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dissimilarity between two or more one-particle atomic densities. The advantages and
difficulties of them to capture the differences among different atomic systems in the
position and momentum spaces are studied. One of these measures, the Jensen-Shannon
divergence, is generalized giving rise to a one-parameter divergence, the Jensen-Rényi
divergence, here proposed for a deep study of atomic systems, improving the above
previous results. The versatility and power of this divergence is applied to compare
different neutral atoms, their composing subshells and each of those atomic densities
computed within different models. The parameter of the Jensen-Rényi Divergence allows
also to emphasize the study in relevant specific regions of both conjugated spaces.
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1. Introduction

T he concepts of uncertainty, randomness, or
delocalization are basic ingredients in the

study, within an information theoretic framework,
of relevant structural properties for many different
probability distributions appearing as descriptors
of several chemical and physical systems and pro-
cesses. The relevancy of such concepts motivates the
search for their appropriate quantification, giving
rise to a variety of density functionals, such as the
Shannon entropy [1], the Fisher information [2], the
disequilibrium or informational energy [3, 4], or
the complexity [5], as many others. These informa-
tion measures have been widely used for describing
the information content and behavior of distribution
functions in a great variety of fields [6, 7] and, in
particular, for the study of many-electron systems
[8–13], which are the objects analyzed in this work.

Following the usual procedures carried out within
the Information Theory for quantifying the uncer-
tainty or disorder of individual distributions, some
extensions have been done to introduce the con-
cepts of distance or divergence between two (or
more) distributions, as comparative measures of
their dissimilarity [14, 15].

There exists an extensive literature on measures
of similarity and dissimilarity between probability
densities [16, 17], which have been used in a wide
variety of scientific fields including, for instance,
sequence analysis [18], pattern recognition [19],
diversity [20], classification [21], homology [22], neu-
ral networks [23], computational linguistics [24], or
quantum theory [25]. The recent explosion in the
knowledge based on chemical research has given rise
to a surge of interest in chemical similarity. Molecular
modelling, quantitative structure activity relation-
ship (QSAR), and quantum information are simple
examples of such an interest [26, 27].

Chemical similarity is oftenly described as an
inverse of a measure of distance in the appropri-
ate space. In particular, the Quantum Similarity
Theory (QST) [28] was originally developed to estab-
lish quantitative comparisons between molecular
systems by means of their fundamental structural
magnitudes, i.e., electron density functions. The
obvious motivation was that studying the differ-
ences between the electronic charge densities of
these species could be related to differences between
their respective physical and chemical properties,
according to the Density Functional Theory and the
Hohenberg-Kohn theorem [29].

In probability, statistics or information theory,
different approaches have dealt with the aim of
establishing quantitative comparisons among two
or more distribution functions, giving rise to a vari-
ety of definitions and measures of divergence. All
those divergences have their own properties which
make them less or more appropriate according to the
specific problem we are dealing with [14–17].

The main aim of this work is, far beyond to ana-
lyze the capability of the most important informa-
tion divergence measures as the Quadratic Distance
(QD), the Jensen-Shannon Divergence (JSD) and the
Fisher Divergence (FD) in the study of dissimilar-
ity between multielectronic systems (Section 2), the
comparison to the new proposal here studied. Such a
proposal arises from the Rényi entropy, providing a
one-parameter generalization of the Jensen-Shannon
divergence, namely the Jensen-Rényi divergence
(JRD), which allows one to modify the relative
weight of the distributions under comparison within
specific regions of physical interest, as done for neu-
tral atoms throughout the Periodic Table (Section
3). Additionally, the JRD divergence is applied to
the study of dissimilarities between atomic systems
which densities are computed within different mod-
els (Section 4) and among the whole set of occupied
subshells constituing each atom (Section 5). Some
concluding remarks are finally given.

The universality of the methods here used allows
their application not only for atomic systems but also
for many others such as, for instance, molecules and
clusters, as well as for the analysis of physical and
chemical processes such as ionization and reactions.

