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ABSTRACT: Information-theoretic magnitudes measuring randomness (Shannon
entropy, exponential entropy, power entropy), spread (variance), localization
(disequilibrium or self-similarity) and intrinsic accuracy (Fisher information) are used to
compute several measures of complexity consisting, each one, of two
localization–delocalization factors. These proposals have been tested on known, simple,
but strongly organized and hierarchical systems (atoms) and processes (ionization). A
complete numerical analysis at the Hartree–Fock level is done in position, momentum,
and product spaces, where similar trends are followed by all studied complexities. It is
also found that the complexity planes clearly reveal shell-filling patterns across the
periodic table. Characteristic features accompanying the ionization process are
identified, and the physical reasons for the observed patterns are described. We
conclude that (i) the studied complexity measures detect not only randomness or
localization, but also pattern and organization, and (ii) their study is not only sufficient
in the usual position space, but also in the complementary momentum space, to have a
complete description of the information–theoretic behavior of these systems. © 2008
Wiley Periodicals, Inc. Int J Quantum Chem 109: 586–593, 2009
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1. Introduction

M easuring the complexity of a general system
is an important area of contemporary re-

search, which has roots in Information and Bayes-
ian theories [1, 2]. Till the present date, different
definitions of the complexity have been proposed.
Among these, a few notable definitions include al-
gorithmic or Kolmogorov–Chaitin complexity [3,
4], Lempel–Ziv complexity [5], effective measure of
complexity by Grassberger [6], logical depth by
Bennett [7], and thermodynamical depth by Lloyd
and Pagels [8].

In most of the proposals for complexity mea-
sures, employment of the concept of entropy or
relevant information can be regarded as a basic
ingredient for quantifying the phenomenon. In the
last few years, keen interest in developing new
definitions for statistical measure of complexity
based on probabilistic descriptions of physical sys-
tems has emerged. One of them is the disequilibri-
um-based complexity, denoted by LMC because of
its pioneering authors López-Ruiz, Mancini and
Calbet, which is defined as C � D � S [9], where S is
the Shannon entropy and D the so-called disequi-
librium that has adopted quadratic distances of
each state for assessing the equiprobability [10].
This later important magnitude has been also
named self-similarity [10], Onicescu information
energy, [11] or principal number [12], in other con-
texts. The other measure of complexity is the simple
one proposed by Shiner et al. [13]. It is defined as
the product of a measure of order and a measure of
disorder in a system, and it is related to LMC
complexity.

The LMC complexity has been criticized [14] and
modified [15], leading to a measure C(LMC) � D �
L � D � eS [16], which satisfies several desirable
properties of invariance under scaling, translation,
and replication and has been further generalized
[17] to include Renyi and Tsallis entropy measures.
Both global factors of C(LMC) play an important
role in Information Theory, are closely related to
measures of spread of a probability density, like the
variance V (which measures the spreading of the
density from its mean value), and are called Renyi
lengths (L � eS and 1/D) in other contexts [18].
Renyi entropies are just the logarithm of these two
spread measures [19]. The utility of such general-
ized complexity measures has been demonstrated
recently [20–22].

More recently Fisher–Shannon complexity
C(FS) � I � J [23] was presented and tested in atomic
systems, having the advantage of using a local mag-
nitude to measure intrinsic accuracy, the Fisher in-
formation I, and a global magnitude to quantify
randomness, i.e. the power entropy J � e(2/n)S/
(2�e), where n is the dimension of the space.

Information–theoretic properties have been used
in recent years for the study of quantum mechanical
and multielectronic systems. In particular, their use
in atomic and molecular physics has led to a new
insight in these fields [24–27].

In the present work we carry out a systematic
study of the following information–theoretic magni-
tudes: Fisher information (I) or disequilibrium (D) to
measure intrinsic accuracy or localization respec-
tively, and exponential Shannon entropy (L � eS) or
variance (V) to measure uncertainty or delocalization.
New complexity candidates are defined, computed,
and compared using these two localization–delocal-
ization factors and leading to complexity measures of
order–disorder type: C(LMC) � D � L, Cramer-Rao
complexity C(CR) � I � V and also the other two
possibilities: D � V and I � L, besides the previously
used Fisher–Shannon complexity C(FS).

