Tight rigorous bounds to atomic information entropies

J. C. Angulo and J. S. Dehesa
Departamento de Fisica Moderna, Facultad de Ciencias, Universidad de Granada, 18071-Granada, Spain

(Received 2 April 1992; accepted 14 May 1992)

Abstract

The position-space entropy S_{ρ} and the momentum-space entropy S_{γ} are two increasingly important quantities in the study of the structure and scattering phenomena of atomic and molecular systems. Here, an information-theoretic method which makes use of the Bialynicki-Birula and Mycielski's inequality is described to find rigorous upper and lower bounds to these two entropies in a compact, simple and transparent form. The upper bounds to S_{ρ} are given in terms of radial expectation values $\left\langle r^{\alpha}\right\rangle$ and/or the mean logarithmic radii $\langle\ln r\rangle$ and $\left\langle(\ln r)^{2}\right\rangle$, whereas the lower bounds depend on the momentum expectation values $\left\langle p^{\alpha}\right\rangle$ and/or the mean logarithmic momenta $\langle\ln p\rangle$ and $\left\langle(\ln p)^{2}\right\rangle$. Similar bounds to S_{γ} are also shown in a parallel way. A near Hartree-Fock numerical analysis for all atoms with $Z<54$ shows that some of these bounds are so tight that they may be used as computational values for the corresponding quantities. The role of the mean logarithmic radius $\langle\ln r\rangle$ and the mean logarithmic momentum $\langle\ln p\rangle$ in the improvement of accuracy of the aforementioned bounds is certainly striking.

I. INTRODUCTION

The position-space entropy S_{ρ} and the momentumspace entropy S_{γ} are two information-theoretic concepts which are increasingly important in the study of the structure ${ }^{1-9}$ and collisional phenomena ${ }^{10}$ of atomic and molecular systems. They have been shown to be related with some fundamental quantities such as, for example, the kinetic energy, ${ }^{1,9}$ and to predict momentum-space properties ${ }^{11-13}$ of those systems.

Let us consider a N-electron atomic system characterized by the one-electron charge density $\rho\left(\mathbf{r}_{1}\right)$ given by
$\rho\left(\mathbf{r}_{1}\right)$

$$
=\sum_{\sigma_{i}=-1 / 2}^{+1 / 2} \int\left|\psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{N} ; \sigma_{1}, \sigma_{2}, \ldots, \sigma_{N}\right)\right|^{2} d \mathbf{r}_{2} d \mathbf{r}_{3} \ldots d \mathbf{r}_{N}
$$

where $\psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{N} ; \sigma_{1}, \sigma_{2}, \ldots, \sigma_{N}\right)$ is the normalized wave function of the system which is antisymmetric in the pairs ($\mathbf{r}_{i}, \sigma_{i}$) of position-spin electronic coordinates. The density function $\rho(\mathbf{r})$ is, then, normalized to unity. The information entropy S_{ρ} is defined as

$$
\begin{equation*}
S_{\rho}=-\int \rho(\mathbf{r}) \ln \rho(\mathbf{r}) d \mathbf{r} \tag{1}
\end{equation*}
$$

The momentum-space information entropy S_{γ} of the one-electron momentum density $\gamma(\mathbf{p})$ is defined in a fully analogous way. Gadre et al. recently computed these two entropies in the Thomas-Fermi model for neutral atoms ${ }^{7}$ as well as within a Hartree-Fock framework for some simple systems (harmonic oscillator and hydrogen atom) and for several atoms and ions. ${ }^{8}$ In addition, they obtain ${ }^{9}$ rigorous upper bounds to the information entropies S_{ρ} and S_{γ} in terms of the second moment of the respective singleparticle densities (i.e., $\left\langle r^{2}\right\rangle$ and $\left\langle p^{2}\right\rangle$) by means of the maximum entropy method in its simplest way; that is, for
example, in the position space, by maximizing S_{ρ} subject to two constraints: normalization of the density $\rho(r)$ to unity and the expectation value $\left\langle r^{2}\right\rangle$.

One would like to extend the work of Gadre et al. to find new and improved additional bounds to the aforementioned information entropies by including any momenttype constraint but this has not yet been done in spite of efforts of many authors. ${ }^{14,15}$ The reason is that the solution of the integrals in the evaluation of the constant Lagrange multipliers of the probability density which maximizes the corresponding entropy cannot be expressed in terms of elementary functions, generally speaking. This maximum entropy problem can be analytically solved only in the case of one-moment constraint provided that moment is of positive order. Even more, the existence of a solution is already problematic in the general case. Recently, Mead and Papanicolau ${ }^{15}$ have found necessary and sufficient conditions for the existence of a maximum entropy solution for onedimensional densities with an arbitrary number of moment constraints on a finite interval. In cases where the interval is infinite or semiinfinite, the maximum entropy problem is much less known and with not so much mathematical rigor. For finite many-particle systems, the relevant interval is usually the semiinfinite one, $[0, \infty)$. In this case the only well-established analytical result possibly corresponds ${ }^{15-19}$ to the mere existence of a solution to the problem having as constraints the two ${ }^{16}$ or three ${ }^{19}$ moments of lowest positive order in addition to the normalization to unity; partial generalization of this result was done by Einbu, ${ }^{20}$ who also considered the question of uniqueness.

In the present work we use a method described in Sec. II to obtain several families of analytical upper and lower bounds to the atomic information entropies S_{ρ} and S_{γ} Upper bounds to S_{ρ} are given by means of one and two radial expectation values of positive and negative order with and without the mean logarithmic radius $\langle\ln r\rangle$. Cor-
responding bounds to the momentum entropy S_{γ} are also given. The upper bounds to both atomic entropies are collected and proved in Sec. III and the lower bounds are contained in Sec. IV. Some numerical tests of the accuracy of these bounds are done in Sec. V for several neutral atoms within a Hartree-Fock framework. Briefly, they show that the inclusion of the mean logarithmic radius makes the new upper bounds to the entropy of information certainly tight in both position and momentum spaces. Finally, some concluding remarks are given.

II. THEORETICAL GROUND

The information entropy for an absolutely continuous distribution with probability density $p(r)$ is defined as ${ }^{21}$

$$
\begin{equation*}
S_{p}=-\int p(\mathbf{r}) \ln p(\mathbf{r}) d \mathbf{r} \tag{2}
\end{equation*}
$$

where $p(r)$ is assumed to be normalized to unity, i.e.,

$$
\begin{equation*}
\int p(\mathbf{r}) d \mathbf{r}=1 \tag{3}
\end{equation*}
$$

A generalization of this concept is the so-called relative entropy ${ }^{22} I(p, f)$ associated to two probability density functions $p(\mathbf{r})$ and $f(\mathbf{r})$ and normalized to unity:

$$
\begin{equation*}
I(p, f)=\int p(\mathbf{r}) \ln \frac{p(\mathbf{r})}{f(\mathbf{r})} d \mathbf{r} \tag{4}
\end{equation*}
$$

The relative entropy is a measure of the deviation of $p(r)$ from $f(\mathbf{r})$, which is usually called reference density or prior density. It has been successfully applied to a remarkable variety of fields, going from statistics ${ }^{22,23}$ to quantum physics, ${ }^{1,24}$ because it has several useful properties. ${ }^{22,23}$ In particular, it is non-negative, i.e., $I(p, f) \geqslant 0$, which allows us to write

$$
\begin{equation*}
S_{p} \leqslant-\int p(\mathbf{r}) \ln f(\mathbf{r}) d \mathbf{r} \tag{5}
\end{equation*}
$$

It is interesting to remark that

$$
\begin{equation*}
S_{p} \leqslant-\int p(r) \ln p(r) d \mathbf{r}, \tag{6}
\end{equation*}
$$

where $p(r)$ is the spherically averaged density defined by

$$
\begin{equation*}
p(r)=\frac{1}{4 \pi} \int p(\mathrm{r}) d \mathrm{r} \tag{7}
\end{equation*}
$$

The incquality (6) easily follows from Eqs. (5) and (7) with the choice $f(\mathbf{r})=p(r)$ as prior density.

The method which will be used here to find lower and upper bounds to the atomic information entropies S_{ρ} and S_{γ} consists of two steps:
(1) We use in the inequality (5) as prior density, a n-parametric density function $f\left(r ; \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ normalized to unity to obtain a family of upper bounds

$$
\begin{equation*}
S_{0}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)=-\int p(\mathbf{r}) \ln f\left(\mathbf{r} ; \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) d \mathbf{r} \tag{8}
\end{equation*}
$$

and then we optimize $S_{0}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ to find the best upper bound. Specifically, we will take the following prior estimates:
$f_{1}(\mathbf{r})=A r^{m} \exp \left(-a r^{\alpha}\right)$ for $\quad a>0,(m+3) \alpha>0$,
$f_{2}(\mathrm{r})=A r^{m} \exp \left(-\beta r^{\alpha}-\frac{v}{r^{\alpha}}\right)$ for $\beta>0, v>0$,
$f_{3}(\mathbf{r})=A r^{m} \exp \left(-\beta r^{2 \alpha}-v r^{\alpha}\right)$ for $\beta>0,(m+3) \alpha>0$,
where A is a constant to be determined by means of the normalization condition and m, α, β, and v are parameters to be calculated in the maximization process.