2. Dissimilarity Measures: The
Jensen-Shannon Divergence

The simplest and most intuitive dissimilarity
measure is just the Quadratic Distance (QD) which
is defined by the norm of the difference of the
distributions:

QD(ρ1, ρ2) ≡
(∫

[ρ1(�r) − ρ2(�r)]2d�r
)1/2

(1)

A closely related measure of similarity, the so-
called Quantum Similarity Index (QSI), can be
defined as an overlap integral between the two elec-
tronic densities to be compared. This overlap integral
can be generalized by introducing other weight oper-
ators, different from the Dirac delta one, as for
instance the Coulomb operator, leading to additional
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molecular quantum similarity measures [28, 30–33].
For the Dirac delta operator, the QSI is given by

QSI(ρ1, ρ2) ≡
∫

ρ1(�r)ρ2(�r)d�r√∫ [ρ1(�r)]2d�r ∫ [ρ2(�r)]2d�r
(2)

One of the most interesting properties of the QSI is
its bounded character, being constrained to the range
of values [0, 1].

On the other hand, some other similarity indices
based on the concept of an information distance have
been proposed and evaluated for different many
particle systems, such as atoms or molecules [9, 34,
35].

The Kullback-Leibler divergence or relative
entropy [14] is perhaps the most important non
symmetric divergence measure in the Information
Theory, being defined as

KL(ρ1, ρ2) ≡
∫

ρ1(�r) ln
ρ1(�r)
ρ2(�r)d�r (3)

which embodies the well known Shannon entropy
[1],

S(ρ) ≡ −
∫

ρ(�r) ln ρ(�r)d�r, (4)

which constitutes a global measure of the spread
of the distribution over its whole domain. The KL
divergence, as well as its symmetrized version

KLS(ρ1, ρ2) ≡
∫

ρ1(�r) ln
ρ1(�r)
ρ2(�r)d�r +

∫
ρ2(�r) ln

ρ2(�r)
ρ1(�r)d�r

(5)

have been extensively studied and applied in a great
variety of fields such as, for instance, minimum
cross entropy estimation [36] or indexing and image
retrieval [37].

The so-called “Jensen-Shannon divergence” rep-
resents also a symmetrized version of the KL mea-
sure and quantifies the deviation (entropy excess)
between the Shannon entropy of the mixture of
two (or more) distributions and the mixture of the
entropies of the distributions. It is given by [38, 39]

JSD(ρ1, ρ2) ≡ S
(

ρ1 + ρ2

2

)
− 1

2
[S(ρ1) + S(ρ2)], (6)

interpreted in this way as the “entropy excess” of the
mean density with respect to the mean entropy of the
involved distributions.

The JSD preserves the global character of the
Shannon entropy, it is a non-negative measure (as a
consequence of the convexity of the S(ρ) functional)
and equals zero only when ρ1 = ρ2.

It quantifies, in fact, the statistical dependence
among an arbitrary number of probability distri-
butions (as will be shown below), and there are
some important reasons because of many researchers
choose JSD as a measure of divergence.Among them:
(i) it is a smoothed version of the Kullback-Leibler
divergence, and hence it shares its mathematical
properties and their intuitive interpretability [7, 40],
(ii) it provides direct interpretations in the frame-
work of statistical physics, information theory, or
mathematical statistics [41], (iii) the JSD is related
to other information-theoretical functionals (special
case of the Jensen difference [42] and the Csiszár
divergence [43]) and it is the square of a metric [44],
(iv) the JSD can be generalized to measure the dis-
tance between more than two distributions, and (v) it
is possible to assign different weights to the distribu-
tions, which allows us to take into account different
sizes of the objects we are comparing (e.g., differ-
ent lengths of the subsequences in DNA analyses or
different subshells or parts in atomic or molecular
similarity analyses [41, 45]). However, its use in the
framework of quantum information theory [25, 27]
or in the study of multielectronic systems [35, 46, 47]
is very recent.

The generalized multiple-density JSD with arbi-
trary weights can be written as

JSD(ρ1, . . . , ρn) ≡ S

(
n∑

k=0

ωkρk

)
−

n∑
k=0

ωkS(ρk), (7)

the weights {ωk} verifying
∑n

k=1 ωk = 1. The particu-
lar case n = 2 and ω1 = ω2 = 1/2 provides the initial
expression given by Eq. (6), the generalization pre-
serving the mathematical properties verified by the
initial JSD.