In this work these LMC-type complexities are
tested on simple, but strongly organized N-elec-
tronic systems, N � 1–54, of neutral atoms and their
singly charged ions. In Section 2 we define and
present the main properties of the magnitudes we
are dealing with. In Section 3 the behavior in the
localization–delocalization planes accompanying
the process of gain or loss of one electron for an
atom at constant nuclear charge Z is studied. In
Section 4 the isoelectronic variation of this informa-
tion measures of over a fairly extended range of Z
values is presented. Both partial variations with
respect to the electron number N and the nuclear
charge Z are found to show characteristic features
in the complexity planes. The complementary use
of r and p spaces provides a compact and more
complete understanding of the information content
of these planes. Conclusions and main results are
collected in the last section.

2. LMC-Type Complexities in Atomic
Systems

The information theoretic magnitudes presented
in the introduction are now defined and expressed
in terms of the one particle densities in the three
dimensional (n � 3) conjugated position and mo-
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mentum spaces, �(r) and �(p), respectively, which
are well known to play a relevant role in the de-
scription of many fermion systems. Concerning the
normalized to unity one-particle density in position
space, Shannon entropy is given by

Sr � � ���r�ln��r)dr, (1)

from which exponential and power entropies, Lr �
eSr and Jr � e2/3Sr/2�e respectively, are conse-
quently obtained; also disequilibrium

Dr � ��2�r)dr, (2)

Fisher information

Ir � ���� ��r)�2

�(r) dr (3)

and variance

Vr � �r2� � �r�2 (4)

(with �rk� � �rk��r)dr being radial expectation val-
ues) are the corresponding quantities for the distri-
bution �(r). Similar definitions are considered for
the momentum density, where the subscript r is
replaced by p, as well as for the joint product space
where the aforementioned quantities will be de-
noted with the subscript rp. This space shows, in a
very compact form, all the information content of
the process or system we are dealing with and leads
to a more complete understanding of the total be-
havior of complexity, taking into account the infor-
mation coming from both conjugated spaces. The
information magnitudes in product space are de-
fined as the product of the corresponding ones for
each isolated space, with the only exception of
power entropy Jrp in which the denominator 2�e
appears only once. Notice that for some of those
quantities, the aforementioned products are also
the result of evaluating the same magnitudes for
the product distribution function f(r, p) � �(r)�(p).

In what follows, we will only deal with the
spherically averaged densities �(r) and �(p), being
sufficient for a complete description of the distribu-
tions analyzed in the present work, namely those
corresponding to atomic systems.

According to these definitions, the correspond-
ing complexity measures in position space
Cr(LMC) � Dr � Lr, Cr(CR) � Ir � Vr, Cr(DV) � Dr � Vr,

and Cr(IL) � Ir � Lr are built up, in addition to
Cr(FS) � Ir � Jr, and similarly in the other two spaces.

Other authors have recently dealt with some par-
ticular factors of the complexity measures. In par-
ticular, Shannon entropy has been extensively used
in the study of many important properties of mul-
tielectronic systems, such as, for instance, rigorous
bounds [28], electronic correlation [26], effective po-
tentials [29], similarity [30, 31], electric and mag-
netic fields [32], local properties [33], and maximum
entropy approximations [34].

More recently, Fisher information has been stud-
ied as an intrinsic accuracy measure for concrete
atomic models and densities [35, 36] and also for
quantum mechanics central potentials [37]. Quan-
tum similarities and self-similarities (D) for neutral
atoms were computed for Z � 1–54 only in the
position space [38, 39] but afterwards a more com-
plete analysis including Z � 1–103 neutral systems
and several singly charged ions has been done not
only in position but also in momentum space [40].

Complexity studies for neutral systems have also
been carried out, but most of them only for Z �
1–54 [41]. Some others complexity works simply
take as basic variable the position density [42, 43],
but not the momentum one. In this sense, it is
worthy to point out the different behavior dis-
played by some of these quantities for atomic sys-
tems attending to the considered space, as we have
recently shown [44, 45].

Some uncertainty-like relations between the
above information magnitudes are known, estab-
lishing connections between position, r, and mo-
mentum, p, spaces. For instance the well-known
n-dimensional Heisenberg inequality, Vr � Vp �
n2/4 [46], the more stringent relation Sr � Sp

� n�1 � ln�� [47], and the lower bound to the
Fisher information product Ir � Ip � 4n2 [37, 48] for
central potentials (conjectured to be also valid in the
general case).