Taking the atomic charge density $\rho(r)$ as the function $p(\mathbf{r})$, one finds rigorous upper bounds to the position-space information entropy S_{p} in terms of one or two radial expectation values $\left\langle r^{\alpha}\right\rangle$ and the mean logarithmic radius $\langle\ln r\rangle$ defined as

$$
\begin{align*}
& \left\langle r^{\alpha}\right\rangle=\int r^{\alpha} \rho(\mathbf{r}) d \mathbf{r} \tag{12}\\
& \langle\ln r\rangle=\int \ln r \rho(\mathbf{r}) d \mathbf{r} \tag{13}
\end{align*}
$$

respectively. In an analogous way, rigorous upper bounds to the atomic momentum information entropy may be obtained in terms of the corresponding momentum expectation values $\left\langle p^{\alpha}\right\rangle$ and the mean logarithmic momentum $\langle\ln p\rangle$.
(2) The lower bounds to the atomic information entropies S_{ρ} and S_{γ} are obtained by combining the upper bounds encountered in the previous step with the Bialynicki-Birula and Mycielski (BBM) inequality given by ${ }^{8,25}$

$$
\begin{equation*}
S_{\rho}+S_{\gamma} \geqslant 3(1+\ln \pi) \tag{14}
\end{equation*}
$$

where both electron and momentum densities are normalized to unity. This inequality and others involving information entropies have been already used in a variety of quantum-mechanical problems ${ }^{25-31}$ and more specifically in the study of atomic systems. ${ }^{7-9,11}$

In this way one can rigorously find lower bounds to S_{ρ} in terms of one and two momentum expectation values $\left\langle p^{\alpha}\right\rangle$ and the mean logarithmic momentum $\langle\ln p\rangle$ as well as lower bounds to S_{γ} by means of one and two radial expectation values $\left\langle r^{\alpha}\right\rangle$ and the mean logarithmic radius $\langle\ln r\rangle$. Then, one has rigorous relationships between the information entropy in a space and fundamental and/or measurable quantities of the system in the complementary space, being given the latter ones by means of the aforementioned expectation values.

III. UPPER BOUNDS TO ATOMIC ENTROPIES

Here we will collect the main infinite sets of upper bounds that we have found for the atomic information entropies together with their corresponding proofs.
(i) If $\alpha>-3$ and $(m+3) \alpha>0$, then

$$
\begin{equation*}
S_{p}\left\langle S_{p}(\alpha, m) \equiv \ln \left(A_{m, \alpha}\left\langle r^{\alpha}\right\rangle^{(m+3) / \alpha}\right)-m\langle\ln r\rangle\right. \tag{15}
\end{equation*}
$$

with the parameter

$$
\begin{equation*}
A_{m, \alpha} \equiv \frac{4 \pi \Gamma[(m+3) / \alpha]}{|\alpha|[(m+3) / e \alpha]^{(m+3) / \alpha}} \tag{16}
\end{equation*}
$$

where e is the exponential number. For a fixed α, this inequality allows one to find an infinity of upper bounds $S_{\rho}(\alpha, m)$ for $(m+3) \alpha>0$. For $m=0$ one has

$$
\begin{equation*}
S_{\rho}(\alpha, 0)=\ln \left[A_{\alpha}\left\langle r^{\alpha}\right\rangle^{3 / \alpha}\right] \quad \text { for } \quad 0<\alpha<\infty, \tag{17}
\end{equation*}
$$

where $A_{\alpha} \equiv A_{0, \alpha}$. Some particular cases of this expression are

$$
\begin{align*}
& S_{\rho}(1,0)=\ln \left(\frac{8 \pi}{27} e^{3}\langle r\rangle^{3}\right), \tag{18}\\
& S_{\rho}(2,0)=\ln \left(\frac{2 \pi e}{3}\left\langle r^{2}\right\rangle\right)^{3 / 2} . \tag{19}
\end{align*}
$$

Besides, Eq. (15) produces for $\alpha=-2,-1,1$, and 2 the following families of bounds:
$S_{\rho}(-2, m)=\ln \left(\frac{A_{m,-2}}{\left\langle r^{-2}\right\rangle^{(m+3) / 2}}\right)-m\langle\ln r\rangle$ for $m<-3$,
$S_{\rho}(-1, m)=\ln \left(\frac{A_{m,-1}}{\left\langle r^{-1}\right\rangle^{m+3}}\right)-m\langle\ln r\rangle$ for $\quad m<-3$,
$S_{\rho}(1, m)=\ln \left(A_{m, 1}\langle r\rangle^{m+3}\right)-m\langle\ln r\rangle$ for $\quad m>-3$,
$S_{\rho}(2, m)=\ln \left(A_{m, 2}\left\langle r^{2}\right\rangle^{(m+3) / 2}\right)-m\langle\ln r\rangle \quad$ for $\quad m>-3$,
respectively. The optimization of Eqs. (20)-(23) allows one to find the m value which produces the best bounds to S_{ρ} although this is not analytically possible.

To prove the main inequality (15) it is enough to use the function $f_{1}(\mathbf{r})$ given by Eq. (9) as a prior estimate in Eq. (8) and to calculate the normalization constant A via the elementary integral ${ }^{34}$

$$
\int_{0}^{\infty} x^{v-1} e^{-\mu x^{p}} d x=\frac{1}{|p|} \mu^{-v / p} \Gamma(v / p) \quad \text { for } \quad \mu, p v>0
$$

Then, the optimization with respect to the parameter a leads to Eq. (15) in a straightforward manner.

In a fully analogous way we can derive upper bounds to S_{γ} depending on the momentum expectation values $\left\langle p^{\alpha}\right\rangle$
and the mean logarithmic momentum $\langle\ln p\rangle$. Their corresponding expressions are similar to Eqs. (15)-(23) but keeping in mind that the only existing values $\left\langle p^{\alpha}\right\rangle$ are those with $-3<\alpha<5$ due to the p^{-8} asymptotic behavior of the atomic momentum density $\gamma(\mathbf{p})$ at large momenta. ${ }^{32,33}$ In particular, one can write

$$
\begin{equation*}
S_{\gamma} \leqslant S_{\gamma}(\alpha, m) \equiv \ln \left(A_{m, \alpha}\left\langle p^{\alpha}\right\rangle^{(m+3) / \alpha}\right)-m\langle\ln p\rangle \tag{24}
\end{equation*}
$$ for $-3<\alpha<5$ and ($m+3$) $\alpha>0$. Similarly, to Eqs. (20)(23) one has

$S_{\gamma}(-2, m)=\ln \left(\frac{A_{m,-2}}{\left\langle p^{-1}\right\rangle^{(m+3) / 2}}\right)-m\langle\ln p\rangle$ for $m<-3$,
$S_{\gamma}(-1, m)=\ln \left(\frac{A_{m,-1}}{\left\langle p^{-1}\right\rangle^{m+3}}\right)-m\langle\ln p\rangle$ for $m<-3$,
$S_{\gamma}(1, m)=\ln \left(A_{m, 1}\langle p\rangle^{m+3}\right)-m\langle\ln p\rangle$ for $m>-3$,
$S_{\gamma}(2, m)=\ln \left(A_{m, 2}\left\langle p^{2}\right\rangle^{(m+3) / 2}\right)-m\langle\ln p\rangle$ for $m>-3$,
respectively. Since the kinetic energy is $T=N\left\langle p^{2}\right\rangle / 2$ and taking into account Eq. (28), one can write

$$
\begin{equation*}
S_{\gamma} \leqslant \frac{3}{2}\left(1+\ln \frac{4 \pi T}{3 N}\right) \tag{29}
\end{equation*}
$$

a relation recently obtained by Gadre and Bendale. ${ }^{9}$ Expressions (24)-(28) considerably extend and improve this relationship.
(ii) If $\alpha>-3$, but $\alpha \neq 0$, then

$$
\begin{align*}
S_{\rho} \leqslant S_{\rho}^{*}(\alpha) \equiv & \ln \left[\left(\frac{32 \pi^{3} e}{\alpha^{2}}\right)^{1 / 2}\left(\left\langle r^{-\alpha}\right\rangle-\left\langle r^{\alpha}\right\rangle^{-1}\right)^{1 / 2}\right] \\
& +\left(3+\frac{\alpha}{2}\right)\langle\ln r\rangle, \tag{30}\\
S_{\rho} \leqslant S_{\rho}^{* *}(\alpha) \equiv & =\frac{1}{2}\left[4\left\langle r^{-\alpha}\right\rangle\left\langle r^{\alpha}\right\rangle-3\right]^{1 / 2} \\
& +\frac{1}{2} \ln 8 \pi^{3} \frac{\left(4\left\langle r^{-\alpha}\right\rangle\left\langle r^{\alpha}\right\rangle-3\right)^{1 / 2}-1}{\alpha^{2}\left\langle r^{-\alpha}\right\rangle^{3}} \\
& +\left(3-\frac{3}{2} \alpha\right)\langle\ln r\rangle . \tag{31}
\end{align*}
$$