The Fisher information, I, is another important
information quantity [2, 6], being originally intro-
duced as a measure of intrinsic accuracy in statistical
estimation theory. It is a measure of the gradient con-
tent of a distribution and, therefore, is a local measure
which explores deeply the changes in the electronic
distribution:

I(ρ) ≡
∫

ρ(�r)| �∇ ln ρ(�r)|2d�r, (8)

This relevant magnitude is also a measure of the
distribution localization, and it has not been used
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until very recently to investigate directly electronic
densities. Applications in the above field include
the studies on single-particle systems governed by
a central potential [48], the two-electron entangled
artificial atom proposed by Moshinsky [49], the mod-
ified Thomas-Fermi atoms [50], and the derivation
of analytical relationship between the integrands
defining Shannon entropy and Fisher information
[51].

In some recent papers, the product of the atomic
Fisher information and the Shannon power entropy
has been found to show good correlations with
the shell structure and pattern of the whole peri-
odic table, giving a measure of the complexity and
hierarchy of these systems [52].

Taking into account the divergence character
of the symmetrized Kullback-Leibler measure, we
define a similar magnitude using now Fisher infor-
mation. It can be readily verified that the sym-
metrized relative Fisher information, which will be
refered in what follows as “Fisher Divergence” (FD),

FD(ρ1, ρ2) ≡
∫

ρ1(�r)
∣∣∣∣ �∇ ln

ρ1(�r)
ρ2(�r)

∣∣∣∣
2

d�r

+
∫

ρ2(�r)
∣∣∣∣ �∇ ln

ρ2(�r)
ρ1(�r)

∣∣∣∣
2

d�r, (9)

provides relevant information on dissimilarity by
performing a comparison between distributions
based on the Fisher information. Both the one-
and two-density functionals (I and FD, respectively)
posses a deep local character in the sense of being
more sensitive to strongly localized variations when
compared to the behavior of the distribution over
its whole domain, as happens with QD and JSD.
Nevertheless, all these dissimilarity measures (QD,
JSD, and FD) keep as main “distance properties”
the non-negativity, the symmetry (invariance under
exchange of functions) and saturation (minimal zero
value only for identical distributions).

For our present purposes, i.e., the analysis and
comparison of neutral atoms throughout the Peri-
odic Table in terms of their one-particle densities
in both conjugated position and momentum spaces
(ρ(�r) and γ (�p), respectively) the definition domain is
the whole three-dimensional space. In this sense, it
should be pointed out that (i) all expressions given in
this work for an specific space (position or momen-
tum) will be also valid in the conjugated one, by
only replacing properly the corresponding variables
and distributions, and (ii) for atomic systems in the
absence of external fields, it is sufficient to deal

with the spherically averaged densities ρ(r) and γ (p)

defined over the non-negative real line [0, ∞).
Let us first compare these measures among them-

selves for the quantification of “how similar or
dissimilar” the one-particle electronic densities are
for neutral atoms in the position (r) and momentum
(p) conjugated spaces. The Figure 1, where all noble
gases (for illustration) are compared to the rest of
atoms in the Periodic Table, allows us to interpret
physically the results. Next comments are valid also
for all other groups in the Periodic Table. The compu-
tations were carried out within a near Hartree-Fock
framework [53, 54] for neutral atoms with nuclear
charges Z = 1 − 103, to obtain the spherically aver-
aged one-particle densities in “r” and “p” spaces,
ρ(r), and γ (p) respectively.

The comparisons are carried out by means of QD,
FD, and JSD in both conjugated spaces, namely posi-
tion and momentum. Some comments are in order.
The most apparent feature is the rich structure dis-
played by all curves belonging to the three measures
when dealing with momentum space, according to
the high number of local extrema displayed by all
those divergences as compared to the position space
ones. The locations and types of extrema (maximum
or minimum) are roughly the same for the three mea-
sures, at least according to the main peaks, as will
be discussed below. The previous comments are not
applicable for the position space measures, where a
similar structure (not so enhanced as in momentum
space) is only displayed by the JSD, as opposite to
the unimodal shapes of both QD and FD.

In what concerns the location of the main extrema,
it is observed their appearance associated to (i)
comparisons between atoms belonging to the same
group of the Periodic Table, and (ii) systems suffering
the so-called anomalous shell-filling. This comment
applies not only for all momentum space measures
but also for JSD in the position one. In this sense, the
“distance” of a given system to a second one is lower
when both them display a higher similarity accord-
ing to their physical and chemical characteristics,
mainly determined by the valence region.

