xenon. Comparison between these bounds 
and the Hartre+Fock value is done. Notice that S,( l,mopt) depends on 
(r), as Sr( 1,O) does, but also on (lnp). Atomic units are used through- 
out. 
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FIG. 5. Comparison between the Hartree-Fock value of the position 
entropy of information SP and the upper bound Ss as given in Eq. (36) 
in text, for all atoms from hydrogen through xenon. The bound SL de 
pends on both the mean logarithmic radius, (In r), and the mean-square 
logarithmic radius, ((ln r)*). Atomic units are used throughout. 

m optimization. A similar comparison and observation 
may be done from Fig. 4 in momentum space for the 
bounds Sr( 1,m). In this case, an additional remark should 
be mentioned: the bound Sr( l,m,pt) shows up, contrary to 
Sr( l,O), the same structure as the HF value S, 

In Figs. 5 and 6 we analyze the quality of the bounds 
SL and S$ respectively, in the same Hartree-Fock frame- 
work. These new bounds depend only on the mean loga- 
rithmic radius and the mean-square logarithmic radius of 
the charge and momentum densities, respectively. Indeed, 
in Fig. 5 the comparison between the bound Si and the HF 
value SP is shown. The analogous comparison in momen- 
tum space is done in Fig. 6. One notices that both bounds 

FIG. 6. Comparison between the Hartre+Fock value of the momentum 
entropy of information Sr and the upper bound S; for all atoms from 
hydrogen through xenon. The bound S; depends on both the mean log- 
arithmic momentum, (lnp), and the mean-square logarithmic momen- 
tum, ((In p)*). Atomic units are used throughout. 
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2 1111,11(1,1111,1111,1111,1111 examination of this behavior indicates that deviations from 
the general constancy arises for those cases where the outer 
shell gets completed. This constant tendency is more ap- 
parent for negative values of a in position space. Moreover, 
the values of mopt are higher for the positive values of a 
than for the negative ones in both spaces. Further research 
to know the physical meaning of this phenomenon needs to 
be done. 

VI. CONCLUDING REMARKS 

-6 3’3 3’ a 3 3 3 ‘a I’ * “I g” a”+‘# 8 8’ 
0 10 20 30 40 50 60 

Z 

FIG. 7. Dependence of the optimal parameter mopt of the upper bound to 
the position entropy for o= -2, -1, 1, and 2 [see Sec. V and Eqs. 
(20)-(23) of Sec. III] with the atomic number 2 in the whole periodic 
table up to Xe. 

Si and S; are strikingly accurate. Certainly, the quantities 
S,,( l,m,+J, Si, S,( l,m,,,), and Si are tight upper bounds 
to the atomic information entropres. 

A similar numerical study of the quality of the lower 
bounds discussed in Sec. IV may be performed in a parallel 
way. In that case the novelty lies in that the lower bound in 
a space depend on expectation values of quantities in the 
complementary or dual space. 

Finally, it is worth emphasizing the general behavior of 
the optimal value mopt of the m parameter with respect to 
Z. In both position and momentum spaces, one realizes 
that mopt is practically constant for all atoms with 2~54 
except for H and He cases, as it is shown in Tables III and 
IV. This dependence with Z is plotted in Figs. 7 and 8 for 
the sake of transparency. Therein, one realizes that a closer 

An information-theoretic method to find infinite sets of 
rigorous upper and lower bounds to the atomic informa- 
tion entropies, SP and S, in an analytical way, is described. 
The upper bounds to the entropy in a space (position or 
momentum) are given in terms of the moments (expecta- 
tion values) of the associated single-particle density and/or 
a mean logarithmic radius. Contrary to this, the lower 
bounds to the entropy in a space depend on the moments of 
the single-particle density in the dual or complementary 
space and/or an associated mean logarithmic radius. 

In particular, upper bounds to the position entropy SP 
are given in terms of one or two radial expectation values 
(P) and/or the mean logarithmic radius (In r). Addition- 
ally, a new bound Si depending only on (In r) and 
( (In r) 2> is also found. The corresponding lower bounds to 
SP are given by means of the expectation values (pa), 
(In p) and ( (In p) 2). Similar bounds are given for the mo- 
mentum information entropy. 

Finally, a numerical analysis of the accuracy of several 
upper bounds in both position and momentum spaces has 
been performed in a Hartree-Fock framework for all at- 
oms with 204. It shows that some of these bounds are so 
tight that they may be used as computational values of the 
corresponding quantities. Moreover, one realizes the im- 
portant role of the mean logarithmic radii, (In r) and 
(In p), in the improvement of accuracy of the correspond- 
ing atomic entropies. 
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FIG. 8. Dependence of the optimal parameter mopt of the upper bound to 
the momentum entropy for (z= -2, - 1, 1, and 2 [see Sec. V and Eqs. 
(25)-(28) of Sec. III] with the atomic number Z in the whole periodic 
table up to Xe. 
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