Some particular upper bounds from inequalities (30) and (31) are

$$
\begin{align*}
& S_{\rho}^{*}(1)=\ln \left(32 \pi^{3} e\right)^{1 / 2}+\ln \left[\left\langle r^{-1}\right\rangle-\langle r\rangle^{-1}\right]^{1 / 2}+\frac{7}{2}(\ln r\rangle, \\
& S_{\rho}^{*}(2)=\ln \left(8 \pi^{3} e\right)^{1 / 2}+\ln \left[\left\langle r^{-2}\right\rangle-\left\langle r^{2}\right\rangle^{-1}\right]^{1 / 2}+4\langle\ln r\rangle, \tag{33}
\end{align*}
$$

and

$$
\begin{align*}
S_{\rho}^{* *}(1)= & \frac{1}{2}\left[4\left\langle r^{-1}\right\rangle\langle r\rangle-3\right]^{1 / 2} \\
& +\frac{1}{2} \ln 8 \pi^{3} \frac{\left[4\left\langle r^{-1}\right\rangle\langle r\rangle-3\right]^{1 / 2}-1}{\left\langle r^{-1}\right\rangle^{3}}+\frac{3}{2}\langle\ln r\rangle, \tag{34}
\end{align*}
$$

$$
\begin{align*}
S_{\rho}^{* *}(2)= & \frac{1}{2}\left(4\left\langle r^{-2}\right\rangle\left\langle r^{2}\right\rangle-3\right)^{1 / 2} \\
& +\frac{1}{2} \ln 2 \pi^{3} \frac{\left[4\left\langle r^{-2}\right\rangle\left\langle r^{2}\right\rangle-3\right]^{1 / 2}-1}{\left\langle r^{-2}\right\rangle^{3}} \tag{35}
\end{align*}
$$

The best upper bound of these two infinite families $S_{\rho}^{*}(\alpha)$ and $S_{\rho}^{* *}(\alpha)$ is obtained by optimizing the corresponding expressions (30) and (31), respectively, but this may only be done numerically.

It is interesting to remark that the limit case $\alpha \rightarrow 0$ of the two expressions (30) and (31) leads to a new upper bound for S_{ρ} by means of the mean logarithmic radius $\langle\ln r\rangle$ and the mean-square logarithmic radius $\left\langle(\ln r)^{2}\right\rangle$ as
$S_{\rho} \leqslant S_{\rho}^{\prime} \equiv \frac{1}{2} \ln \left\{32 \pi^{3} e\left[\left\langle(\ln r)^{2}\right\rangle-\langle\ln r\rangle^{2}\right]\right\}+3\langle\ln r\rangle$.
To prove the two main inequalities (30) and (31), we have used in Eq. (8) the function $f_{2}(r)$ given by Eq. (10), properly normalized to unity, as a prior estimate. One obtains

$$
S_{\rho} \leqslant-\ln A+\beta\left\langle r^{\alpha}\right\rangle+v\left\langle r^{-\alpha}\right\rangle-m\langle\ln r\rangle
$$

with

$$
A=\frac{|\alpha|(\beta / v)^{(m+3) / 2 \alpha}}{8 \pi K_{(m+3) / \alpha}(2 \sqrt{\beta v})}
$$

where the K function is the modified Bessel function of the third kind or Basset function $K_{\xi}(x)$. Then the succesive choices of $(m+3) / \alpha= \pm \frac{1}{2}, \pm \frac{3}{2}$ followed by optimization with respect to β and v produce the searched inequalities (30) and (31), respectively. Other choices for ($m+3$)/ α would lead to new upper bounds. Here, once again the restriction $\alpha>-3$ comes from the nonexistence of moments of such orders of the atomic ρ density.

Working similarly in the momentum space, one obtains upper bounds to the momentum entropy S_{γ} fully analogous to those for S_{ρ} given in expressions (30)-(36), but in terms of $\left\langle p^{\alpha}\right\rangle,\left\langle p^{-\alpha}\right\rangle$, and $\langle\ln p\rangle$.
(iii) If z is a real number and $p=(m+3) / \alpha$ is positive, then

$$
\begin{align*}
S_{\rho} \leqslant S_{\rho}(\alpha, p, z) \equiv & \ln \left(\frac{4 \pi \Gamma(p)}{|\alpha|} D_{-p}(z)\right)+\frac{z^{2}}{4}+p \ln x \\
& +(3-p \alpha)\langle\ln r\rangle+\frac{\left\langle r^{2 a}\right\rangle}{2 x^{2}}+\frac{z\left\langle r^{\alpha}\right\rangle}{x} \tag{37}
\end{align*}
$$

with

$$
x=\frac{1}{2 p}\left[z\left\langle r^{\alpha}\right\rangle+\left(z^{2}\left\langle r^{\alpha}\right\rangle^{2}+4 p\left\langle r^{2 \alpha}\right\rangle\right)^{1 / 2}\right]
$$

and where $D_{-p}(z)$ is the parabolic cylinder function ${ }^{34}$ of order $-p$. A particular upper bound produced by this inequality is

$$
\begin{align*}
S_{\rho}(\alpha, 1, z) \equiv & \frac{z^{2}}{2}+\frac{1}{2} \ln \frac{8 \pi^{3}}{\alpha^{2}}[1-\phi(z / \sqrt{2})]^{2} x^{2} \\
& +(3-\alpha)\langle\ln r\rangle+\frac{\left\langle r^{2 \alpha}\right\rangle}{2 x^{2}}+\frac{z\left\langle r^{\alpha}\right\rangle}{x} \tag{38}
\end{align*}
$$

for any real z [where $\phi(x)$ is the so-called error function].

The best member of the family of upper bounds $\left\{S_{\rho}(\alpha, p, z)\right\}$ would be obtained via optimization with respect to the three parameters α, p, and z; however, we have not been able to do this analytically. To prove inequality (37) we have used in Eq. (8) the function $f_{3}(r)$ given by Eq. (11), properly normalized to unity, as prior estimate. One finds

$$
S_{\rho} \leqslant-\ln A+\beta\left\langle r^{2 \alpha}\right\rangle+v\left\langle r^{\alpha}\right\rangle-m\langle\ln r\rangle
$$

with

$$
A=\frac{|\alpha|(2 \beta)^{(m+3) / 2 \alpha} e^{-v^{2} / 8 \beta}}{4 \pi \Gamma[(m+3) / \alpha] D_{-(m+3) / \alpha}(v / \sqrt{2 \beta})}
$$

Then, the notations $p \equiv(m+3) / \alpha$ and $z \equiv v / \sqrt{2 \beta}$ together with the minimization with respect to β, lead to the searched inequality (37). One should also point out that to obtain the normalization constant A, the result ${ }^{34}$

$$
\begin{aligned}
& \int_{0}^{\infty} x^{\mu-1} e^{-\beta x^{2}-v x} d x \\
& \quad=(2 \beta)^{-\mu / 2} \Gamma(\mu) e^{\nu^{2} / 8 \beta} D_{-\mu}(v / \sqrt{2 \beta}) \text { for } \beta, \mu>0
\end{aligned}
$$

has been used.
In a fully analogous manner one would obtain in the momentum space a family of upper bounds $S_{\gamma}(\alpha, p, z)$ to the momentum entropy S_{γ} similar to expressions (37) and (38) but given in terms of $\left\langle p^{\alpha}\right\rangle,\left\langle p^{2 \alpha}\right\rangle$, and $\langle\ln p\rangle$.