Such is not the case of the unimodal measures in
positon space, which only provide information on
how “far/different” the involved nuclear charges
are, the values of the other measures being deter-
mined by the atomic shell structure. The minimal
value zero is always reached when comparing iden-
tical systems, but no additional extrema appear for
the position space QD and FD. In fact, these measures
quantify the distance between systems as ordered
attending exclusively to the nuclear charge, while the
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FIGURE 1. Quadratic Distance QD (top), Fisher Divergence FD (middle), and Jensen-Shannon Divergence (bottom)
between the one-particle densities of noble gases and those of neutral atoms with nuclear charge Z = 1 − 103, in
position (left) and momentum (right) spaces. Atomic units are used.

rest of measures quantify their distance according
to their location over the highly structured Periodic
Table.

It is also remarkable the very similar ranges of JSD
values in both spaces, whereas those of both QD and

FD are absolutely different as comparing the position
and momentum spaces.

To provide a physical interpretation of the above
discussed results, it is worthy to remember the
decreasing trend of both densities and their physical
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meaning. Higher values of ρ(r) and γ (p) correspond
to low “r” and “p”, respectively. Low “r” is associ-
ated to electrons surrounding the nucleus, whereas
low “p” (i.e. low speed) electrons are the outermost
ones, located in the valence region. The overlap and
the gradient integrals (those of QD and FD) are
mainly determined by the aforementioned regions:
in position space, that governed by the nuclear
charge Z, while in momentum space the valence
subshell which appears as the essential ingredient
for a physically relevant comparison among atomic
systems.

In what concerns the structure in position space
for JSD, when compared to QD and FD, it should be
pointed out the “logarithmic attenuation” of the inte-
grands defining the JSD, which makes possible this
measure to quantify, at least slightly, the outermost
contribution even in position space.

It appears also as a very intereting aim to deal
with a measure, in a similar fashion as those consid-
ered in this section, allowing to perform a compari-
son among distributions but including additionally
the availability to define specific regions as main
domains to be compared, as well as to enhance
or diminish appropriately the level of structure in
the sense discussed above. Both aims will be get,
as described in the next section, by means of the
“Jensen-Rényi Divergence” JRD.

3. Jensen-Rényi Divergence (JRD)
Among Neutral Atoms

The Shannon entropy S constitutes a particular
case of the so-called Rényi entropy of order q [55],

R(q)(ρ) ≡ 1
1 − q

ln ω(q)(ρ), (10)

with ω(q)(ρ) ≡ ∫
ρq(�r)d�r being the frequency moment

of order q of the distribution ρ(�r). Both the Rényi
entropy and some frequency moments play a rele-
vant role in the description of quantum many-body
systems by means of their one-particle densities. The
convergence of the involved integral depends on the
short- and long-range behavior of the distribution
we are dealing with.

The limiting case q → 1, taking into account the
normalization constraint ω(1)(ρ) = 1, provides the
Shannon entropy: R(1)(ρ) = S(ρ). Consequently,
R(q)(ρ) constitutes a generalization of the Shannon
entropy S(ρ).

Replacing the Shannon entropy by the Rényi one
in the JSD definition gives rise to a new double-
density functional, the Jensen-Rényi Divergence [42]

JRD(q)(ρ1, ρ2) ≡ R(q)

(
ρ1 + ρ2

2

)
−1

2

[
R(q)(ρ1) + R(q)(ρ2)

]

in such a way that JRD(1) = JSD, the new diver-
gence generalizing the previously introduced JSD
one. Scarce applications of the JRD measure have
been carried out, only in fields (to the best of our
knowledge) such as image registration [56, 57] or
document categorization [58].

The non-negativity of JRD(q) is guaranteed for
0 < q < 1, constraint which arises from the con-
vex/concave character of the frequency moments
ω(q) according to the value of “q”. This parameter
acts by smoothing the integrands for lower “q” val-
ues and enhancing the contribution of the outermost
region of the atomic domain.

The computations of JRD(q) for the particular val-
ues q = 0.4, 0.8, when compared to the limiting case
q → 1 which corresponds to JSD, provides the results
shown in Figure 2 for the divergence between Kryp-
ton (nuclear charge Z = 36) and all neutral atoms
throughout the Periodic Table. These results extend
previous studies performed in a similar fashion as
done here, but only by means of the JSD measure [35].