The previously introduced informational mea-
sure C(FS) � I � J takes into account global (J) and
local (I) characteristics of the electronic densities.
Besides, one factor (J) measures randomness or un-
certainty whereas the other one measures localiza-
tion or intrinsic accuracy (I) in the corresponding
electronic system. This product informational mea-
sure has been recently proposed as a new candidate
for measuring complexity/organization of systems

ANTOLÍN AND ANGULO

588 INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY DOI 10.1002/qua VOL. 109, NO. 3



and processes in a similar form than SDL or LMC
complexities do [23].

Factors in the Shannon-based power entropy J
are chosen for the rigorous uncertainty relationship
C(FS) � I � J � n to be verified [49]. The well-
known Cramer-Rao bound I � V � 1 (for dimen-
sion n � 1 and infinite support interval)[49, 50] also
relates two important information measures, i.e.
Fisher information and variance, leading us to
study a complexity measure defined as the product
of these magnitudes.

In the following sections the strong correlation be-
tween the complexity concepts (as previously defined
in terms of different global and local properties of the
distribution) and some relevant chemical and physi-
cal properties of atomic systems (e.g., nuclear charge,
shell-filling) is deeply analyzed by means of their one
particle densities in the three-dimensional (n � 3)
position and momentum spaces, �(r) and �(p) respec-
tively, (as well as in product space), properties which
are well-known to play a relevant role in the descrip-
tion of many fermion systems.

For carrying out the numerical calculations needed
in order to analyze the aforementioned quantities in
atomic systems, as well as the relationships among
themselves, we have employed the accurate Near-
Hartree–Fock wavefunctions of Koga et al. [51, 52],
which provide the one-particle densities �(r) and �(p)
for neutral atoms, anions, and cations with not more
than N � 54 electrons, and isoelectronic series with
N � 2–10 and nuclear charge within the range N � Z
� N � 20, for which the entropic and informational
quantities are computed.

In particular, we compute all the above men-
tioned complexities in each conjugated (r and p)
and product (rp) spaces, for those systems. There-
fore, we can study, on the one hand, the effect of
complexities of loosing or gaining valence electrons
and, on the other, the effect that the size of the
nucleus has in these complex electronic systems.

Extensive computations lead to rather similar
qualitative results for all LMC-type complexity
measures we have dealt with. We will center our
attention in Section 3 in the study of the complexity
trajectories followed in monoionization processes,
showing first that LMC and FS complexity give
very similar numerical results. Then the ionization
processes are analyzed, for variety, using the Cra-
mer-Rao complexitiy. In Section 4 we study the
iso-electronic series with the LMC complexity mea-
sure. Concrete similarities and differences between
the various complexities and systems studied are
pointed out.

3. Complexity Analysis for Ionization
Processes

In this section we first compare the Fisher-Shannon
(FS) and López Ruiz–Mancini–Calbet (LMC) com-
plexity measures followed in mono-ionization pro-
cesses. In doing so we calculate the informational
measures (i) (I, J) to construct C(FS) � I � J, and (ii) (D,
L) to construct C(LMC) � D � L. We analyze a set of
150 atomic systems including anions, neutral species
and cations. In Figure 1(a) we show both complexi-
ties, in position space, for anions, and in Figure 1(b),
now for variety in momentum space, the same infor-
mation measures for cations.

Both figures clearly display the strong structural
similarity between C(LMC) and C(FS). Let us remark
here that each complexity consists of two factors, one

FIGURE 1. Complexities C(LMC) and C(FS) for (a) an-
ions in position space, and (b) cations in momentum
space, for singly charged ions with nuclear charge Z.
Atomic units (a.u.) are used.
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of them always defined in terms of the Shannon en-
tropy S, being the other factor that which character-
izes more specifically the corresponding complexity,
because we are using a global quantity (i.e., disequi-
librium D) for C(LMC) but a local one (i.e., Fisher
information) for C(FS). Nevertheless, there are no rel-
evant structural differences between complexities
based on the global or the local magnitude. Addition-
ally, such a comment can be done independently of
the conjugate space considered.

As it is apparent, not only the trends but also the
numerical values of both magnitudes are very sim-
ilar. This result contrasts with other previous ones,
where diverse atomic information magnitudes
must be arbitrarily factorized or scaled in order to
carry out a useful comparison [23, 36].