IV. LOWER BOUNDS TO ATOMIC ENTROPIES

The combination of the BBM's inequality (14) with each upper bound to the position (momentum) information entropy produces a lower bound to the momentum (position) information entropy. Thus, we may obtain lower bounds to the entropy in one space by means of the expectation values of the coordinate in the complementary space. Here, we will only quote some of them.
(i) If $-3<\alpha<5$ and $\alpha(m+3)>0$, then the expressions (14) and (24) give

$$
\begin{align*}
S_{\rho} & >3(1+\ln \pi)-S_{\gamma}(\alpha, m) \\
& =3(1+\ln \pi)-\ln \left(A_{m, \alpha}\left\langle p^{\alpha}\right\rangle^{(m+3) / \alpha}\right)+m\langle\ln p\rangle \tag{39}
\end{align*}
$$

where the parameter $A_{m, \alpha}$ is given by Eq. (16). Some particular cases are the following.

For $m=0$,

$$
\begin{equation*}
S_{\rho} \geqslant 3(1+\ln \pi)-\ln \left(A_{\alpha}\left\langle p^{\alpha}\right\rangle^{3 / \alpha}\right) \quad 0<\alpha<5 \tag{40}
\end{equation*}
$$

For $\alpha=2$,
$\left.S_{\rho}>3(1+\ln \pi)-\ln \left(A_{m, 2}\left\langle p^{2}\right\rangle^{(m+3) / 2}\right)+m\langle\ln p\rangle, m\right\rangle-\frac{3}{4}$.

TABLE I. Values, in atomic units, of the position entropy of information S_{p}. the radial expectation values $\langle\rho\rangle$ with $\alpha=-2,-1,1$, and 2 , the mean logarithmic radius $\langle\ln r\rangle$ and the mean-square logarithmic radius ($\left.(\ln r)^{2}\right\rangle$ for all the atoms with $Z<54$. The near Hartree-Fock atomic wave functions of Clementi and Roetti have been used.

Z	S_{ρ}	$\left\langle r^{-2}\right\rangle$	$\left\langle r^{-1}\right\rangle$	$\langle r\rangle$	$\left\langle r^{2}\right\rangle$	$\langle\ln r\rangle$	$\left\langle(\ln r)^{2}\right\rangle$
1	4.14471	2.00000	1.00000	1.50000	3.00000	0.22964	0.44767
2	2.69841	5.99592	1.68734	0.92725	1.18466	-0.27082	0.51037
3	3.70138	10.07230	1.90518	1.67327	6.21046	-0.078 56	1.25360
4	3.62386	14.40602	2.10218	1.53220	4.32968	-0.10050	1.27975
5	3.40540	18.73265	2.27589	1.36210	3.16994	-0.16376	1.22968
6	3.10603	23.12886	2.44822	1.19076	2.29870	-0.25007	1.17220
7	2.80161	27.60283	2.61943	1.04998	1.72581	-0.33915	1.14141
8	2.55062	32.15709	2.78244	0.95128	1.39658	-0.41587	1.14380
9	2.29886	36.78578	2.94651	0.86420	1.13749	-0.492 46	1.16138
10	2.05526	41.49003	3.11132	0.78915	0.93757	-0.56661	1.19352
11	2.33005	46.31685	3.22094	0.98574	2.46819	-0.531 91	1.39868
12	2.39503	51.23523	3.32670	1.02121	2.46410	-0.527 17	1.48631
13	2.44555	56.18056	3.42306	1.05502	2.57299	-0.52158	1.56074
14	2.41896	61.15904	3.51738	1.03416	2.30370	-0.53107	1.59012
15	2.35881	66.17064	3.60985	0.99809	2.01748	-0.547 89	1.60300
16	2.26004	71.30364	3.71859	0.95998	1.81122	-0.57616	1.62654
17	2.22189	76.27908	3.78661	0.93076	1.62564	-0.58629	1.62222
18	2.13384	81.38948	3.87360	0.89282	1.44640	-0.609 94	1.62681
19	2.30166	86.53696	3.94176	1.02375	2.69444	-0.585 83	1.74179
20	2.36304	91.72168	4.00797	1.06232	2.82918	-0.575 95	1.79780
21	2.29811	96.87305	4.08138	1.02268	2.53117	-0.59509	1.79629
22	2.21868	102.02657	4.15545	0.98161	2.28082	-0.61787	1.79370
23	2.13514	107.19502	4.22926	0.94263	2.06598	-0.64168	1.79303
24	1.95570	112.33238	4.31090	0.85333	1.56749	-0.686 66	1.75863
25	1.96258	117.56303	4.37638	0.87150	1.72314	-0.69091	1.79871
26	1.88217	122.77778	4.44826	0.84075	1.58245	-0.714 13	1.80539
27	1.80009	127.99961	4.52027	0.81149	1.45957	-0.73780	1.81404
28	1.71830	133.23152	4.59214	0.78388	1.35014	-0.761 44	1.82462
29	1.56329	138.42679	4.67166	0.72635	1.11323	-0.80077	1.81680
30	1.55630	143.73357	4.73548	0.73340	1.16642	-0.80834	1.85134
31	1.57427	149.03229	4.79517	0.75466	1.31966	-0.80988	1.89385
32	1.56730	154.36188	4.85396	0.75616	1.29905	-0.81520	1.92122
33	1.54975	159.70970	4.91187	0.75091	1.24396	-0.822 23	1.94211
34	1.53420	165.08112	4.96822	0.74711	1.21030	-0.828 67	1.96248
35	1.51058	170.46161	5.02396	0.73912	1.15712	-0.836 50	1.97875
36	1.48144	175.84811	5.07911	0.72885	1.09786	-0.845 28	1.99251
37	1.57617	181.23523	5.12632	0.80538	1.84285	-0.83171	2.06209
38	1.62134	186.67261	5.17289	0.83717	2.00122	-0.824 35	2.10431
39	1.61403	192.09424	5.22112	0.82948	1.87740	-0.828 09	2.11765
40	1.59442	197.52410	5.26972	0.81705	1.75900	-0.834 50	2.12655
41	1.52334	202.94217	5.32112	0.77304	1.42658	-0.85147	2.11298
42	1.49053	208.38425	5.36963	0.75841	1.33654	-0.86046	2.11911
43	1.46166	213.82544	5.41737	0.74732	1.27876	-0.86873	2.12742
44	1.42994	219.28983	5.46495	0.73575	1.22464	-0.87763	2.13526
45	1.39541	224.75159	5.51231	0.72348	1.17043	-0.887 14	2.14250
46	1.30189	230.20242	5.56294	0.68202	0.91476	-0.90667	2.12975
47	1.32323	235.69801	5.60632	0.69948	1.07311	-0.90687	2.15744
48	1.33289	241.22606	5.64804	0.70817	1.13205	-0.90774	2.17811
49	1.35183	246.73553	5.68970	0.72470	1.25368	-0.906 58	2.20530
50	1.35702	252.24916	5.73015	0.72943	1.26072	-0.90730	2.22314
51	1.35493	257.77328	5.77004	0.72937	1.23654	-0.909 17	2.23689
52	1.35353	263.31110	5.80919	0.73008	1.22606	-0.910 83	2.25045
53	1.34666	268.85867	5.84803	0.72768	1.19724	-0.913 42	2.26128
54	1.33575	274.40836	5.88649	0.72333	1.16008	-0.916 69	2.27022

For $m=0$ and $\alpha=2$,

$$
\begin{equation*}
S_{\rho}>3(1+\ln \pi)-\ln \left(\frac{2 \pi e}{3}\left\langle p^{2}\right\rangle\right)^{3 / 2} . \tag{42}
\end{equation*}
$$

The last inequality together with the definition T
$=N\left\langle p^{2}\right\rangle / 2$ allows to correlate the position entropy S_{ρ} and the quantum-mechanical kinetic energy T as

$$
\begin{equation*}
S_{\rho} \geqslant \frac{3 N}{2}(1+\ln \pi)+\frac{1}{2} N \ln N-\frac{3}{2} N \ln \frac{4 T}{3} \tag{43}
\end{equation*}
$$

TARI.F. II. Valnes, in atomic units, of the momentum information entropy S_{r}, the momentum expectation values $\left\langle p^{\alpha}\right\rangle$ with $\alpha=-2,-1,1$, and 2 , the mean logarithmic momentum $\langle\ln p\rangle$ and the mean-square logarithmic momentum $\left\langle(\ln p)^{2}\right\rangle$ for all the atoms with $Z \leqslant 54$. The near Hartree-Fock atomic wave functions of Clementi and Roetti have been used.