It is clearly observed that lowering the value of the
parameter “q” below 1 enhances or diminishes dif-
ferent contributions of the density domain according
to the considered space (position or momentum) in
an opposite way: enhancing the valence region in
position space and the nuclear region in the momen-
tum one. This is a consequence of the structural
properties of both one-particle atomic densities for
which their maximum values are located at the origin
(systematically in position space and frequently in
the momentum one) or very close to it. As explained
before, the valence subshell is far from the origin
when compared to the other ones, and the exponen-
tial decrease of the density makes the contribution
of such a region to the JRD value to be very small,
unless enhancing it by powering the density with a
small exponent “q”. The Figure 2(a) reveals that to get
shell-filling patterns by means of JRD(q) in position
space low values of the parameter “q” are required.

The opposite trend is observed in the Figure
2(b), similarly justified as previously. The momen-
tum density around the origin quantifies the relative
number of electrons with low linear momentum “p,”
which are just those located in the outermost region.
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FIGURE 2. Jensen-Rényi Divergence JRD(q) for
q = 0.4, 0.8 and Jensen-Shannon Divergence
JSD = JRD(1) between the one-particle densities of
Krypton (nuclear charge Z = 36) and those of neutral
atoms with Z = 1–103, in (a) position and (b) momentum
spaces. Atomic units are used.

Consequently, the contribution of that region is now
diminished when lowering “p.”

Concerning the momentum space, the value q = 1
appears as “almost critical”, in the sense that
going down only up to q = 0.8 makes the previous
structure to disappear almost completely.

So, the role played by the value of the parameter
“q” allows one to obtain a higher level of informa-
tion on the shell-filling effects according to the space
which the density considered belongs to.

The discussion concerning the specific structure
of the curves displayed in this figure can be car-
ried out in a similar fashion to that of Figure 1.
That is, the location of the main minima corresponds
to systems belonging to the same atomic group of
Krypton (i.e., noble gases), while other minor ones

are mostly associated to systems suffering the
“anomalous shell-filling.” This comment is valid for
the JRD in both conjugated spaces, for those “q”
values for which such a structure is displayed.

4. Jensen Divergences Among Atomic
Models

The applications of JSD and JRD go far beyond
the comparison of different neutral atoms as pre-
viously done. In fact, the divergences can be used
by considering two arbitrary distribution functions.
Within the framework we are dealing with, a very
interesting application is the quantification of the dif-
ferences between the one-particle densities of a given
system but computed within different models. As a
very specific ilustration, the Figure 3 shows the cor-
responding divergences, in each conjugated space,
for the Hartree-Fock (HF) and the “Bare Coulomb
Field” (BCF) models, in the last one the interelec-
tronic repulsion being neglected. So, the correspond-
ing divergences constitute, in fact, a measure of the
changes experienced by the densities when neglect-
ing the repulsive forces and, consequently, of their
relevance for the atomic densities, as shown in Ref.
47 for the JSD case.

It is first observed, by comparing Figures 3(a) and
(b), that the curves are ordered following opposite
trends in the two spaces. Divergences (i.e., differ-
ences between the HF and BCF densities) become
higher as decreasing (increasing) “q” in position
(momentum) space. The interelectronic repulsion
mainly affects, consequently, the outermost region
as compared to the nuclear one, as can be interpreted
according to the results obtained in each space.

This fact means that, as far as the interelectronic
repulsion increases, the electrons start to space out
among themselves but more easily in the outermost
region because of their spreading there as compared
to the vicinity of the nucleus.

Concerning the structural characteristics of the
curves, it is also observed that also the extrema in
each space follow different trends: local maxima
appear in position space in the q = 0.2 curve for sys-
tems where a new subshell has been added, more
apparently when the subshell is of “s” type. This
means that the single-electron valence orbitals are
more sensitive to the effect of the repulsive forces
than those with a higher occupation number. On
the other hand, location of maxima in the momen-
tum JSD curve are associated to closed-shell systems.
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FIGURE 3. Jensen-Rényi Divergence JRD(q) for
q = 0.2, 0.4, 0.6, 0.8 and Jensen-Shannon Divergence
JSD = JRD(1) between the one-particle densities
computed within Hartree-Fock (HF) and Bare Coulomb
Field models, for neutral atoms with nuclear charge
Z = 1–103, in (a) position and (b) momentum spaces.
Atomic units are used.