Another relevant characteristics of all curves
plotted in such Figures 1(a) and (b) are the strong
correlation appearing between the process of shell-
filling in atomic systems (and also the group the
atom belongs to) and location of extrema (maxima
and minima) or, equivalently, monotonicity (in-
creasing or decreasing) between consecutive ex-
trema. It is worthy to point out that, with very few
exceptions, C(LMC) and C(FS) in both position and
momentum spaces reach minimum complexity val-
ues for noble gases as well as for the anomalous
shell-filling set of atoms (specially remarkable the
values Z � 24, 29, 46, all characterized for losing an
“s” electron). Also maxima are frequently associ-
ated to shell structure.

Concerning the behavior of the Cramer-Rao
complexity C(CR) � I � V throughout the ionization

process, its dependence on the nuclear charge Z
and correlation with atomic shell structure are
clearly displayed in Figure 2 for the product space
rp, in a compact and complete form. Total complex-
ity increases while losing an electron with overall
organization (with Z) but showing the characteris-
tic trends of the shell structure. Maxima are clearly
associated to “s” subshells, as happens with the
relative minima in noble gases or some anomalous
filling of “d” shells.

Figure 3(a) shows the Cramer-Rao Plane, i.e., the
I–V plane, in the position space for these systems.
Some facts are worthy to remark in this figure. First,
it is clear that the CR plane, apart from reproducing
faithfully the atomic shell structure, reveals that
systems of large Z are highly localized and orga-
nized whereas light systems have much more de-
localization. Second, location at the plane after an
ionization process for heavy atoms slightly changes
when compared to those suffered by light atoms.

FIGURE 2. Complexity C(CR) in product space for
neutral atoms and singly charged ions with nuclear
charge Z. Atomic units (a.u.) are used.

FIGURE 3. I-V (Fisher-Variance) planes in (a) position and
(b) momentum spaces, for neutral atoms and singly charged
ions with nuclear charge Z. Atomic units (a.u.) are used.
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Furthermore, complexity for a given Z decreases
following the sequence anion-neutral atom-cation,
i.e. as losing electrons. Third, ionization in “s” sub-
shells are processes characterized by a considerable
gain of complexity as compared to those in “p” or
“d” subsells, which increases only moderately the
product of I and V measures.

Figure 3(b) shows the I–V plane in the momen-
tum space. It is important to note here that the
behavior in this space is just the opposite than in r
space. Systems of large Z are now less localized and
have a greater value of variance, whereas light sys-
tems are more localized in p space. Besides in the
process of loss of electrons the variance increases
whereas Ip decreases, just the reciprocal that hap-
pens in r space.

It is important to remark that replacing Fisher
information (which measures the gradient content
of the density) by the global disequilibrium D
(which measures the global density content), lead-
ing to the complexity D � V, also shows very anal-
ogous trends to those of Cramer-Rao complexity.

4. Complexity Analysis of
Isoelectronic Series

Let us focus now, not in the outer electronic layer
like in the previous section, but in the core of the
atom. We analyze nine isoelectronic series corre-
sponding to N � 2 � 10 electron systems. Each
series consists of 21 systems of equal electronic
charge N, with nuclear charge running from Z � N
to Z � N � 20. In this way we study how complex-
ity measures characterize, from the informational
point of view, this set of 189 different systems. On
one hand the effect of decreasing the nuclear charge
Z from N � 20 to N is studied, and on the other the
electronic organization of each isoelectronic series
can also be investigated.

LMC-type measures are calculated for each iso-
electronic series in position, momentum, and prod-
uct spaces in order to compare them and have a
more complete and accurate analysis of these sys-
tems. In this case we use the LMC measure, i.e.
C(LMC) � L � D. Results are displayed in a D vs. L
plane: the disequilibrium–entropy plane.

Figures 4(a) and (b) show, respectively, the re-
sults in r and p spaces in a double logarithmic scale.
Each isoelectronic series follows a D-L trajectory
that can be easily analyzed. The isoelectronic series
corresponding to He shows an almost constant
C(LMC) � D � L line in both spaces, showing that

the effect of increasing the nuclear charge produces,
obviously, more localization (D) and consequently
less uncertainty (L). However, this fact does not
affect significantly the product measure C(LMC) �
D � L, where an increase (decrease) in uncertainty
(L) is compensated by a proportional decrease (in-
crease) of localization (D).