Z	S_{γ}	$\left\langle p^{-2}\right\rangle$	$\left\langle p^{-1}\right\rangle$	$\langle p\rangle$	$\left\langle p^{2}\right\rangle$	$\langle\ln p\rangle$	$\left\langle(\ln p)^{2}\right\rangle$
1	2.42186	5.00000	1.69770	0.84883	1.00000	-0.333 33	0.46738
2	3.91352	1.02235	0.53515	0.69975	1.43085	0.14541	0.41589
3	3.99688	2.95067	0.57620	0.54507	1.65167	0.03387	1.09956
4	4.19012	1.58070	0.39490	0.46463	1.82162	0.08985	1.16993
5	4.70590	0.65048	0.23918	0.42596	1.96232	0.27515	1.05736
6	5.15652	0.32662	0.15985	0.40172	2.09383	0.44034	1.05675
7	5.54933	0.18576	0.11423	0.38496	2.22043	0.58490	1.12192
8	5.86734	0.11721	0.08676	0.37064	2.33775	0.70143	1.21932
9	6.16332	0.07835	0.06794	0.36008	2.45456	0.80908	1.33951
10	6.43702	0.05480	0.05456	0.35197	2.57090	0.90806	1.47475
11	6.48307	0.26725	0.07199	0.33663	2.67527	0.86133	1.76608
12	6.51525	0.25665	0.07149	0.32313	2.77233	0.84912	1.91984
13	6.61918	0.16478	0.06093	0.31198	2.86238	0.87797	1.96998
14	6.73372	0.11403	0.05212	0.30245	2.94743	0.91602	2.01316
15	6.84863	0.08323	0.04504	0.29415	3.02860	0.95703	2.05903
16	7.00242	0.06489	0.03990	0.28633	3.10494	1.01409	2.14677
17	7.05209	0.05057	0.03514	0.27975	3.17971	1.03190	2.16226
18	7.15527	0.04045	0.03126	0.27377	3.25183	1.07088	2.21746
19	7.17256	0.13956	0.03814	0.26654	3.31937	1.04270	2.38840
20	7.18000	0.15205	0.03937	0.25983	3.38375	1.03057	2.49286
21	7.30320	0.12214	0.03475	0.25562	3.44557	1.07704	2.53712
22	7.42670	0.10330	0.03107	0.25202	3.50577	1.12355	2.59401
23	7.54704	0.08795	0.02793	0.24881	3.56483	1.16891	2.65654
24	7.75133	0.04810	0.02127	0.24741	3.62275	1.26237	2.67940
25	7.77680	0.06591	0.02295	0.24331	3.67952	1.25555	2.79546
26	7.88252	0.05715	0.02092	0.24077	3.73492	1.29521	2.86544
27	7.98597	0.03390	0.01645	0.23974	3.78963	1.33397	2.93903
28	8.08637	0.04439	0.01762	0.23639	3.84429	1.37158	3.01449
29	8.25039	0.02837	0.01414	0.23565	3.89759	1.44797	3.07181
30	8.27850	0.03508	0.01503	0.23267	3.95067	1.44359	3.16969
31	8.32380	0.02827	0.01442	0.22985	4.00258	1.45152	3.23102
32	8.37138	0.02324	0.01367	0.22715	4.05344	1.46298	3.28300
33	8.41810	0.01975	0.01295	0.22454	4.10333	1.47580	3.33138
34	8.45827	0.01738	0.01236	0.22196	4.15206	1.48704	3.37801
35	8.49934	0.01524	0.01175	0.21949	4.19971	1.49981	3.42219
36	8.54076	0.01349	0.01117	0.21714	4.24694	1.51336	3.46505
37	8.54418	0.04336	0.01338	0.21447	4.29243	1.49523	3.56787
38	8.54220	0.05023	0.01419	0.21189	4.33737	1.48471	3.63914
39	8.59046	0.04188	0.01318	0.20976	4.38077	1.50160	3.66812
40	8.64051	0.03678	0.01235	0.20780	4.42350	1.51967	3.70227
41	8.73260	0.02010	0.01010	0.20631	4.46585	1.56431	3.70308
42	8.78224	0.01804	0.00953	0.20456	4.50714	1.58308	3.74358
43	8.82875	0.01689	0.00907	0.20284	4.54791	1.60026	3.78567
44	8.87545	0.01581	0.00865	0.20122	4.58818	1.61760	3.82866
45	8.92205	0.01479	0.00824	0.19967	4.62800	1.63515	3.87198
46	8.98863	0.00450	0.00665	0.19853	4.66696	1.67806	3.88562
47	9.01378	0.01303	0.00752	0.19675	4.70574	1.66986	3.96071
48	9.02481	0.01709	0.00800	0.19494	4.74313	1.66396	4.01983
49	9.04875	0.01451	0.00784	0.19334	4.78143	1.66671	4.05990
50	9.07279	0.01275	0.00763	0.19171	4.81840	1.67128	4.09386
51	9.09656	0.01130	0.00739	0.19013	4.85471	1.67705	4.12479
52	9.11693	0.01029	0.00720	0.18857	4.89019	1.68201	4.15576
53	9.13806	0.00938	0.00699	0.18705	4.92566	1.68794	4.18505
54	9.15975	0.00857	0.00677	0.18557	4.96019	1.69464	4.21288

which was first discovered by Gadre and Bendale ${ }^{9}$ in 1987. This result is generalized by inequalities (39)-(41) via the inclusion of expectation values $\left\langle p^{\alpha}\right\rangle$ of index α other than 2 and/or the mean logarithmic momentum $\langle\ln p\rangle$. Moreover, the inequalities (14) and (15) lead to the following lower bound. If $\alpha>-3$ and $\alpha(m+3)>0$, then

$$
\begin{align*}
S_{\gamma} & \geqslant 3(1+\ln \pi)-S_{\rho}(\alpha, m) \\
& =3(1+\ln \pi)-\ln \left(A_{m, \alpha}\left\langle r^{\alpha}\right\rangle^{(m+3) / \alpha}\right)+m\langle\ln r\rangle \tag{44}
\end{align*}
$$

Some particular cases are the following. For $m=0$,

$$
\begin{equation*}
S_{\gamma} \geqslant 3(1+\ln \pi)-\ln \left(A_{\alpha}\left\langle\gamma^{\alpha}\right\rangle^{3 / \alpha}\right), \quad 0<\alpha<\infty . \tag{45}
\end{equation*}
$$

For $m=0$ and $\alpha=2$,
$S_{\gamma}>3(1+\ln \pi)-\ln \left(\frac{2 \pi e}{3}\left\langle r^{2}\right\rangle\right)^{3 / 2}$
which is already known. ${ }^{9}$
For $\alpha=-1$,
$S_{\gamma}>3(1+\ln \pi)-\ln \frac{A_{m,-1}}{\left\langle r^{-1}\right\rangle^{m}+3}+m\langle\ln r\rangle, \quad m<-3$.

For $\alpha=1$,
$S_{\gamma}>3(1+\ln \pi)-\ln \left(A_{m, 1}\langle r\rangle^{m}+3\right)+m\langle\ln r\rangle, \quad m>-3$
For $\alpha=2$,
$S_{\gamma}>3(1+\ln \pi)-\ln \left(A_{m, 2}\left\langle r^{2}\right\rangle^{(m+3) / 2}\right)+m\langle\ln r\rangle, m>-\frac{3}{4}$.

Of course, for a fixed α the best lower bound is obtained in each case by optimizing with respect to m but this cannot be analytically done in general.
(ii) From inequalities (14) and (36), one has

$$
\begin{align*}
& S_{\gamma}>\frac{5}{2}(1-\ln 2)+\frac{3}{2} \ln \pi-\ln \left(\left\langle(\ln r)^{2}\right\rangle-\langle\ln r\rangle^{2}\right)^{1 / 2} \\
&-3\langle\ln r\rangle \tag{50}
\end{align*}
$$

A similar lower bound for the information entropy in position space, S_{ρ}, may be written by means of the expectation values $\langle\ln p\rangle$ and $\left\langle(\ln p)^{2}\right\rangle$.

V. NUMERICAL STUDY

Here we will study the quality of the bounds found in the two previous sections for all atoms with $Z \leqslant 54$ by means of the near Hartree-Fock atomic wave functions of Clementi and Roetti. ${ }^{35}$ We will concentrate on the first set of upper bounds given in Sec. III; specifically, we will consider the quantities
$S_{p}(\alpha, m)$ with $\alpha=-2,-1,1$, and 2 and $m=0, m_{\mathrm{opt}}$
given by Eqs. (18)-(23), and the corresponding ones $S_{\gamma}(\alpha, m)$ in the momentum space. The symbol $m_{\text {opt }}$ denotes the value of m which gives the optimal (i.e., best) bound in the corresponding equation to the entropy. It is important to remark that $S_{\rho}(\alpha, m=0) \equiv S_{\rho}(\alpha)$ depends only on $\left\langle r^{\alpha}\right\rangle$, whereas $S_{\rho}(\alpha, m \neq 0)$ depends additionally on〈ln $r\rangle$, and similarly for $S_{\gamma}(\alpha, m)$ in momentum space. In addition, the accuracy of the upper bounds S_{ρ}^{\prime} and its partner S_{γ}^{\prime} in momentum space, will be analyzed. They are of enormous interest since they depend on the mean logarithmic radius and the mean-square logarithmic radius, only.