Other “q” values make the extrema to progressively
soften, even disappearing in some cases.

The universality of the method here used allows
its application to the analysis of the effects arising
by considering numerical computations or models
other than the BCF one. This will be done else-
where by considering correlated wavefunctions or
relativistic effects, among others.

5. Jensen Divergences Among Atomic
Subshells

The JSD and JRD definitions can be extended
(i) by considering an arbitrary number “M” of

distributions, and (ii) by weighting each density
according to the desired criteria. This generalization
gives rise to

JRD(q)({ωi, ρi
}M

i=1

) ≡ R(q)

(
M∑

i=1

ωiρi

)
−

M∑
i=1

ωiR(q)(ρi)

(11)

with
∑M

i=1 ωi = 1, and similarly for JSD in terms
of S(ρi). The same properties previously mentioned
remain.

The above generalization allows one to quan-
tify the divergence among a collection of distribu-
tions, which can be considered as a “mean distance”
among them. A particular application of this mea-
sure can be performed on the subshells (n, l) compos-
ing a given N-electron atom, each one containing Nnl

electrons and normalized to unity. The total density
is expressed then as

N · ρ =
∑

nl

Nnl · ρnl (12)

or equivalently

ρ =
∑

nl

ωnlρnl, (13)

the weights being chosen as ωnl = Nnl/N (rela-
tive electronic charge of the subshell). This diver-
gence represents the “excess of entropy” (Shannon
or Renyi) of the global atom with respect to the mean
entropy of its constituents (the subshells). A similar
analysis as done in previous works for JSD [45] are
now extended to JRD.

The JSD and JRD divergences of the aforemen-
tioned “collection of subshells” have been computed
for all neutral atoms with nuclear charge Z = 1−103,
and their values are displayed in Figure 4. Some
comments are in order:

i. A general decreasing trend of the JRD diver-
gence as “q” increases is observed in both con-
jugated spaces, almost systematic in momen-
tum space with the corresponding curves
ordered appart from few exceptions corre-
sponding to light atoms. So, the Renyi entropy
of the global system decreases, when compared
to its lower bound given by the mean entropy
of the subshells, when increasing “q.”
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FIGURE 4. Jensen-Rényi Divergence JRD(q) for
q = 0.2, 0.4, 0.6, 0.8 and Jensen-Shannon Divergence
JSD = JRD(1) among the occupied subshells for all
neutral atoms with nuclear charge Z = 1–103, in (a)
position and (b) momentum spaces. Atomic units are
used.

ii. According to the interpretation of low and
large “q” values’, the divergence among sub-
shells is higher when enhancing the contribu-
tion of the densities around the origin, inde-
pendently of the space considered. This fact
suggests that the relevant feature for quantify-
ing the global divergence is the region of higher
density values instead of the shell-filling pat-
tern.

iii. Location of extrema within each curve does
not follow a so systematic pattern as in the
applications previously performed. This is in
accordance with the previous comment on the
reasons for finding a higher or lower diver-
gence.

6. Concluding Remarks

The most important statistical measures of diver-
gence (QD, FD, JSD) are used and compared to study
one-electron atomic densities. Concerning QD and
FD, the analysis in the momentum space shows how
the momentum density carries fundamental infor-
mation about periodicity and structure of the atomic
systems and reveals the pattern of periodic table of
elements. This is in contrast with the position space
analysis, where instead of those patterns a unimodal
behavior is displayed.

This trend is partially avoided by the Jensen-
Shannon divergence (JSD), showing at least a lit-
tle structure in both conjugate spaces. To improve
the above results, we have used a well known
generalization of the Shannon entropy, namely
the Rényi entropy, to build up a one-parameter
divergence measure, The Jensen-Rényi divergence
(JRD) appears capable of assigning different weights
to specific regions of the electronic distribution
domains to control the most important contribu-
tions of the electronic cloud to the atomic densities
in position and momentum spaces. This general-
ized divergence provide information on the atomic
shell structure and shell-filling patterns in both con-
jugated spaces and has been used to compare quan-
titatively the dissimilarities of atomic shells, systems
and models.
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