Systems with large nuclear charge Z in r space
[Fig. 4(a)] are located in the right-lower corner of
the figure, showing a highly localized structure (D
large), independently of the isoelectronic series
they belong to. The trajectories of the isoelectronic
series in this zone show that the product measure
there is almost constant. However, when nuclear
charge decreases, systems deviate from the constant
isoproduct lines and show greater complexity.
Neutral systems (on the left-upper zone of the D-L
plane), breaking definitely this false linearity, pos-
ses the biggest complexity in r space and are char-

FIGURE 4. D-L (Disequilibrium-Exponential entropy)
planes in (a) position and (b) momentum spaces, for iso-
electronic series with 2–10 electrons. Atomic units (a.u.)
are used.
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acterized by a relatively lower localization and
greater uncertainty when compared to members of
their same series.

It is interesting to note the exact reciprocal be-
havior displayed by all series in the complementary
p space [Fig. 4(b)]. Now systems of large nuclear
charge are located in the left-upper zone of the
figure, showing a low localization in momentum
space and high entropy, whereas neutral systems
are located in the low entropy and high localization
region and show a deviation from the isoproduct
lines that implies, as in the r case, the biggest struc-
ture/complexity.

The distance between systems within the same
isoelectronic series falls with increasing Z, giving
rise to a higher similarity between systems with
large nuclear charge; on the contrary, systems with
low Z separate progressively, showing different
trends. Figure 5(a) presents the L vs. D trajectories

of the nine isoelectronic series in the product space.
It is important to remark now the radical change in
the slopes of all series compared to those of isolated
r and p planes. Systems with heavy nuclei are on
the lower part of the figure and neutral systems on
the upper one. Once again neutral systems show
more complexity than the cations of its series. The
shell structure is now clearly perceptible, showing
for instance that systems filling the 2s subshell dis-
play more complexity than those filling the 2p sub-
shell. Also noble gases show the smallest complex-
ity compared to other atoms.

Similar results to those discussed above are also
obtained when using the Cramer-Rao plane (i.e., V
vs. I plane), as shown in Figure 5(b). Those com-
ments are also valid when studying additional in-
formation planes (e.g., I vs. L or L vs. V), which
corresponding figures are not included in the
present work for the sake of simplicity.

5. Conclusions

LMC-type complexity measures detecting not
only randomness but also structure and organiza-
tion are defined and subsequently computed using
near Hartree–Fock wave functions for neutral at-
oms, anions, and cations with nuclear charge Z �
1–54 in position, momentum and product spaces
(150 systems). Besides the complexity content of
nine isoelectronic series, (189 systems) is analyzed
with these information theoretic products consist-
ing of two factors, a localization (I or D) and a
delocalization (V, S, L, or J) one.

The localization–delocalization planes are useful
to represent the informational trajectories of the
different processes or systems under investigation
and the complementary use of r and p spaces pro-
vides a compact and more complete understanding
of the information content of these planes.

It is shown that FS and LMC complexities (using
very different first localization factors, a local and a
global one, respectively) are qualitatively and nu-
merically equivalent for all these systems, and that
the other LMC-type complexities give similar qual-
itative results. In particular the Cramer-Rao com-
plexity I � V, defined in terms of the complementary
factors of the LMC one L � D, is a relevant candidate
to investigate the pattern of a system or process.

Concretely we study the informational effect of
increasing or decreasing the nuclear charge in isoelec-
tronic series. It is shown that behaviors in r and p
spaces are just the opposite within each isoelectronic

FIGURE 5. (a) D-L (Disequilibrium-Exponential entropy)
and (b) I-V (Fisher-Variance) planes in product space, for
isoelectronic series with 2–10 electrons. Atomic units (a.u.)
are used.
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series. The joint behavior in rp space shows more
clearly the increase in complexity as far as the nuclear
charge decreases.

Concerning the mono-ionization processes the
whole structure of the periodic table according to
shell-filling is revealed. Again the trends in conju-
gate spaces are opposite one to the other. All LMC-
type complexities are ordered for fixed Z according
to the global charge, being larger for anions and
lower for cations, with neutral systems in the mid-
dle. LMC-type complexities increase, in overall,
with nuclear charge Z, but local maxima appear
associated to systems filling ns subshells, corre-
sponding noble gases to relative minima.

As main conclusion, one cannot use only a mea-
sure of uncertainty/randomness or a measure of
concentration/localization to measure the informa-
tional content or the organization of a system. Mea-
sures like LMC-type complexities that take into
account both faces seem more suitable to describe
the complexity of an atomic or, in general, a multi-
fermionic system.
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