To carry out this numerical study, we evaluate firstly the Hartree-Fock values of the position space entropy S_{ρ} and the expectation values $\left\langle r^{\alpha}\right\rangle$, with $\alpha=-2,-1,1$, and 2 , $\langle\ln r\rangle$, and $\left\langle(\ln r)^{2}\right\rangle$. These are given in Table I. The

FIG. 1. Comparison between the Hartree-Fock value of the position entropy of information S_{ρ} for all the atoms with $1<Z<54$ and two upper bounds $S_{\rho}(\alpha) \equiv S_{\rho}(\alpha, m=0)$ which depend on a radial expectation value $\left\langle r^{\alpha}\right\rangle$. Atomic units are used throughout.
values of the corresponding quantities in momentum space, that is $S_{\gamma},\left\langle p^{\alpha}\right\rangle,\langle\ln p\rangle$, and $\left\langle(\ln p)^{2}\right\rangle$ are shown in Table II. Then, once we know these expectation values, any of the searched bounds may be easily calculated and compared with the Hartree-Fock (HF) value of the corresponding entropy. This is done in Tables III and IV and Figs. 1-6.

In Figs. 1 and 2 the bounds $S_{\rho}(\alpha)$ and $S_{\gamma}(\alpha)$ depending on a specific radial expectation value (only the cases $\alpha=1,2$ are shown) are compared with the HF entropy, respectively. One notices that (i) the bounds with $\alpha=1$ are

FIG. 2. Comparison between the Hartree-Fock value of the momentum entropy of information S_{γ} for all the atoms with $1<Z \leqslant 54$ and two upper bounds $S_{\gamma}(\alpha) \equiv S_{\gamma}(\alpha, m=0)$ which depend on a radial expectation value $\left\langle p^{\alpha}\right\rangle$. Atomic units are used throughout.

TABLE III. Values, in percent, of the upper bound $S_{\rho}(\alpha, m)$ to the position entropy S_{ρ} with $\alpha=-2,-1,1$, and 2 , and $m=m_{\text {opt }}$ [i.e., the optimal value of m in the same sense that it produces, for a given α, the best upper bound as given by Eq. (15)] for all atoms with $Z<54$.

Z	m	$\underset{(-2, m)}{S_{\rho}}$	m	$\underset{(-\mathrm{I}, \mathrm{~m})}{S_{p}}$	m	$\underset{(1, m)}{S_{\rho}}$	m	$\underset{(2, m)}{S_{p}}$
1	-4.09	91.7	-5.33	96.7	0.00	100.0	-1.17	99.6
2	-4.01	87.9	-5.13	95.2	-0.28	100.0	-1.34	99.0
3	-3.63	92.4	-4.02	95.9	-2.02	95.2	-2.32	93.8
4	-3.56	89.9	-3.91	93.7	-1.92	96.5	-2.21	96.2
5	-3.54	87.8	-3.89	92.2	-1.80	97.2	-2.12	97.3
6	-3.53	85.5	-3.91	90.7	-1.68	97.6	-2.04	97.9
7	-3.53	83.3	-3.93	89.3	-1.57	97.8	-1.97	98.3
8	-3.53	81.4	-3.96	88.3	-1.49	98.0	-1.92	98.5
9	-3.54	79.3	-3.98	87.0	-1.41	98.1	-1.88	98.6
10	-3.54	77.0	-4.01	85.7	-1.34	98.2	-1.84	98.6
11	-3.51	82.6	-3.91	90.6	-1.90	95.1	-2.31	90.2
12	-3.49	83.7	-3.87	91.5	-1.95	95.9	-2.31	92.4
13	-3.48	84.2	-3.83	91.8	-2.00	96.2	-2.32	93.3
14	-3.47	83.7	-3.81	91.3	-1.98	96.7	-2.29	94.5
15	-3.46	82.7	-3.81	90.5	-1.95	97.0	-2.26	95.3
16	-3.46	81.6	-3.80	89.6	-1.93	96.7	-2.24	95.4
17	-3.46	80.8	-3.80	88.9	-1.89	97.3	-2.21	96.4
18	-3.45	79.5	-3.80	87.9	-1.86	97.3	-2.18	96.7
19	-3.44	82.8	-3.76	90.9	-2.05	96.6	-2.37	92.6
20	-3.43	83.6	-3.74	91.5	-2.08	97.0	-2.37	93.6
21	-3.43	82.9	-3.74	91.1	-2.06	97.3	-2.36	94.1
22	-3.43	82.0	-3.74	90.5	-2.03	97.5	--2.34	94.2
23	-3.43	81.0	-3.75	89.9	-2.01	97.6	-2.33	94.2
24	-3.43	78.5	-3.77	88.1	-1.92	97.9	-2.27	94.6
25	-3.43	78.9	-3.76	88.6	-1.96	97.6	-2.30	93.8
26	-3.43	77.9	-3.77	87.9	-1.94	97.6	-2.29	93.7
27	-3.43	76.8	-3.77	87.2	-1.92	97.6	-2.28	93.5
28	-3.43	75.7	-3.78	86.5	-1.90	97.5	-2.27	93.2
29	-3.44	72.9	-3.80	84.4	-1.82	97.6	-2.23	92.9
30	-3.43	73.2	-3.80	84.9	-1.86	97.3	-2.25	92.5
31	-3.43	73.9	-3.79	85.6	-1.92	96.7	-2.29	91.3
32	-3.43	74.0	-3.78	85.8	-1.93	96.8	-2.29	91.8
33	-3.43	73.7	-3.77	85.6	-1.93	96.9	-2.28	92.5
34	-3.42	73.5	-3.77	85.5	-1.93	97.0	-2.28	93.0
35	-3.42	73.1	-3.77	85.2	-1.93	97.2	-2.27	93.5
36	-3.42	72.5	-3.77	84.7	-1.92	97.3	-2.25	93.9
37	-3.41	75.2	-3.75	87.2	-2.06	95.5	-2.39	88.4
38	-3.41	76.2	-3.73	88.1	-2.10	95.3	-2.41	88.9
39	-3.41	76.1	-3.73	88.0	-2.09	95.8	-2.40	89.8
40	-3.41	75.8	-3.73	87.8	-2.08	96.2	-2.39	90.5
41	-3.41	74.3	-3.73	86.5	-2.03	97.0	-2.34	92.1
42	-3.41	73.6	-3.73	86.0	-2.01	97.2	-2.33	92.5
43	-3.40	73.0	-3.73	85.5	-2.00	97.3	-2.32	92.7
44	-3.40	72.3	-3.73	85.0	-1.99	97.4	-2.31	92.7
45	-3.40	71.5	-3.73	84.4	-1.98	97.4	-2.30	92.7
46	-3.41	68.9	-3.74	82.0	-1.91	97.7	-2.23	95.0
47	-3.40	69.9	-3.73	83.1	-1.95	97.4	-2.29	92.6
48	-3.40	70.4	-3.73	83.6	-1.98	97.3	-2.31	92.2
49	-3.40	71.0	-3.72	84.3	-2.01	96.8	-2.33	91.2
50	-3.40	71.2	-3.72	84.5	-2.02	96.9	-2.34	91.5
51	-3.39	71.2	-3.71	84.5	-2.02	97.0	-2.33	92.0
52	-3.39	71.2	-3.71	84.4	-2.03	97.1	-2.33	92.4
53	-3.39	71.0	-3.71	84.3	-2.03	97.2	-2.33	92.8
54	-3.39	70.7	-3.71	84.0	-2.02	97.2	-2.32	93.2

TABLE IV. Values, in percent, of the upper bound $S_{\gamma}(\alpha, m)$ to the momentum entropy S_{γ} with $\alpha=-2,-1,1$, and 2 , and $m=m_{\text {opt }}$ (i.e., the optimal value of m in the same sense that it leads, for a given α, the best upper bound) for all atoms with $Z<54$.

Z	m	$\begin{gathered} S_{\gamma} \\ (-2, m) \end{gathered}$	m	$\begin{gathered} S_{\gamma} \\ (-1, m) \end{gathered}$	m	$\begin{gathered} S_{\gamma} \\ (1, m) \end{gathered}$	m	$\underset{(2, m)}{S_{\gamma}}$
1	-4.30	89.5	-5.71	96.4	0.11	99.4	-1.24	96.9
2	-4.22	93.6	-5.50	98.0	-0.22	99.5	-1.43	97.5
3	-3.61	91.4	-3.99	94.9	-1.77	98.0	-2.15	97.1
4	-3.67	93.8	-4.05	96.4	-1.92	96.8	-2.26	95.4
5	-3.77	95.7	-4.24	98.1	-1.82	97.4	-2.24	95.7
6	-3.84	96.5	-4.40	98.8	-1.72	97.8	-2.20	95.8
7	-3.90	97.0	-4.53	99.1	-1.63	98.0	-2.17	95.9
8	-3.96	97.3	-4.63	99.3	-1.56	98.0	-2.15	96.0
9	-4.00	97.5	-4.72	99.4	-1.49	98.2	-2.12	96.1
10	-4.04	97.7	-4.80	99.5	-1.43	98.3	-2.10	96.2
11	-3.51	92.5	-3.93	96.2	-1.74	99.0	-2.21	97.5
12	-3.50	93.4	-3.85	96.3	-1.87	99.0	-2.26	97.7
13	-3.55	94.8	-3.91	97.2	-1.91	99.0	-2.28	97.7
14	-3.60	95.7	-3.96	97.9	-1.92	99.0	-2.29	97.6
15	-3.64	96.4	-4.02	98.3	-1.92	98.9	-2.29	97.5
16	-3.66	96.5	-4.02	98.1	-1.88	98.9	-2.29	97.4
17	-3.70	97.2	-4.10	98.8	-1.92	98.6	-2.30	97.1
18	-3.73	97.5	-4.15	98.9	-1.91	98.5	-2.30	97.0
19	-3.47	94.2	-3.82	97.4	-2.00	99.1	-2.34	97.8
20	-3.45	94.4	-3.76	97.2	-2.06	99.2	-2.37	97.9
21	-3.46	94.5	-3.78	97.3	-2.04	99.2	-2.36	97.9
22	-3.47	94.5	-3.80	97.4	-2.02	99.1	-2.35	97.8
23	-3.47	94.5	-3.82	97.4	-2.00	99.1	-2.34	97.8
24	-3.53	94.8	-3.98	98.0	-1.90	98.9	-2.31	97.4
25	-3.48	94.4	-3.84	97.4	-1.96	99.1	-2.33	97.7
26	-3.48	94.4	-3.86	97.4	-1.94	99.1	-2.32	97.7
27	-3.54	95.5	-4.09	99.2	-1.93	99.0	-2.31	97.7
28	-3.48	94.3	-3.88	97.4	-1.90	99.1	-2.30	97.6
29	-3.52	94.4	-4.03	97.9	-1.81	98.9	-2.27	97.4
30	-3.49	94.2	-3.90	97.3	-1.86	99.1	-2.29	97.6
31	-3.51	94.9	-3.90	97.6	-1.89	99.2	-2.30	97.7
32	-3.53	95.5	-3.92	97.9	-1.90	99.2	-2.31	97.8
33	-3.55	95.9	-3.93	98.1	-1.92	99.2	-2.31	97.9
34	-3.57	96.2	-3.94	98.2	-1.93	99.2	-2.32	97.9
35	-3.58	96.5	-3.95	98.4	-1.94	99.2	-2.32	97.9
36	-3.60	96.8	-3.96	98.5	-1.94	99.2	-2.32	97.8
37	-3.42	94.3	-3.75	97.3	-2.00	99.4	-2.35	98.2
38	-3.41	94.3	-3.70	97.0	-2.04	99.5	-2.36	98.3
39	-3.42	94.5	-3.72	97.3	-2.03	99.5	-2.36	98.3
40	-3.43	94.7	-3.74	97.4	-2.03	99.5	-2.36	98.3
41	-3.49	95.4	-3.86	98.1	-1.99	99.3	-2.35	98.0
42	-3.49	95.5	-3.88	98.2	-1.99	99.3	-2.35	98.0
43	-3.49	95.5	-3.89	98.2	-1.98	99.2	-2.34	97.9
44	-3.50	95.5	-3.90	98.3	-1.98	99.2	-2.34	97.9
45	-3.50	95.5	-3.91	98.3	-1.97	99.2	-2.34	97.9
46	-3.75	98.3	-4.15	99.3	-1.93	98.8	-2.33	97.4
47	-3.50	95.4	-3.93	98.3	-1.96	99.1	-2.34	97.8
48	-3.46	95.1	-3.83	97.9	-1.99	99.2	-2.35	97.9
49	-3.48	95.6	-3.83	98.0	-2.01	99.3	-2.36	98.0
50	-3.49	95.9	-3.83	98.2	-2.02	99.3	-2.36	98.1
51	-3.51	96.2	-3.84	98.3	-2.03	99.3	-2.37	98.1
52	-3.52	96.4	-3.84	98.4	-2.04	99.3	-2.37	98.1
53	-3.53	96.7	-3.85	98.5	-2.04	99.3	-2.37	98.1
54	-3.54	96.8	-3.85	98.5	-2.05	99.3	-2.38	98.1

considerably better than those with $\alpha=2$ in both position and momentum spaces, and (ii) the bounds $S_{\rho}(\alpha)$, which depend on $\left\langle r^{\alpha}\right\rangle$, show up the same structure as the position entropy S_{ρ}; this is not true in the momentum case, although the general shape is very similar.

In Tables III and IV the bounds $S_{\rho}\left(\alpha, m_{\text {opt }}\right)$ and $S_{\gamma}\left(\alpha, m_{\text {opt }}\right)$ are compared with the position and momentum entropies S_{ρ} and S_{γ}, respectively. This is done by giving the values of the bounds in percent. A few observations are in order. First of all, the bounds are very accurate in

FIG. 3. Quality of the upper bounds $S_{\rho}(1, m)$ with $m=0$ and $m_{\text {opt }}$ (the value of m which leads to the best upper bound to the position entropy S_{ρ} as given by Eq. (15); its value is shown in the sixth column of Table III) for all atoms, from hydrogen through xenon. Comparison between these bounds and the Hartree-Fock value is done. Notice that $S_{\rho}(1,0)$ only depends on $\langle r\rangle$ but $S_{\rho}\left(1, m_{\text {opt }}\right)$ depends additionally on $\langle\ln r\rangle$. Atomic units are used throughout.
the whole region of the periodic table. Generally speaking, the bounds with $\alpha=1\left[\right.$ i.e., $S_{\rho}\left(1, m_{\text {opt }}\right)$ and $\left.S_{\gamma}\left(1, m_{\text {opt }}\right)\right]$ are again the tightest ones. The worst case occurs for $Z=11$ in position space where the bound lies within 4.8% of the HF value, and for $Z=4$ in momentum space where the bound lies within 3.2% of the corresponding HF value.

To gain insight into the bounds $S_{\rho}(\alpha, m)$, we compare in Fig. 3 the HF position entropy and the bounds $S_{\rho}(\alpha, 0) \equiv S_{\rho}(\alpha)$ and $S_{\rho}\left(1, m_{\text {opt }}\right)$. Now we observe more transparently the considerable improvement brought by both the inclusion of the mean logarithmic radius and the

FIG. 4. Quality of the upper bounds $S_{\gamma}(1, m)$ with $m=0$ and $m_{\text {opt }}$ (i.e., the value of m which leads to the best upper bound to the momentum entropy S_{r} its value is given in the sixth column of Table IV) for all atoms, from hydrogen through xenon. Comparison between these bounds and the Hartree-Fock value is done. Notice that $S_{\gamma}\left(1, m_{\text {opt }}\right)$ depends on $\langle r\rangle$, as $S_{\gamma}(1,0)$ docs, but also on $\langle\ln p\rangle$. Atomic units are used throughout.

FIG. 5. Comparison between the Hartree-Fock value of the position entropy of information S_{ρ} and the upper bound S_{ρ}^{\prime}, as given in Eq. (36) in text, for all atoms from hydrogen through xenon. The bound S_{ρ}^{\prime} depends on both the mean logarithmic radius, 〈ln $r\rangle$, and the mean-square logarithmic radius, $\left\langle(\ln r)^{2}\right\rangle$. Atomic units are used throughout.
m optimization. A similar comparison and observation may be done from Fig. 4 in momentum space for the bounds $S_{\gamma}(1, m)$. In this case, an additional remark should be mentioned: the bound $S_{\gamma}\left(1, m_{\text {opt }}\right)$ shows up, contrary to $S_{\gamma}(1,0)$, the same structure as the HF value S_{γ}

In Figs. 5 and 6 we analyze the quality of the bounds S_{ρ}^{\prime} and S_{r}^{\prime} respectively, in the same Hartree-Fock framework. These new bounds depend only on the mean logarithmic radius and the mean-square logarithmic radius of the charge and momentum densities, respectively. Indeed, in Fig. 5 the comparison between the bound S_{ρ}^{\prime} and the HF value S_{ρ} is shown. The analogous comparison in momentum space is done in Fig. 6. One notices that both bounds

FIG. 6. Comparison between the Hartree-Fock value of the momentum entropy of information S_{γ} and the upper bound S_{γ}^{\prime} for all atoms from hydrogen through xenon. The bound S_{γ}^{\prime} depends on both the mean logarithmic momentum, $\langle\ln p\rangle$, and the mean-square logarithmic momentum, $\left\langle(\ln p)^{2}\right\rangle$. Atomic units are used throughout.

FIG. 7. Dependence of the optimal parameter m_{opt} of the upper bound to the position entropy for $\alpha=-2,-1,1$, and 2 [see Sec. V and Eqs. (20)-(23) of Sec. III] with the atomic number Z in the whole periodic table up to Xe.
S_{ρ}^{\prime} and S_{γ}^{\prime} are strikingly accurate. Certainly, the quantities $S_{\rho}\left(1, m_{\text {opt }}\right), S_{\rho}^{\prime}, S_{\gamma}\left(1, m_{\text {opt }}\right)$, and S_{γ}^{\prime} are tight upper bounds to the atomic information entropies.

A similar numerical study of the quality of the lower bounds discussed in Sec. IV may be performed in a parallel way. In that case the novelty lies in that the lower bound in a space depend on expectation values of quantities in the complementary or dual space.

Finally, it is worth emphasizing the general behavior of the optimal value $m_{\text {opt }}$ of the m parameter with respect to Z. In both position and momentum spaces, one realizes that $m_{\text {opt }}$ is practically constant for all atoms with $Z<54$ except for H and He cases, as it is shown in Tables III and IV. This dependence with Z is plotted in Figs. 7 and 8 for the sake of transparency. Therein, one realizes that a closer

FIG. 8. Dependence of the optimal parameter $m_{\text {opt }}$ of the upper bound to the momentum entropy for $\alpha=-2,-1,1$, and 2 [see Sec. V and Eqs. (25)-(28) of Sec. III] with the atomic number Z in the whole periodic table up to Xe.
examination of this behavior indicates that deviations from the general constancy arises for those cases where the outer shell gets completed. This constant tendency is more apparent for negative values of α in position space. Moreover, the values of $m_{\text {opt }}$ are higher for the positive values of α than for the negative ones in both spaces. Further research to know the physical meaning of this phenomenon needs to be done.

VI. CONCLUDING REMARKS

An information-theoretic method to find infinite sets of rigorous upper and lower bounds to the atomic information entropies, S_{ρ} and S_{γ}, in an analytical way, is described. The upper bounds to the entropy in a space (position or momentum) are given in terms of the moments (expectation values) of the associated single-particle density and/or a mean logarithmic radius. Contrary to this, the lower bounds to the entropy in a space depend on the moments of the single-particle density in the dual or complementary space and/or an associated mean logarithmic radius.

In particular, upper bounds to the position entropy S_{ρ} are given in terms of one or two radial expectation values $\left\langle r^{\alpha}\right\rangle$ and/or the mean logarithmic radius $\langle\ln r\rangle$. Additionally, a new bound S_{ρ}^{\prime} depending only on $\langle\ln r\rangle$ and $\left\langle(\ln r)^{2}\right\rangle$ is also found. The corresponding lower bounds to S_{ρ} are given by means of the expectation values $\left\langle p^{\alpha}\right\rangle$, $\langle\ln p\rangle$ and $\left\langle(\ln p)^{2}\right\rangle$. Similar bounds are given for the momentum information entropy.

Finally, a numerical analysis of the accuracy of several upper bounds in both position and momentum spaces has been performed in a Hartree-Fock framework for all atoms with $Z \leqslant 54$. It shows that some of these bounds are so tight that they may be used as computational values of the corresponding quantities. Moreover, one realizes the important role of the mean logarithmic radii, $\langle\ln r\rangle$ and $\langle\ln p\rangle$, in the improvement of accuracy of the corresponding atomic entropies.
${ }^{1}$ S. B. Sears, R. G. Parr, and U. Dinur, Israel J. Chem. 19, 165 (1980).
${ }^{2}$ C. Aslangul, R. Constanciel, R. Daudel, and P. Kottis, Adv. Quantum Chem. 6, 94 (1972).
${ }^{3}$ S. R. Gadre and S. B. Sears, J. Chem. Phys. 71, 4321 (1979).
${ }^{4}$ T. Koga, Theor. Chim. Acta. 58, 173 (1981).
${ }^{5}$ S. B. Sears and S. R. Gadre, J. Chem. Phys. 75, 4626 (1981).
${ }^{6}$ T. Koga and M. Morita, J. Chem. Phys. 79, 1933 (1983).
${ }^{7}$ S. R. Gadre, Phys. Rev. A 30, 620 (1984).
${ }^{8}$ S. R. Gadre, S. B. Sears, S. J. Chakravorty, and R. D. Bendale, Phys. Rev. A 32, 2602 (1985).
${ }^{9}$ S. R. Gadre and R. D. Bendale, Phys. Rev. A 36, 1932 (1987).
${ }^{10}$ Y. Alhassid and R. D. Levine, J. Chem. Phys. 67, 432 (1977); Z. Gburski, C. G. Gray, and D. E. Sullivan, Chem. Phys. Lett. 106, 55 (1984); C. G. Joslin, S. Singh, and C. G. Gray, Chem. Phys. Lett. 121, 134 (1985).
${ }^{11}$ S. R. Gadre and R. D. Bendale, Current Sci. 5, 970 (1985); Intern. J. Quantum Chem. 28, 311 (1985).
${ }^{12}$ S. K. Ghosh, M. Berkowitz, and R. G. Parr, Proc. Natl. Acad. Sci. USA 81, 8028 (1984).
${ }^{13}$ R. G. Parr, K. Rupnik, and S. K. Ghosh, Phys. Rev. Lett. 56, 1555 (1986).
${ }^{14}$ The Maximum Entropy Formalism, edited by R. D. Levine and M. Tribus (M.I.T. Press, Cambridge, 1979).
${ }^{15}$ L. R. Mead and N. Papanicolau, J. Math. Phys. 25, 2404 (1984).
${ }^{16}$ A. Wragg and D. C. Dowson, IEEE Trans. Inform. Theory IT-16, 226
(1970); D. C. Dowson and A. Wragg, IEEE Trans. Inform. Theory IT-19, 689 (1973).
${ }^{17}$ G. A. Wilson and A. Wragg, J. Int. Math. Appl. 12, 165 (1973).
${ }^{18}$ R. Collins and A. Wragg, J. Phys. A 10, 1441 (1977).
${ }^{19}$ A. Kociszewski, J. Phys. A 19, L823 (1986).
${ }^{20}$ J. M. Einbu, IEEE Trans. Inform. Theory IT-23, 772 (1977).
${ }^{21}$ C. E. Shannon, Bell Syst. Tech. J. 27, 379 (1948); 27, 623 (1948).
${ }^{22}$ S. Kulback and R. A. Leibler, Ann. Math. Stat. 22, 79 (1951); S. Kullback, Statistics and Information Theory (Wiley, New York, 1959).
${ }^{23}$ J. E. Shore and R. W. Johnson, IEEE Trans. Inform. Theory IT-26, 26 (1980); IT-27, 472 (1981).
${ }^{24}$ A. Wehrl, Rev. Mod. Phys. 50, 221 (1981).
${ }^{25}$ I. Bialynicky-Birula and J. Mycielski, Comm. Math. Phys. 44, 129 (1975).
${ }^{26}$ H. Maassen and J. B. M. Uffink, Phys. Rev. Lett. 60, 1103 (1988).
${ }^{27}$ W. Beckner, Ann. Math. 102, 159 (1975).
${ }^{28}$ W. G. Faris, J. Math. Phys. 19, 461 (1978).
${ }^{29}$ I. I. Hirschman, Am. J. Math. 79, 152 (1957); R. Leipnik, Inform. Control 2, 64 (1959); 3, 18 (1960).
${ }^{30}$ C. Deutsch, Phys. Rev. Lett. 50, 631 (1983); M. H. Partovi, ibid. 50, 1883 (1983).
${ }^{31}$ I. Bialynicki-Birula, Phys. Lett. 103A, 253 (1984).
${ }^{32}$ R. Benesch and V. H. Smith Jr., in Wave Mechanics: The First Fifty Years, edited by W. C. Price, S. S. Chissick, and T. Ravensdale (Butterworths, London, 1973), pp. 357-377.
${ }^{33}$ A. J. Thakkar, J. Chem. Phys. 86, 5060 (1987).
${ }^{34}$ I. S. Gradshteyn and I. M. Rizhik, Table of Integrals, Series and Products (Academic, New York, 1980).
${ }^{35}$ E. Clementi and C. Roetti, At. Data. Nucl. Data Tables 14, 177 (1974).

